메뉴 건너뛰기




Volumn 42, Issue 13, 2015, Pages 5737-5753

Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal

Author keywords

Credit scoring; Decision forests; Diversity; Ensemble strategies; Gradient boosting; Random forests

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION TREES; LEARNING ALGORITHMS; LEARNING SYSTEMS;

EID: 84926638352     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2015.02.042     Document Type: Article
Times cited : (82)

References (78)
  • 1
    • 84891873347 scopus 로고    scopus 로고
    • Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
    • J. Abellan, and C. Mantas Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring Expert Systems with Applications 41 2014 3825 3830
    • (2014) Expert Systems with Applications , vol.41 , pp. 3825-3830
    • Abellan, J.1    Mantas, C.2
  • 2
    • 84857650916 scopus 로고    scopus 로고
    • Bagging schemes on the presence of class noise in classification
    • J. Abellan, and A.R. Masegosa Bagging schemes on the presence of class noise in classification Expert Systems with Applications 39 2012 6827 6837
    • (2012) Expert Systems with Applications , vol.39 , pp. 6827-6837
    • Abellan, J.1    Masegosa, A.R.2
  • 3
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios, discriminant analysis, and the prediction of corporate bankruptcy The Journal of Finance 23 1968 589 609
    • (1968) The Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 5
    • 84926680501 scopus 로고    scopus 로고
    • Basel Committee on Banking Supervision (BCBS). (2011, June). Basel III: A global regulatory framework for more resilient banks and banking systems. Basel: Bank for International Settlements
    • Basel Committee on Banking Supervision (BCBS). (2011, June). Basel III: A global regulatory framework for more resilient banks and banking systems. Basel: Bank for International Settlements.
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 1996 123 140
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 9
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • I. Brown, and C. Mues An experimental comparison of classification algorithms for imbalanced credit scoring data sets Expert Systems with Applications 39 2012 3446 3453
    • (2012) Expert Systems with Applications , vol.39 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 10
    • 0001929348 scopus 로고
    • ASSISTANT 86: A knowledge elicitation tool for sophisticated users
    • I. Bratko, N. Lavrac, Sigma Press Wilmslow
    • B. Cestnik, I. Kononenko, and I. Bratko ASSISTANT 86: A knowledge elicitation tool for sophisticated users I. Bratko, N. Lavrac, Progress in machine learning 1987 Sigma Press Wilmslow
    • (1987) Progress in Machine Learning
    • Cestnik, B.1    Kononenko, I.2    Bratko, I.3
  • 11
    • 84871923661 scopus 로고    scopus 로고
    • Hybrid models based on rough set classifiers for setting credit risk rating decision rules in the global banking industry
    • Y.-S. Chen, and C.-H. Cheng Hybrid models based on rough set classifiers for setting credit risk rating decision rules in the global banking industry Knowledge-Based Systems 39 2013 224 239
    • (2013) Knowledge-Based Systems , vol.39 , pp. 224-239
    • Chen, Y.-S.1    Cheng, C.-H.2
  • 13
    • 84919935619 scopus 로고    scopus 로고
    • Selection of support vector machines based classifiers for credit risk domain
    • P. Danenas, and G. Garsva Selection of support vector machines based classifiers for credit risk domain Expert Systems with Applications 42 2015 3194 3204
    • (2015) Expert Systems with Applications , vol.42 , pp. 3194-3204
    • Danenas, P.1    Garsva, G.2
  • 14
    • 39049130113 scopus 로고    scopus 로고
    • A comparison of the rough sets and recursive partitioning induction approaches: An application to commercial loans
    • M. Daubie, P. Levecq, and N. Meskens A comparison of the rough sets and recursive partitioning induction approaches: An application to commercial loans International Transactions in Operational Research 9 2002 681 694
    • (2002) International Transactions in Operational Research , vol.9 , pp. 681-694
    • Daubie, M.1    Levecq, P.2    Meskens, N.3
  • 15
    • 84857651191 scopus 로고    scopus 로고
    • Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models
    • K.W. De Bock, and D. Van den Poel Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models Expert Systems with Applications 39 2012 6816 6826
    • (2012) Expert Systems with Applications , vol.39 , pp. 6816-6826
    • De Bock, K.W.1    Van Den Poel, D.2
  • 16
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • E.R. DeLong, D.M. DeLong, and D.L. Clarke-Pearson Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach Biometrics 44 1988 837 845
    • (1988) Biometrics , vol.44 , pp. 837-845
    • Delong, E.R.1    Delong, D.M.2    Clarke-Pearson, D.L.3
  • 17
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 18
    • 79953715935 scopus 로고    scopus 로고
    • Knowledge discovery using neural approach for SME's credit risk analysis problem in Turkey
    • G. Derelioglu, and F. Gürgen Knowledge discovery using neural approach for SME's credit risk analysis problem in Turkey Expert Systems with Applications 38 2011 9313 9318
    • (2011) Expert Systems with Applications , vol.38 , pp. 9313-9318
    • Derelioglu, G.1    Gürgen, F.2
  • 20
    • 0004183412 scopus 로고
    • Cross-validation and the bootstrap: Estimating the error rate of a prediction rule
    • Stanford University
    • Efron, B., & Tibshirani, R.J. (1995). Cross-validation and the bootstrap: Estimating the error rate of a prediction rule. Technical Report 176, Stanford University.
    • (1995) Technical Report , vol.176
    • Efron, B.1    Tibshirani, R.J.2
  • 22
    • 84881415129 scopus 로고    scopus 로고
    • Bankruptcy prediction for Russian companies: Application of combined classifiers
    • E. Fedorova, E. Gilenko, and S. Dovzhenko Bankruptcy prediction for Russian companies: Application of combined classifiers Expert Systems with Applications 40 2013 7285 7293
    • (2013) Expert Systems with Applications , vol.40 , pp. 7285-7293
    • Fedorova, E.1    Gilenko, E.2    Dovzhenko, S.3
  • 24
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classifier architectures and their applications to credit risk assessment
    • S. Finlay Multiple classifier architectures and their applications to credit risk assessment European Journal of Operational Research 210 2011 368 378
    • (2011) European Journal of Operational Research , vol.210 , pp. 368-378
    • Finlay, S.1
  • 25
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman A comparison of alternative tests of significance for the problem of m rankings Annals of Mathematical Statistics 11 1940 86 92
    • (1940) Annals of Mathematical Statistics , vol.11 , pp. 86-92
    • Friedman, M.1
  • 28
    • 79960555001 scopus 로고    scopus 로고
    • Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures
    • M.J. Gacto, R. Alcala, and F. Herrera Interpretability of linguistic fuzzy rule-based systems: An overview of interpretability measures Information Sciences 181 2011 4340 4360
    • (2011) Information Sciences , vol.181 , pp. 4340-4360
    • Gacto, M.J.1    Alcala, R.2    Herrera, F.3
  • 29
    • 85027952626 scopus 로고    scopus 로고
    • Prediction of financial distress: An empirical study of listed Chinese companies using data mining
    • R. Geng, I. Bose, and X. Chen Prediction of financial distress: An empirical study of listed Chinese companies using data mining European Journal of Operational Research 241 2015 236 247
    • (2015) European Journal of Operational Research , vol.241 , pp. 236-247
    • Geng, R.1    Bose, I.2    Chen, X.3
  • 30
    • 33745886270 scopus 로고    scopus 로고
    • Classifier technology and the illusion of progress
    • D.J. Hand Classifier technology and the illusion of progress Statistical Science 21 2006 1 15
    • (2006) Statistical Science , vol.21 , pp. 1-15
    • Hand, D.J.1
  • 31
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance. A coherent alternative to the area under the ROC curve
    • D.J. Hand Measuring classifier performance. A coherent alternative to the area under the ROC curve Machine Learning 77 2009 103 123
    • (2009) Machine Learning , vol.77 , pp. 103-123
    • Hand, D.J.1
  • 33
    • 78650292038 scopus 로고    scopus 로고
    • Predicting bankruptcy with support vector machines
    • P. Cizek, W. Härdle, R. Weron, Springer Berlin
    • W. Härdle, R. Moro, and D. Schafer Predicting bankruptcy with support vector machines P. Cizek, W. Härdle, R. Weron, Statistical tools for finance and insurance 2005 Springer Berlin 225 248
    • (2005) Statistical Tools for Finance and Insurance , pp. 225-248
    • Härdle, W.1    Moro, R.2    Schafer, D.3
  • 34
    • 84907481786 scopus 로고    scopus 로고
    • Credit scoring using the clustered support vector machine
    • T. Harris Credit scoring using the clustered support vector machine Expert Systems with Applications 42 2 2015 741 750
    • (2015) Expert Systems with Applications , vol.42 , Issue.2 , pp. 741-750
    • Harris, T.1
  • 35
    • 0040453788 scopus 로고    scopus 로고
    • Statistical classification methods in consumer credit scoring: A review
    • W.E. Henley, and D.J. Hand Statistical classification methods in consumer credit scoring: A review Journal of the Royal Statistical Society, Series A 160 3 1997 523 541
    • (1997) Journal of the Royal Statistical Society, Series A , vol.160 , Issue.3 , pp. 523-541
    • Henley, W.E.1    Hand, D.J.2
  • 37
    • 70349580621 scopus 로고    scopus 로고
    • A data driven ensemble classifier for credit scoring analysis
    • N.-C. Hsieh, and L.-P. Hung A data driven ensemble classifier for credit scoring analysis Expert Systems with Applications 37 2010 534 545
    • (2010) Expert Systems with Applications , vol.37 , pp. 534-545
    • Hsieh, N.-C.1    Hung, L.-P.2
  • 38
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • C.L. Huang, M.C. Chen, and C.J. Wang Credit scoring with a data mining approach based on support vector machines Expert Systems with Applications 33 2007 847 856
    • (2007) Expert Systems with Applications , vol.33 , pp. 847-856
    • Huang, C.L.1    Chen, M.C.2    Wang, C.J.3
  • 39
    • 58349100252 scopus 로고    scopus 로고
    • A selective ensemble based on expected probabilities for bankruptcy prediction
    • C. Hung, and J.H. Chen A selective ensemble based on expected probabilities for bankruptcy prediction Expert Systems with Applications 36 2009 5297 5303
    • (2009) Expert Systems with Applications , vol.36 , pp. 5297-5303
    • Hung, C.1    Chen, J.H.2
  • 40
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • G.V. Kass An exploratory technique for investigating large quantities of categorical data Applied Statistics 29 2 1980 119 127
    • (1980) Applied Statistics , vol.29 , Issue.2 , pp. 119-127
    • Kass, G.V.1
  • 41
    • 84871238903 scopus 로고    scopus 로고
    • Trade credit and company performance during the 2008 financial crisis
    • K. Kestens, P. Van Cauwenberge, and H.V. Vauwedhe Trade credit and company performance during the 2008 financial crisis Accounting and Finance 52 2012 1125 1151
    • (2012) Accounting and Finance , vol.52 , pp. 1125-1151
    • Kestens, K.1    Van Cauwenberge, P.2    Vauwedhe, H.V.3
  • 42
    • 0027642166 scopus 로고
    • Expert systems for bond rating: A comparative analysis of statistical, rule-based and neural network systems
    • J.W. Kim Expert systems for bond rating: A comparative analysis of statistical, rule-based and neural network systems Expert Systems 10 1993 167 171
    • (1993) Expert Systems , vol.10 , pp. 167-171
    • Kim, J.W.1
  • 43
    • 84908053289 scopus 로고    scopus 로고
    • Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction
    • M.-J. Kim, D.-K. Kang, and H.B. Kim Geometric mean based boosting algorithm with over-sampling to resolve data imbalance problem for bankruptcy prediction Expert Systems with Applications 42 2015 1074 1082
    • (2015) Expert Systems with Applications , vol.42 , pp. 1074-1082
    • Kim, M.-J.1    Kang, D.-K.2    Kim, H.B.3
  • 44
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva, and C.J. Whitaker Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy Machine Learning 51 2 2003 181 207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 45
  • 46
    • 17844382437 scopus 로고    scopus 로고
    • A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
    • T.-S. Lee, and I.F. Chen A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines Expert Systems with Applications 28 4 2005 743 752
    • (2005) Expert Systems with Applications , vol.28 , Issue.4 , pp. 743-752
    • Lee, T.-S.1    Chen, I.F.2
  • 47
    • 84855879519 scopus 로고    scopus 로고
    • Relevance vector machine based infinite decision agent ensemble learning for credit risk analysis
    • S. Li, I.W. Tsang, and N.S. Chaudhari Relevance vector machine based infinite decision agent ensemble learning for credit risk analysis Expert Systems with Applications 39 2012 4947 4953
    • (2012) Expert Systems with Applications , vol.39 , pp. 4947-4953
    • Li, S.1    Tsang, I.W.2    Chaudhari, N.S.3
  • 48
    • 84859423392 scopus 로고    scopus 로고
    • Exploring the behaviour of base classifiers in credit scoring ensembles
    • A.I. Marques, V. Garcia, and J.S. Sanchez Exploring the behaviour of base classifiers in credit scoring ensembles Expert Systems with Applications 39 2012 10244 10250
    • (2012) Expert Systems with Applications , vol.39 , pp. 10244-10250
    • Marques, A.I.1    Garcia, V.2    Sanchez, J.S.3
  • 52
    • 2942590761 scopus 로고    scopus 로고
    • Decision diagrams in machine learning: An empirical study on real-life credit-risk data
    • C. Mues, B. Baesens, C.M. Files, and J. Vanthienen Decision diagrams in machine learning: an empirical study on real-life credit-risk data Expert Systems with Applications 27 2004 257 264
    • (2004) Expert Systems with Applications , vol.27 , pp. 257-264
    • Mues, C.1    Baesens, B.2    Files, C.M.3    Vanthienen, J.4
  • 53
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble classifiers for bankruptcy prediction and credit scoring
    • L. Nanni, and A. Lumini An experimental comparison of ensemble classifiers for bankruptcy prediction and credit scoring Expert Systems with Applications 36 2009 3028 3033
    • (2009) Expert Systems with Applications , vol.36 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 57
    • 0002442571 scopus 로고
    • Discovering rules by induction from large collections of examples
    • D. Michie, Edinburg University Press Edinburgh
    • J.R. Quinlan Discovering rules by induction from large collections of examples D. Michie, Expert systems in the micro electronic age 1979 Edinburg University Press Edinburgh
    • (1979) Expert Systems in the Micro Electronic Age
    • Quinlan, J.R.1
  • 60
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire The strength of weak learnability Machine Learning 5 1990 197 227
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 61
    • 79961085476 scopus 로고    scopus 로고
    • Rule extraction from minimal neural networks for credit card screening
    • R. Setiono, B. Baesens, and C. Mues Rule extraction from minimal neural networks for credit card screening International Journal of Neural Systems 21 4 2011 265 276
    • (2011) International Journal of Neural Systems , vol.21 , Issue.4 , pp. 265-276
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 63
    • 84894901583 scopus 로고    scopus 로고
    • Predicting financial distress and corporate failure: A review from the state-Of-The-Art definitions, modeling, sampling, and featuring approaches
    • J. Sun, H. Li, Q.-H. Huang, and K.Y. He Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches Knowledge-Based Systems 57 2014 41 56
    • (2014) Knowledge-Based Systems , vol.57 , pp. 41-56
    • Sun, J.1    Li, H.2    Huang, Q.-H.3    He, K.Y.4
  • 64
    • 84861845698 scopus 로고    scopus 로고
    • Financial distress prediction using support vector machines: Ensemble vs. Individual
    • J. Sun, and H. Li Financial distress prediction using support vector machines: Ensemble vs. individual Applied Soft Computing 12 2012 2254 2265
    • (2012) Applied Soft Computing , vol.12 , pp. 2254-2265
    • Sun, J.1    Li, H.2
  • 65
    • 84908455123 scopus 로고    scopus 로고
    • A comparative study of classifier ensembles for bankruptcy prediction
    • C.-F. Tsai, Y.-F. Hsu, and D.C. Yen A comparative study of classifier ensembles for bankruptcy prediction Applied Soft Computing 24 2014 977 984
    • (2014) Applied Soft Computing , vol.24 , pp. 977-984
    • Tsai, C.-F.1    Hsu, Y.-F.2    Yen, D.C.3
  • 66
    • 84910615991 scopus 로고    scopus 로고
    • Classification restricted Boltzmann machine for comprehensible credit scoring model
    • J.M. Tomczak, and M. Zieba Classification restricted Boltzmann machine for comprehensible credit scoring model Expert Systems with Applications 42 2015 1789 1796
    • (2015) Expert Systems with Applications , vol.42 , pp. 1789-1796
    • Tomczak, J.M.1    Zieba, M.2
  • 67
    • 71349085322 scopus 로고    scopus 로고
    • Multiple classifier application to credit risk assessment
    • B. Twala Multiple classifier application to credit risk assessment Expert Systems with Applications 37 2010 3326 3336
    • (2010) Expert Systems with Applications , vol.37 , pp. 3326-3336
    • Twala, B.1
  • 68
    • 79959942257 scopus 로고    scopus 로고
    • Study of corporate credit risk prediction based on integrating boosting and random subspace
    • G. Wang, and J. Ma Study of corporate credit risk prediction based on integrating boosting and random subspace Expert Systems with Applications 38 2011 13871 13878
    • (2011) Expert Systems with Applications , vol.38 , pp. 13871-13878
    • Wang, G.1    Ma, J.2
  • 69
    • 84855863614 scopus 로고    scopus 로고
    • A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine
    • G. Wang, and J. Ma A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine Expert Systems with Applications 39 2012 5325 5331
    • (2012) Expert Systems with Applications , vol.39 , pp. 5325-5331
    • Wang, G.1    Ma, J.2
  • 70
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • G. Wang, J. Hao, J. Ma, and H. Jiang A comparative assessment of ensemble learning for credit scoring Expert Systems with Applications 38 2011 223 230
    • (2011) Expert Systems with Applications , vol.38 , pp. 223-230
    • Wang, G.1    Hao, J.2    Ma, J.3    Jiang, H.4
  • 71
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble trees
    • G. Wang, J. Ma, L. Huang, and K. Xu Two credit scoring models based on dual strategy ensemble trees Knowledge-Based Systems 26 2012 61 68
    • (2012) Knowledge-Based Systems , vol.26 , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 72
    • 84890117005 scopus 로고    scopus 로고
    • An improved boosting based on feature selection for corporate bankruptcy prediction
    • G. Wang, J. Ma, and S. Yang An improved boosting based on feature selection for corporate bankruptcy prediction Expert Systems with Applications 41 2014 2353 2361
    • (2014) Expert Systems with Applications , vol.41 , pp. 2353-2361
    • Wang, G.1    Ma, J.2    Yang, S.3
  • 73
    • 0034118581 scopus 로고    scopus 로고
    • Neural networks credit scoring models
    • D. West Neural networks credit scoring models Computers & Operations Research 22 2000 1131 1152
    • (2000) Computers & Operations Research , vol.22 , pp. 1131-1152
    • West, D.1
  • 74
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. Wolpert Stacked generalization Neural Networks 5 1992 241 259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 75
    • 84866478887 scopus 로고    scopus 로고
    • Credit risk assessment and decision making by a fusion approach
    • T.-H. Wu, and M.-F. Hu Credit risk assessment and decision making by a fusion approach Knowledge-Based Systems 35 2012 102 110
    • (2012) Knowledge-Based Systems , vol.35 , pp. 102-110
    • Wu, T.-H.1    Hu, M.-F.2
  • 76
    • 71749114830 scopus 로고    scopus 로고
    • Support vector machine based multiagent ensemble learning for credit risk evaluation
    • L. Yu, W. Yue, S. Wang, and K.K. Lai Support vector machine based multiagent ensemble learning for credit risk evaluation Expert Systems with Applications 37 2010 1351 1360
    • (2010) Expert Systems with Applications , vol.37 , pp. 1351-1360
    • Yu, L.1    Yue, W.2    Wang, S.3    Lai, K.K.4
  • 77
    • 36148959733 scopus 로고    scopus 로고
    • Credit risk assessment with a multistage neural network ensemble learning approach
    • L. Yu, S. Wang, and K.K. Lai Credit risk assessment with a multistage neural network ensemble learning approach Expert Systems with Applications 34 2008 1434 1444
    • (2008) Expert Systems with Applications , vol.34 , pp. 1434-1444
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 78
    • 70349437327 scopus 로고    scopus 로고
    • Least squares support vector machines ensemble models for credit scoring
    • L. Zhou, K.K. Lai, and L. Yu Least squares support vector machines ensemble models for credit scoring Expert Systems with Applications 37 2010 127 133
    • (2010) Expert Systems with Applications , vol.37 , pp. 127-133
    • Zhou, L.1    Lai, K.K.2    Yu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.