메뉴 건너뛰기




Volumn 57, Issue , 2014, Pages 41-56

Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches

Author keywords

Case based reasoning; Corporate failure prediction; Decision tree; Definition of financial distress; Ensemble; Featuring methods; Financial distress prediction; Group decision making; Hybrid modeling; Logistic regression; Multiple discriminant analysis; Neural network; Review; Sampling methods; Support vector machine

Indexed keywords


EID: 84894901583     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.12.006     Document Type: Article
Times cited : (268)

References (139)
  • 1
    • 58549117670 scopus 로고    scopus 로고
    • Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
    • H. Ahn, and K. Kim Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach Appl. Soft Comput. 9 2009 599 607
    • (2009) Appl. Soft Comput. , vol.9 , pp. 599-607
    • Ahn, H.1    Kim, K.2
  • 2
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • E. Alfaro, N. García, M. Gámez, and D. Elizondo Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks Decis. Support Syst. 45 2008 110 122
    • (2008) Decis. Support Syst. , vol.45 , pp. 110-122
    • Alfaro, E.1    García, N.2    Gámez, M.3    Elizondo, D.4
  • 3
    • 84980104458 scopus 로고
    • Financial ratios discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios discriminant analysis and the prediction of corporate bankruptcy J. Finance 23 1968 589 609
    • (1968) J. Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 4
    • 0011340738 scopus 로고    scopus 로고
    • Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks
    • M. Anandarajan, P. Lee, and A. Anandarajan Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks Intell. Syst. Account. Finan. Manage. 10 2001 69 81
    • (2001) Intell. Syst. Account. Finan. Manage. , vol.10 , pp. 69-81
    • Anandarajan, M.1    Lee, P.2    Anandarajan, A.3
  • 5
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • A. Atiya Bankruptcy prediction for credit risk using neural networks: a survey and new results IEEE Trans. Neural Networks 12 4 2001 929 935
    • (2001) IEEE Trans. Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.1
  • 6
    • 33947404091 scopus 로고    scopus 로고
    • Credit Chains and the Propagation of Financial Distress
    • F. Boissay, Credit Chains and the Propagation of Financial Distress, European Central Bank Working Paper. 573, 2006. < http://papers.ssrn.com/ sol3/papers.cfm?abstract-id=872543 >.
    • (2006) European Central Bank Working Paper , vol.573
    • Boissay, F.1
  • 8
    • 0030407801 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms for bankruptcy predictions
    • B. Back, T. Laitinen, and K. Sere Neural networks and genetic algorithms for bankruptcy predictions Expert Syst. Appl. 11 1996 407 413
    • (1996) Expert Syst. Appl. , vol.11 , pp. 407-413
    • Back, B.1    Laitinen, T.2    Sere, K.3
  • 9
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • B. Baesens, R. Setiono, C. Mues, and J. Vanthienen Using neural network rule extraction and decision tables for credit-risk evaluation Manage. Sci. 49 3 2003 312 329
    • (2003) Manage. Sci. , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 10
    • 77958505860 scopus 로고    scopus 로고
    • A comparative survey of artificial intelligence applications in finance: Artificial neural networks, expert systems and hybrid intelligent systems
    • A. Bahrammirzaee A comparative survey of artificial intelligence applications in finance: artificial neural networks, expert systems and hybrid intelligent systems Neural Comput. Appl. 19 8 2010 1165 1195
    • (2010) Neural Comput. Appl. , vol.19 , Issue.8 , pp. 1165-1195
    • Bahrammirzaee, A.1
  • 11
    • 33144462955 scopus 로고    scopus 로고
    • 35 Years of studies on business failure: An overview of the classical statistical methodologies and their related problems
    • S. Balcaen, and H. Ooghe 35 Years of studies on business failure: an overview of the classical statistical methodologies and their related problems British Account. Rev. 38 2006 63 93
    • (2006) British Account. Rev. , vol.38 , pp. 63-93
    • Balcaen, S.1    Ooghe, H.2
  • 13
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure
    • W. Beaver Financial ratios as predictors of failure J. Account. Res. 4 1966 71 111
    • (1966) J. Account. Res. , vol.4 , pp. 71-111
    • Beaver, W.1
  • 14
    • 33749673034 scopus 로고    scopus 로고
    • Deciding the financial health of dot-coms using rough sets
    • I. Bose Deciding the financial health of dot-coms using rough sets Inform. Manage. 43 2006 835 846
    • (2006) Inform. Manage. , vol.43 , pp. 835-846
    • Bose, I.1
  • 15
    • 33746377912 scopus 로고    scopus 로고
    • Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach
    • I. Bose, and R. Pal Predicting the survival or failure of click-and-mortar corporations: a knowledge discovery approach Eur. J. Oper. Res. 174 2006 959 982
    • (2006) Eur. J. Oper. Res. , vol.174 , pp. 959-982
    • Bose, I.1    Pal, R.2
  • 16
    • 79961080200 scopus 로고    scopus 로고
    • Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises
    • M. Borrajo, B. Baruque, E. Corchado, J. Bajo, and J. Corchado Hybrid neural intelligent system to predict business failure in small-to-medium-size enterprises Int. J. Neural Syst. 21 4 2011 277 296
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 277-296
    • Borrajo, M.1    Baruque, B.2    Corchado, E.3    Bajo, J.4    Corchado, J.5
  • 17
    • 0030190036 scopus 로고    scopus 로고
    • Self organizing neural networks for financial diagnosis
    • S.-C. Carlos Self organizing neural networks for financial diagnosis Decis. Support Syst. 17 1996 227 238
    • (1996) Decis. Support Syst. , vol.17 , pp. 227-238
    • Carlos, S.-C.1
  • 18
    • 79959729502 scopus 로고
    • The auditor's reporting obligation
    • New York: AICPA
    • D.R. Carminchael, The auditor's reporting obligation. Auditing Res. Monogr. (1)(New York: AICPA) (1972) 94-94.
    • (1972) Auditing Res. Monogr. , Issue.1 , pp. 94-94
    • Carminchael, D.R.1
  • 19
    • 58349098335 scopus 로고    scopus 로고
    • Failure prediction of dotcom companies using hybrid intelligent techniques
    • D.K. Chandra, V. Ravi, and I. Bose Failure prediction of dotcom companies using hybrid intelligent techniques Expert Syst. Appl. 36 2009 4830 4837
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4830-4837
    • Chandra, D.K.1    Ravi, V.2    Bose, I.3
  • 21
    • 60249090307 scopus 로고    scopus 로고
    • Differential evolution trained wavelet neural networks: Application to bankruptcy prediction in banks
    • N. Chaudhan, V. Ravi, and D. Chandra Differential evolution trained wavelet neural networks: application to bankruptcy prediction in banks Expert Syst. Appl. 36 4 2009 7659 7665
    • (2009) Expert Syst. Appl. , vol.36 , Issue.4 , pp. 7659-7665
    • Chaudhan, N.1    Ravi, V.2    Chandra, D.3
  • 22
    • 78751647118 scopus 로고    scopus 로고
    • Fuzzy support vector machine for bankruptcy prediction
    • A. Chaudhuri, and K. De Fuzzy support vector machine for bankruptcy prediction Appl. Soft Comput. 11 2011 2472 2486
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2472-2486
    • Chaudhuri, A.1    De, K.2
  • 23
    • 56349100536 scopus 로고    scopus 로고
    • Using neural networks and data mining techniques for the financial distress prediction model
    • W.-S. Chen, and Y.-K. Du Using neural networks and data mining techniques for the financial distress prediction model Expert Syst. Appl. 36 2009 4075 4086
    • (2009) Expert Syst. Appl. , vol.36 , pp. 4075-4086
    • Chen, W.-S.1    Du, Y.-K.2
  • 24
    • 79955621501 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of decision tree classification and logistic regression
    • M.-Y. Chen Predicting corporate financial distress based on integration of decision tree classification and logistic regression Expert Syst. Appl. 38 2011 11261-1127
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11261-11271
    • Chen, M.-Y.1
  • 25
    • 33646580038 scopus 로고    scopus 로고
    • Financial distress prediction by a radial basis function network with logit analysis learning
    • C.-B. Cheng, C.-L. Chen, and C.-J. Fu Financial distress prediction by a radial basis function network with logit analysis learning Comput. Math. Appl. 51 2006 579 588
    • (2006) Comput. Math. Appl. , vol.51 , pp. 579-588
    • Cheng, C.-B.1    Chen, C.-L.2    Fu, C.-J.3
  • 26
    • 71349086635 scopus 로고    scopus 로고
    • A hybrid approach based on the combination of variable selection using decision trees and case-based reasoning using the Mahalanobis distance: For bankruptcy prediction
    • S. Cho, H. Hong, and B.-C. Ha A hybrid approach based on the combination of variable selection using decision trees and case-based reasoning using the Mahalanobis distance: for bankruptcy prediction Expert Syst. Appl. 37 2010 3482 3488
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3482-3488
    • Cho, S.1    Hong, H.2    Ha, B.-C.3
  • 27
    • 0344308279 scopus 로고    scopus 로고
    • Bankruptcy prediction using a data envelopment analysis
    • A. Cielen, P. Ludo, and K. Vanhoof Bankruptcy prediction using a data envelopment analysis Eur. J. Oper. Res. 154 2004 526 532
    • (2004) Eur. J. Oper. Res. , vol.154 , pp. 526-532
    • Cielen, A.1    Ludo, P.2    Vanhoof, K.3
  • 28
    • 84155194931 scopus 로고    scopus 로고
    • Instance sampling in credit scoring: An empirical study of sample size and balancing
    • S. Crone, and S. Finlay Instance sampling in credit scoring: an empirical study of sample size and balancing Int. J. Forecast. 28 1 2012 224 238
    • (2012) Int. J. Forecast. , vol.28 , Issue.1 , pp. 224-238
    • Crone, S.1    Finlay, S.2
  • 29
    • 0000275837 scopus 로고
    • A discriminant analysis of prediction of business failure
    • E.B. Deakin A discriminant analysis of prediction of business failure J. Account. Res. 3 spring 1972 167 169
    • (1972) J. Account. Res. , vol.3 , Issue.SPRING , pp. 167-169
    • Deakin, E.B.1
  • 31
    • 38649138750 scopus 로고    scopus 로고
    • Forecasting financial condition of Chinese listed companies based on support vector machine
    • Y. Ding, X. Song, and Y. Zeng Forecasting financial condition of Chinese listed companies based on support vector machine Expert Syst. Appl. 34 2008 3081 3089
    • (2008) Expert Syst. Appl. , vol.34 , pp. 3081-3089
    • Ding, Y.1    Song, X.2    Zeng, Y.3
  • 32
    • 0042758626 scopus 로고    scopus 로고
    • A multinational discrimination method for the prediction of financial distress: The case of Greece
    • M. Doumpos, and C. Zopounidis A multinational discrimination method for the prediction of financial distress: the case of Greece Multinatl. Finan. J. 3 1999 71 101
    • (1999) Multinatl. Finan. J. , vol.3 , pp. 71-101
    • Doumpos, M.1    Zopounidis, C.2
  • 33
    • 56749173517 scopus 로고    scopus 로고
    • A genetic programming model for bankruptcy prediction: Empirical evidence from Iran
    • H. Etemadi, A. Rostamy, and H. Dehkordi A genetic programming model for bankruptcy prediction: empirical evidence from Iran Expert Syst. Appl. 36 2 2009 3199 3207
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3199-3207
    • Etemadi, H.1    Rostamy, A.2    Dehkordi, H.3
  • 34
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • D. Fletcher, and E. Goss Forecasting with neural networks: an application using bankruptcy data Inform. Manage. 24 1993 159 167
    • (1993) Inform. Manage. , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 36
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • H. Frydman, E.I. Altman, and D. Kao Introducing recursive partitioning for financial classification: the case of financial distress J. Finance 40 1985 269 291
    • (1985) J. Finance , vol.40 , pp. 269-291
    • Frydman, H.1    Altman, E.I.2    Kao, D.3
  • 38
    • 77956385089 scopus 로고    scopus 로고
    • Business failure prediction using decision trees
    • A. Gepp, K. Kumar, and S. Bhattacharya Business failure prediction using decision trees J. Forecasting 29 6 2010 536 555
    • (2010) J. Forecasting , vol.29 , Issue.6 , pp. 536-555
    • Gepp, A.1    Kumar, K.2    Bhattacharya, S.3
  • 39
    • 78649445034 scopus 로고    scopus 로고
    • From linear to non-linear kernel based classifiers for bankruptcy prediction
    • T. Gesel, B. Baesens, and D. Martens From linear to non-linear kernel based classifiers for bankruptcy prediction Neurocomputing 73 16-18 2010 2955 2970
    • (2010) Neurocomputing , vol.73 , Issue.1618 , pp. 2955-2970
    • Gesel, T.1    Baesens, B.2    Martens, D.3
  • 42
    • 0041370142 scopus 로고    scopus 로고
    • Tests of the generalizability of Altman's bankruptcy prediction model
    • J.S. Grice, and R.W. Ingram Tests of the generalizability of Altman's bankruptcy prediction model J. Bus. Res. 54 2001 53 61
    • (2001) J. Bus. Res. , vol.54 , pp. 53-61
    • Grice, J.S.1    Ingram, R.W.2
  • 43
    • 34548682988 scopus 로고    scopus 로고
    • Classifier combination for sketch-based 3D part retrieval
    • S. Hou, and K. Ramani Classifier combination for sketch-based 3D part retrieval Comput. Graphic 31 2007 598 609
    • (2007) Comput. Graphic , vol.31 , pp. 598-609
    • Hou, S.1    Ramani, K.2
  • 44
    • 77955963743 scopus 로고    scopus 로고
    • Bankruptcy prediction using ELECTRE-based single-layer perceptron
    • Y. Hu Bankruptcy prediction using ELECTRE-based single-layer perceptron Neurocomputing 72 2009 3150 3157
    • (2009) Neurocomputing , vol.72 , pp. 3150-3157
    • Hu, Y.1
  • 45
    • 34447124447 scopus 로고    scopus 로고
    • Measuring retail company performance using credit scoring techniques
    • Y. Hu, and J. Ansell Measuring retail company performance using credit scoring techniques Eur. J. Oper. Res. 183 3 2007 1595 1606
    • (2007) Eur. J. Oper. Res. , vol.183 , Issue.3 , pp. 1595-1606
    • Hu, Y.1    Ansell, J.2
  • 46
    • 73949152480 scopus 로고    scopus 로고
    • Retail default prediction by using sequential minimal optimization technique
    • Y. Hu, and J. Ansell Retail default prediction by using sequential minimal optimization technique J. Forecasting 28 8 2009 651 666
    • (2009) J. Forecasting , vol.28 , Issue.8 , pp. 651-666
    • Hu, Y.1    Ansell, J.2
  • 47
    • 79955908219 scopus 로고    scopus 로고
    • Operational causes of bankruptcy propagation in supply chain
    • Z. Hua, Y. Sun, and X. Xu Operational causes of bankruptcy propagation in supply chain Decis. Support Syst. 51 3 2011 671 681
    • (2011) Decis. Support Syst. , vol.51 , Issue.3 , pp. 671-681
    • Hua, Z.1    Sun, Y.2    Xu, X.3
  • 48
    • 33846454686 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of support vector machine and logistic regression
    • Z. Hua, Y. Wang, X. Xu, B. Zhang, and L. Liang Predicting corporate financial distress based on integration of support vector machine and logistic regression Expert Syst. Appl. 33 2007 434 440
    • (2007) Expert Syst. Appl. , vol.33 , pp. 434-440
    • Hua, Z.1    Wang, Y.2    Xu, X.3    Zhang, B.4    Liang, L.5
  • 49
    • 33745625856 scopus 로고    scopus 로고
    • An application of support vector machine to companies' financial distress prediction
    • X.-F. Hui, and J. Sun An application of support vector machine to companies' financial distress prediction Lect. Notes Artif. Int. 3885 2006 274 282
    • (2006) Lect. Notes Artif. Int. , vol.3885 , pp. 274-282
    • Hui, X.-F.1    Sun, J.2
  • 50
    • 58349100252 scopus 로고    scopus 로고
    • A selective ensemble based on expected probabilities for bankruptcy prediction
    • C. Hung, and J. Chen A selective ensemble based on expected probabilities for bankruptcy prediction Expert Syst. Appl. 36 2009 5297 5303
    • (2009) Expert Syst. Appl. , vol.36 , pp. 5297-5303
    • Hung, C.1    Chen, J.2
  • 51
    • 34548423990 scopus 로고    scopus 로고
    • A semi-parametric method for predicting bankruptcy
    • R. Hwang, K. Cheng, and J. Lee A semi-parametric method for predicting bankruptcy J. Forecasting 26 5 2007 317 342
    • (2007) J. Forecasting , vol.26 , Issue.5 , pp. 317-342
    • Hwang, R.1    Cheng, K.2    Lee, J.3
  • 52
    • 0030414816 scopus 로고    scopus 로고
    • Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction
    • H. Jo, and I. Han Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction Expert Syst. Appl. 11 1996 415 422
    • (1996) Expert Syst. Appl. , vol.11 , pp. 415-422
    • Jo, H.1    Han, I.2
  • 53
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
    • H. Jo, and I. Han Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis Expert Syst. Appl. 13 1997 97 108
    • (1997) Expert Syst. Appl. , vol.13 , pp. 97-108
    • Jo, H.1    Han, I.2
  • 54
    • 8744229924 scopus 로고    scopus 로고
    • Predicting firm financial distress: A mixed logit model
    • S. Jones, and D. Hensher Predicting firm financial distress: a mixed logit model Account. Rev. 79 4 2004 1011 1038
    • (2004) Account. Rev. , vol.79 , Issue.4 , pp. 1011-1038
    • Jones, S.1    Hensher, D.2
  • 55
    • 0041920755 scopus 로고    scopus 로고
    • The discovery of experts' decision rules from qualitative bankruptcy data using genetic algorithms
    • M.-J. Kim, and I. Han The discovery of experts' decision rules from qualitative bankruptcy data using genetic algorithms Expert Syst. Appl. 25 2003 637 646
    • (2003) Expert Syst. Appl. , vol.25 , pp. 637-646
    • Kim, M.-J.1    Han, I.2
  • 56
    • 71349086364 scopus 로고    scopus 로고
    • Ensemble with neural networks for bankruptcy prediction
    • M. Kim, and D. Kang Ensemble with neural networks for bankruptcy prediction Expert Syst. Appl. 37 2010 3373 3379
    • (2010) Expert Syst. Appl. , vol.37 , pp. 3373-3379
    • Kim, M.1    Kang, D.2
  • 57
    • 84886437226 scopus 로고    scopus 로고
    • Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models
    • S.Y. Kim, and A. Upneja Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models Econ. Model. 36 2014 354 362
    • (2014) Econ. Model. , vol.36 , pp. 354-362
    • Kim, S.Y.1    Upneja, A.2
  • 58
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review
    • P. Kumar, and V. Ravi Bankruptcy prediction in banks and firms via statistical and intelligent techniques - a review Eur. J. Oper. Res. 180 1 2007 1 28
    • (2007) Eur. J. Oper. Res. , vol.180 , Issue.1 , pp. 1-28
    • Kumar, P.1    Ravi, V.2
  • 59
    • 84859616057 scopus 로고    scopus 로고
    • Bankruptcy prediction for Korean firms after the 1997 financial crisis: Using a multiple criteria linear programming data mining approach
    • W. Kwak, Y. Shi, and G. Kou Bankruptcy prediction for Korean firms after the 1997 financial crisis: using a multiple criteria linear programming data mining approach Rev. Quant. Finance Account. 2011
    • (2011) Rev. Quant. Finance Account.
    • Kwak, W.1    Shi, Y.2    Kou, G.3
  • 60
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: The bankruptcy case
    • M. Leshno, and Y. Spector Neural network prediction analysis: the bankruptcy case Neurocomputing 10 1996 125 147
    • (1996) Neurocomputing , vol.10 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 61
    • 77956402613 scopus 로고    scopus 로고
    • Hybridizing principles of TOPSIS with case-based reasoning for business failure prediction
    • H. Li, H. Adeli, J. Sun, and J. Han Hybridizing principles of TOPSIS with case-based reasoning for business failure prediction Comput. Oper. Res. 38 2 2011 409 419
    • (2011) Comput. Oper. Res. , vol.38 , Issue.2 , pp. 409-419
    • Li, H.1    Adeli, H.2    Sun, J.3    Han, J.4
  • 62
    • 54949111332 scopus 로고    scopus 로고
    • Ranking-order case-based reasoning for financial distress prediction
    • H. Li, and J. Sun Ranking-order case-based reasoning for financial distress prediction Knowl.-Based Syst. 21 8 2008 868 878
    • (2008) Knowl.-Based Syst. , vol.21 , Issue.8 , pp. 868-878
    • Li, H.1    Sun, J.2
  • 63
    • 59649108839 scopus 로고    scopus 로고
    • Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II
    • H. Li, and J. Sun Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II Eur. J. Oper. Res. 197 1 2009 214 224
    • (2009) Eur. J. Oper. Res. , vol.197 , Issue.1 , pp. 214-224
    • Li, H.1    Sun, J.2
  • 64
    • 68249097414 scopus 로고    scopus 로고
    • 2 case-based reasoning
    • 2 case-based reasoning Comput. Oper. Res. 37 1 2010 137 151
    • (2010) Comput. Oper. Res. , vol.37 , Issue.1 , pp. 137-151
    • Li, H.1    Sun, J.2
  • 65
    • 77951206489 scopus 로고    scopus 로고
    • Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods
    • H. Li, J. Sun, and J. Wu Predicting business failure using classification and regression tree: an empirical comparison with popular classical statistical methods and top classification mining methods Expert Syst. Appl. 37 8 2010 5895 5904
    • (2010) Expert Syst. Appl. , vol.37 , Issue.8 , pp. 5895-5904
    • Li, H.1    Sun, J.2    Wu, J.3
  • 66
    • 77950188976 scopus 로고    scopus 로고
    • On sensitivity of case-based reasoning to optimal feature subsets in business failure prediction
    • H. Li, H. Huang, J. Sun, and C. Lin On sensitivity of case-based reasoning to optimal feature subsets in business failure prediction Expert Syst. Appl. 37 7 2010 4811 4821
    • (2010) Expert Syst. Appl. , vol.37 , Issue.7 , pp. 4811-4821
    • Li, H.1    Huang, H.2    Sun, J.3    Lin, C.4
  • 67
    • 80051469759 scopus 로고    scopus 로고
    • The random subspace binary logit (RSBL) model for bankruptcy prediction
    • H. Li, Y. Lee, Y. Zhou, and J. Sun The random subspace binary logit (RSBL) model for bankruptcy prediction Knowl.-Based Syst. 24 8 2011 1380 1388
    • (2011) Knowl.-Based Syst. , vol.24 , Issue.8 , pp. 1380-1388
    • Li, H.1    Lee, Y.2    Zhou, Y.3    Sun, J.4
  • 68
    • 79957989076 scopus 로고    scopus 로고
    • Predicting business failure using support vector machines with straightforward wrapper: A re-sampling study
    • H. Li, and J. Sun Predicting business failure using support vector machines with straightforward wrapper: a re-sampling study Expert Syst. Appl. 38 10 2011 12747 12756
    • (2011) Expert Syst. Appl. , vol.38 , Issue.10 , pp. 12747-12756
    • Li, H.1    Sun, J.2
  • 69
    • 79960716960 scopus 로고    scopus 로고
    • Principal component case-based reasoning ensemble for business failure prediction
    • H. Li, and J. Sun Principal component case-based reasoning ensemble for business failure prediction Inform. Manage. 48 6 2011 220 227
    • (2011) Inform. Manage. , vol.48 , Issue.6 , pp. 220-227
    • Li, H.1    Sun, J.2
  • 70
    • 84455191888 scopus 로고    scopus 로고
    • Forecasting business failure: The use of nearest-neighbour support vectors and correcting imbalanced samples: Evidence from the Chinese hotel industry
    • H. Li, and J. Sun Forecasting business failure: the use of nearest-neighbour support vectors and correcting imbalanced samples: evidence from the Chinese hotel industry Tourism Manage. 2012
    • (2012) Tourism Manage.
    • Li, H.1    Sun, J.2
  • 71
    • 7544225181 scopus 로고    scopus 로고
    • An application of pattern recognition on scoring Chinese corporations financial conditions based on backpropagation neural network
    • L. Liang, and D. Wu An application of pattern recognition on scoring Chinese corporations financial conditions based on backpropagation neural network Comput. Oper. Res. 32 5 2005 1115 1129
    • (2005) Comput. Oper. Res. , vol.32 , Issue.5 , pp. 1115-1129
    • Liang, L.1    Wu, D.2
  • 72
    • 69449103156 scopus 로고    scopus 로고
    • A cross model study of corporate financial distress prediction in Taiwan: Multiple discriminant analysis, logit, probit and neural networks models
    • T.-H. Lin A cross model study of corporate financial distress prediction in Taiwan: multiple discriminant analysis, logit, probit and neural networks models Neurocomputing 72 2009 3507 3516
    • (2009) Neurocomputing , vol.72 , pp. 3507-3516
    • Lin, T.-H.1
  • 73
    • 77958001182 scopus 로고    scopus 로고
    • The use of hybrid manifold learning and support vector machines in the prediction of business failure
    • F. Lin, C.-C. Yeh, and M.-Y. Lee The use of hybrid manifold learning and support vector machines in the prediction of business failure Knowl.-Based Syst. 24 2011 95 101
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 95-101
    • Lin, F.1    Yeh, C.-C.2    Lee, M.-Y.3
  • 76
    • 0007744265 scopus 로고    scopus 로고
    • Developing a bankruptcy prediction model via rough sets theory
    • T.E. McKee Developing a bankruptcy prediction model via rough sets theory Intell. Syst. Account. Finan. Manage. 9 2000 159 173
    • (2000) Intell. Syst. Account. Finan. Manage. , vol.9 , pp. 159-173
    • McKee, T.E.1
  • 77
    • 0004449990 scopus 로고    scopus 로고
    • Predicting bankruptcy using recursive partitioning and a realistically proportioned data set
    • T.E. McKee, and M. Greenstein Predicting bankruptcy using recursive partitioning and a realistically proportioned data set J. Forecasting 19 2000 219 230
    • (2000) J. Forecasting , vol.19 , pp. 219-230
    • McKee, T.E.1    Greenstein, M.2
  • 78
    • 84881294492 scopus 로고    scopus 로고
    • A literature review on the application of evolutionary computing to credit scoring
    • A.I. Marques, V. Garcia, and J.S. Sanchez A literature review on the application of evolutionary computing to credit scoring J. Oper. Res. Soc. 64 12 2013 1384 1399
    • (2013) J. Oper. Res. Soc. , vol.64 , Issue.12 , pp. 1384-1399
    • Marques, A.I.1    Garcia, V.2    Sanchez, J.S.3
  • 79
    • 0037117685 scopus 로고    scopus 로고
    • Genetic programming and rough sets: A hybrid approach to bankruptcy classification
    • T.E. McKee, and T. Lensberg Genetic programming and rough sets: a hybrid approach to bankruptcy classification Eur. J. Oper. Res. 138 2002 436 451
    • (2002) Eur. J. Oper. Res. , vol.138 , pp. 436-451
    • McKee, T.E.1    Lensberg, T.2
  • 80
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • J.H. Min, and Y.-C. Lee Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters Expert Syst. Appl. 28 2005 128 134
    • (2005) Expert Syst. Appl. , vol.28 , pp. 128-134
    • Min, J.H.1    Lee, Y.-C.2
  • 81
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • S.-H. Min, J. Lee, and I. Han Hybrid genetic algorithms and support vector machines for bankruptcy prediction Expert Syst. Appl. 31 2006 652 660
    • (2006) Expert Syst. Appl. , vol.31 , pp. 652-660
    • Min, S.-H.1    Lee, J.2    Han, I.3
  • 82
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • L. Nanni, and A. Lumini An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring Expert Syst. Appl. 36 2009 3028 3033
    • (2009) Expert Syst. Appl. , vol.36 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 83
    • 49449083313 scopus 로고    scopus 로고
    • Feature selection using localized generalization error for supervised classification problems using RBFNN
    • W. Ng, D. Yeung, and M. Firth et al. Feature selection using localized generalization error for supervised classification problems using RBFNN Pattern Recogn. 41 2008 3706 3719
    • (2008) Pattern Recogn. , vol.41 , pp. 3706-3719
    • Ng, W.1    Yeung, D.2    Firth, M.3
  • 85
    • 0000666375 scopus 로고
    • Financial ratios and probabilistic prediction of bankruptcy
    • J.A. Ohlson Financial ratios and probabilistic prediction of bankruptcy J. Account. Res. 18 1980 109 131
    • (1980) J. Account. Res. , vol.18 , pp. 109-131
    • Ohlson, J.A.1
  • 86
    • 82255192254 scopus 로고    scopus 로고
    • Comparative analysis of data mining methods for bankruptcy prediction
    • D. Olson, D. Delen, and Y. Meng Comparative analysis of data mining methods for bankruptcy prediction Decis. Support Syst. 52 2 2012 464 473
    • (2012) Decis. Support Syst. , vol.52 , Issue.2 , pp. 464-473
    • Olson, D.1    Delen, D.2    Meng, Y.3
  • 87
    • 0036776641 scopus 로고    scopus 로고
    • A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction
    • C.-S. Park, and I. Han A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction Expert Syst. Appl. 23 2002 255 264
    • (2002) Expert Syst. Appl. , vol.23 , pp. 255-264
    • Park, C.-S.1    Han, I.2
  • 88
    • 0036271668 scopus 로고    scopus 로고
    • A potential use of data envelopment analysis for the inverse classification problem
    • P.C. Pendharkar A potential use of data envelopment analysis for the inverse classification problem Omega 30 2002 243 248
    • (2002) Omega , vol.30 , pp. 243-248
    • Pendharkar, P.C.1
  • 89
    • 13544265385 scopus 로고    scopus 로고
    • A threshold varying artificial neural network approach for classification and its application to bankruptcy prediction problem
    • P.C. Pendharkar A threshold varying artificial neural network approach for classification and its application to bankruptcy prediction problem Comput. Oper. Res. 32 2005 2561 2582
    • (2005) Comput. Oper. Res. , vol.32 , pp. 2561-2582
    • Pendharkar, P.C.1
  • 90
    • 68149150914 scopus 로고    scopus 로고
    • Misclassification cost minimizing fitness functions for genetic algorithm-based artificial neural network classifiers
    • P.C. Pendharkar Misclassification cost minimizing fitness functions for genetic algorithm-based artificial neural network classifiers J. Oper. Res. Soc. 60 2009 1123 1134
    • (2009) J. Oper. Res. Soc. , vol.60 , pp. 1123-1134
    • Pendharkar, P.C.1
  • 91
    • 0000449179 scopus 로고
    • A note on the use of industry-relative ratios in bankruptcy prediction
    • H.D. Platt, and M.B. Platt A note on the use of industry-relative ratios in bankruptcy prediction Banking Finance 15 1991 1183 1194
    • (1991) Banking Finance , vol.15 , pp. 1183-1194
    • Platt, H.D.1    Platt, M.B.2
  • 92
    • 79953161433 scopus 로고    scopus 로고
    • DEA as a tool for predicting corporate failure and success: A case of bankruptcy assessment
    • I.M. Premachandra, Y. Chen, and J. Watson DEA as a tool for predicting corporate failure and success: a case of bankruptcy assessment Omega 39 6 2011 620 626
    • (2011) Omega , vol.39 , Issue.6 , pp. 620-626
    • Premachandra, I.M.1    Chen, Y.2    Watson, J.3
  • 93
    • 79953675053 scopus 로고    scopus 로고
    • Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: Iranian evidence
    • F.M. Rafiei, S.M. Manzari, and S. Bostanian Financial health prediction models using artificial neural networks, genetic algorithm and multivariate discriminant analysis: iranian evidence Expert Syst. Appl. 38 2011 10210 10217
    • (2011) Expert Syst. Appl. , vol.38 , pp. 10210-10217
    • Rafiei, F.M.1    Manzari, S.M.2    Bostanian, S.3
  • 94
    • 34548487769 scopus 로고    scopus 로고
    • Soft computing system for bank performance prediction
    • V. Ravi, H. Kurniawan, P. Thai, and P. Kumar Soft computing system for bank performance prediction Appl. Soft Comput. 8 1 2008 305 315
    • (2008) Appl. Soft Comput. , vol.8 , Issue.1 , pp. 305-315
    • Ravi, V.1    Kurniawan, H.2    Thai, P.3    Kumar, P.4
  • 95
    • 50149113096 scopus 로고    scopus 로고
    • Threshold accepting trained principal component neural network and feature subset selection: Application to bankruptcy prediction in banks
    • V. Ravi, and C. Pramodh Threshold accepting trained principal component neural network and feature subset selection: application to bankruptcy prediction in banks Appl. Soft Comput. 8 4 2008 1539 1548
    • (2008) Appl. Soft Comput. , vol.8 , Issue.4 , pp. 1539-1548
    • Ravi, V.1    Pramodh, C.2
  • 96
    • 75149191307 scopus 로고    scopus 로고
    • Failure prediction of dotcom companies using neural network-genetic programming hybrids
    • P. Ravisankar, V. Ravi, and I. Bose Failure prediction of dotcom companies using neural network-genetic programming hybrids Inf. Sci. 180 2010 1257 1267
    • (2010) Inf. Sci. , vol.180 , pp. 1257-1267
    • Ravisankar, P.1    Ravi, V.2    Bose, I.3
  • 97
    • 77956344036 scopus 로고    scopus 로고
    • Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP
    • P. Ravisankar, and V. Ravi Financial distress prediction in banks using Group Method of Data Handling neural network, counter propagation neural network and fuzzy ARTMAP Knowl.-Based Syst. 23 2010 823 831
    • (2010) Knowl.-Based Syst. , vol.23 , pp. 823-831
    • Ravisankar, P.1    Ravi, V.2
  • 98
    • 50149112369 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks by an ensemble classifier
    • P. Ravikumar, and V. Ravi Bankruptcy prediction in banks by an ensemble classifier IEEE Int. Conf. Ind. Technol. 12 2006 2032 2036
    • (2006) IEEE Int. Conf. Ind. Technol. , vol.12 , pp. 2032-2036
    • Ravikumar, P.1    Ravi, V.2
  • 99
    • 15844384444 scopus 로고
    • Predicting corporate bankruptcy: An analytical and empirical evaluation
    • P.S. Rose, and G.A. Giroux Predicting corporate bankruptcy: an analytical and empirical evaluation Rev. Bus. Econ. Res. 19 1984 1 12
    • (1984) Rev. Bus. Econ. Res. , vol.19 , pp. 1-12
    • Rose, P.S.1    Giroux, G.A.2
  • 101
    • 3142577534 scopus 로고    scopus 로고
    • Prognosis using an isotonic prediction technique
    • Y. Ryu, R. Chandrasekaran, and V. Jacob Prognosis using an isotonic prediction technique Manage. Sci. 50 6 2004 777 785
    • (2004) Manage. Sci. , vol.50 , Issue.6 , pp. 777-785
    • Ryu, Y.1    Chandrasekaran, R.2    Jacob, V.3
  • 102
    • 27144457062 scopus 로고    scopus 로고
    • Firm bankruptcy prediction: Experimental comparison of isotonic separation and other classification approaches
    • Y. Ryu, and W. Yue Firm bankruptcy prediction: experimental comparison of isotonic separation and other classification approaches IEEE Trans. Syst. Man Cybern-Part A: Syst. Humans 21 4 2005 265 276
    • (2005) IEEE Trans. Syst. Man Cybern-Part A: Syst. Humans , vol.21 , Issue.4 , pp. 265-276
    • Ryu, Y.1    Yue, W.2
  • 103
    • 0035521221 scopus 로고    scopus 로고
    • Bayesian models for early warning of bank failures
    • S. Sarkar, and R.S. Sriram Bayesian models for early warning of bank failures Manage. Sci. 47 11 2001 1457 1475
    • (2001) Manage. Sci. , vol.47 , Issue.11 , pp. 1457-1475
    • Sarkar, S.1    Sriram, R.S.2
  • 104
    • 79961085476 scopus 로고    scopus 로고
    • Rule extraction from minimal neural networks for credit card screening
    • R. Setiono, B. Baesens, and C. Mues Rule extraction from minimal neural networks for credit card screening Int. J. Neural Syst. 21 4 2011 265 276
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 265-276
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 105
    • 84875427238 scopus 로고    scopus 로고
    • Partial least square discriminant analysis for bankruptcy prediction
    • C. Serrano-Cinca, and B. Gutiérrez-Nieto Partial least square discriminant analysis for bankruptcy prediction Decis. Support Syst. 54 3 2013 1245 1255
    • (2013) Decis. Support Syst. , vol.54 , Issue.3 , pp. 1245-1255
    • Serrano-Cinca, C.1    Gutiérrez-Nieto, B.2
  • 106
    • 0036776357 scopus 로고    scopus 로고
    • A genetic algorithm application in bankruptcy prediction modeling
    • K.-S. Shin, and Y.-J. Lee A genetic algorithm application in bankruptcy prediction modeling Expert Syst. Appl. 23 2002 321 328
    • (2002) Expert Syst. Appl. , vol.23 , pp. 321-328
    • Shin, K.-S.1    Lee, Y.-J.2
  • 107
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • K.-S. Shin, T.S. Lee, and H.-J. Kim An application of support vector machines in bankruptcy prediction model Expert Syst. Appl. 28 2005 127 135
    • (2005) Expert Syst. Appl. , vol.28 , pp. 127-135
    • Shin, K.-S.1    Lee, T.S.2    Kim, H.-J.3
  • 108
    • 79959691878 scopus 로고    scopus 로고
    • SFFS-PC-NN optimized by genetic algorithm for dynamic prediction of financial distress with longitudinal data streams
    • J. Sun, K. He, and H. Li SFFS-PC-NN optimized by genetic algorithm for dynamic prediction of financial distress with longitudinal data streams Knowl.-Based Syst. 24 2011 1013 1023
    • (2011) Knowl.-Based Syst. , vol.24 , pp. 1013-1023
    • Sun, J.1    He, K.2    Li, H.3
  • 109
    • 33749376158 scopus 로고    scopus 로고
    • Financial distress prediction based on similarity weighted voting CBR
    • J. Sun, and X.-F. Hui Financial distress prediction based on similarity weighted voting CBR Lect. Notes Artif. Int. 4093 2006 947 958
    • (2006) Lect. Notes Artif. Int. , vol.4093 , pp. 947-958
    • Sun, J.1    Hui, X.-F.2
  • 110
    • 79953722212 scopus 로고    scopus 로고
    • AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies
    • J. Sun, M. Jia, and H. Li AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies Expert Syst. Appl. 38 2011 9305 9312
    • (2011) Expert Syst. Appl. , vol.38 , pp. 9305-9312
    • Sun, J.1    Jia, M.2    Li, H.3
  • 111
    • 41749100893 scopus 로고    scopus 로고
    • Data mining method for listed companies' financial distress prediction
    • J. Sun, and H. Li Data mining method for listed companies' financial distress prediction Knowl.-Based Syst. 21 2008 1 5
    • (2008) Knowl.-Based Syst. , vol.21 , pp. 1-5
    • Sun, J.1    Li, H.2
  • 112
    • 45049088570 scopus 로고    scopus 로고
    • Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers
    • J. Sun, and H. Li Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers Expert Syst. Appl. 35 2008 818 827
    • (2008) Expert Syst. Appl. , vol.35 , pp. 818-827
    • Sun, J.1    Li, H.2
  • 113
    • 60249097469 scopus 로고    scopus 로고
    • Financial distress prediction based on serial combination of multiple classifiers
    • J. Sun, and H. Li Financial distress prediction based on serial combination of multiple classifiers Expert Syst. Appl. 36 2009 8659 8666
    • (2009) Expert Syst. Appl. , vol.36 , pp. 8659-8666
    • Sun, J.1    Li, H.2
  • 114
    • 53749101228 scopus 로고    scopus 로고
    • Financial distress early warning based on group decision making
    • J. Sun, and H. Li Financial distress early warning based on group decision making Comput. Oper. Res. 36 2009 885 906
    • (2009) Comput. Oper. Res. , vol.36 , pp. 885-906
    • Sun, J.1    Li, H.2
  • 115
    • 78049527112 scopus 로고    scopus 로고
    • Dynamic financial distress prediction using instance selection for the disposal of concept drift
    • J. Sun, and H. Li Dynamic financial distress prediction using instance selection for the disposal of concept drift Expert Syst. Appl. 38 2011 2566 2576
    • (2011) Expert Syst. Appl. , vol.38 , pp. 2566-2576
    • Sun, J.1    Li, H.2
  • 116
    • 33846660949 scopus 로고    scopus 로고
    • Using Bayesian networks for bankruptcy prediction: Some methodological issues
    • L. Sun, and P. Shenoy Using Bayesian networks for bankruptcy prediction: Some methodological issues Eur. J. Oper. Res. 180 2007 738 753
    • (2007) Eur. J. Oper. Res. , vol.180 , pp. 738-753
    • Sun, L.1    Shenoy, P.2
  • 117
    • 0033277431 scopus 로고    scopus 로고
    • Dynamics of modeling in data mining: Interpretive approach to bankruptcy prediction
    • T. Sung, N. Chang, and G. Lee Dynamics of modeling in data mining: interpretive approach to bankruptcy prediction J. Manage. Inform. Syst. 16 1 1999 63 86
    • (1999) J. Manage. Inform. Syst. , vol.16 , Issue.1 , pp. 63-86
    • Sung, T.1    Chang, N.2    Lee, G.3
  • 118
    • 0001273663 scopus 로고
    • Neural network models and the prediction of bank bankruptcy
    • K. Tam Neural network models and the prediction of bank bankruptcy Omega 19 5 1991 429 445
    • (1991) Omega , vol.19 , Issue.5 , pp. 429-445
    • Tam, K.1
  • 119
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure prediction
    • K. Tam, and M. Kiang Managerial applications of neural networks: the case of bank failure prediction Manage. Sci. 38 7 1992 926 947
    • (1992) Manage. Sci. , vol.38 , Issue.7 , pp. 926-947
    • Tam, K.1    Kiang, M.2
  • 120
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • L. Todorovski, and S. Dzeroski Combining classifiers with meta decision trees Mach. Learn. 50 2003 223 249
    • (2003) Mach. Learn. , vol.50 , pp. 223-249
    • Todorovski, L.1    Dzeroski, S.2
  • 121
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • C.-F. Tsai Feature selection in bankruptcy prediction Knowl.-Based Syst. 22 2009 120 127
    • (2009) Knowl.-Based Syst. , vol.22 , pp. 120-127
    • Tsai, C.-F.1
  • 122
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • C.-F. Tsai, and J. Wu Using neural network ensembles for bankruptcy prediction and credit scoring Expert Syst. Appl. 34 2008 2639 2649
    • (2008) Expert Syst. Appl. , vol.34 , pp. 2639-2649
    • Tsai, C.-F.1    Wu, J.2
  • 123
    • 8744310100 scopus 로고    scopus 로고
    • A quadratic interval logit model for forecasting bankruptcy
    • F. Tseng, and L. Lin A quadratic interval logit model for forecasting bankruptcy Omega 33 1 2005 85 91
    • (2005) Omega , vol.33 , Issue.1 , pp. 85-91
    • Tseng, F.1    Lin, L.2
  • 124
    • 0007687443 scopus 로고    scopus 로고
    • Genetic algorithms applications in the analysis of insolvency risk
    • F. Varetto Genetic algorithms applications in the analysis of insolvency risk J. Bank. Finance 22 1998 1421 1439
    • (1998) J. Bank. Finance , vol.22 , pp. 1421-1439
    • Varetto, F.1
  • 125
    • 77951880059 scopus 로고    scopus 로고
    • Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: A survey
    • A. Verikas, Z. Kalsyte, M. Bacauskiene, and A. Gelzinis Hybrid and ensemble-based soft computing techniques in bankruptcy prediction: a survey Soft. Comput. 14 9 2010 995 1010
    • (2010) Soft. Comput. , vol.14 , Issue.9 , pp. 995-1010
    • Verikas, A.1    Kalsyte, Z.2    Bacauskiene, M.3    Gelzinis, A.4
  • 126
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • D. West, S. Dellana, and J. Qian Neural network ensemble strategies for financial decision applications Comput. Oper. Res. 32 2005 2543 2559
    • (2005) Comput. Oper. Res. , vol.32 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 127
    • 79961053087 scopus 로고    scopus 로고
    • Improving classification accuracy and causal knowledge for better credit decisions
    • W. Wu Improving classification accuracy and causal knowledge for better credit decisions Int. J. Neural Syst. 21 4 2011 297 309
    • (2011) Int. J. Neural Syst. , vol.21 , Issue.4 , pp. 297-309
    • Wu, W.1
  • 128
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • C.-H. Wu, G.-H. Tzeng, Y.-J. Goo, and W.-C. Fang A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy Expert Syst. Appl. 32 2007 397 408
    • (2007) Expert Syst. Appl. , vol.32 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4
  • 129
    • 45949091113 scopus 로고    scopus 로고
    • Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis
    • D. Wu, L. Liang, and Z. Yang Analyzing the financial distress of Chinese public companies using probabilistic neural networks and multivariate discriminate analysis Socio-Econ. Plan. Sci. 42 3 2008 206 220
    • (2008) Socio-Econ. Plan. Sci. , vol.42 , Issue.3 , pp. 206-220
    • Wu, D.1    Liang, L.2    Yang, Z.3
  • 130
    • 30344453065 scopus 로고    scopus 로고
    • A new fuzzy support vector machine to evaluate credit risk
    • Y. Wang, S. Wang, and K.K. Lai A new fuzzy support vector machine to evaluate credit risk IEEE Trans. Fuzzy Syst. 13 6 2005 820 831
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.6 , pp. 820-831
    • Wang, Y.1    Wang, S.2    Lai, K.K.3
  • 131
    • 77249114132 scopus 로고    scopus 로고
    • Reducing the probability of bankruptcy through supply chain coordination
    • X. Xu, Y. Sun, and Z. Hua Reducing the probability of bankruptcy through supply chain coordination IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. 44 2010 67 74
    • (2010) IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. , vol.44 , pp. 67-74
    • Xu, X.1    Sun, Y.2    Hua, Z.3
  • 132
    • 0033074333 scopus 로고    scopus 로고
    • Probabilistic neural networks in bankruptcy prediction
    • Z.R. Yang, M.B. Platt, and H.D. Platt Probabilistic neural networks in bankruptcy prediction J. Bus. Res. 44 1999 67 74
    • (1999) J. Bus. Res. , vol.44 , pp. 67-74
    • Yang, Z.R.1    Platt, M.B.2    Platt, H.D.3
  • 133
    • 71749091806 scopus 로고    scopus 로고
    • A hybrid approach of DEA, rough set and support vector machines for business failure prediction
    • C.-C. Yeh, D.-J. Chi, and M.-F. Hsu A hybrid approach of DEA, rough set and support vector machines for business failure prediction Expert Syst. Appl. 37 2010 1535 1541
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1535-1541
    • Yeh, C.-C.1    Chi, D.-J.2    Hsu, M.-F.3
  • 134
    • 84978567741 scopus 로고
    • Assesing the vulnerability to failure of American industrial firm: A logistic analysis
    • C.V. Zavgren Assesing the vulnerability to failure of American industrial firm: a logistic analysis J. Bus. Finance Account. 12 1985 19 45
    • (1985) J. Bus. Finance Account. , vol.12 , pp. 19-45
    • Zavgren, C.V.1
  • 135
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
    • G. Zhang, M.Y. Hu, B.E. Patuwo, and D.C. Indro Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis Eur. J. Oper. Res. 116 1999 16 32
    • (1999) Eur. J. Oper. Res. , vol.116 , pp. 16-32
    • Zhang, G.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4
  • 136
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • M.E. Zmijewski Methodological issues related to the estimation of financial distress prediction models J. Account. Res. 22 1984 59 82
    • (1984) J. Account. Res. , vol.22 , pp. 59-82
    • Zmijewski, M.E.1
  • 137
    • 84861845698 scopus 로고    scopus 로고
    • Financial distress prediction using support vector machines: Ensemble vs. Individual
    • J. Sun, and H. Li Financial distress prediction using support vector machines: Ensemble vs. individual Appl. Soft Comput. 12 8 2012 2254 2265
    • (2012) Appl. Soft Comput. , vol.12 , Issue.8 , pp. 2254-2265
    • Sun, J.1    Li, H.2
  • 138
    • 84887111053 scopus 로고    scopus 로고
    • Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction
    • J. Sun, H. Li, and H. Adeli Concept drift-oriented adaptive and dynamic support vector machine ensemble with time window in corporate financial risk prediction IEEE Trans. Syst. Man Cybern: Syst. 43 4 2013 801 813
    • (2013) IEEE Trans. Syst. Man Cybern: Syst. , vol.43 , Issue.4 , pp. 801-813
    • Sun, J.1    Li, H.2    Adeli, H.3
  • 139
    • 0345404391 scopus 로고    scopus 로고
    • Predicting Bankruptcies with the Self-Organizing Map
    • K. Kiviluoto Predicting Bankruptcies with the Self-Organizing Map Neurocomput. 21 1998 191 201
    • (1998) Neurocomput. , vol.21 , pp. 191-201
    • Kiviluoto, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.