메뉴 건너뛰기




Volumn 241, Issue 1, 2015, Pages 236-247

Prediction of financial distress: An empirical study of listed Chinese companies using data mining

Author keywords

Chinese companies; Financial distress; Financial indicators; Majority voting; Neural network

Indexed keywords

DATA MINING; DECISION TREES; DETERIORATION; EARNINGS; FORECASTING; LOSSES; NEURAL NETWORKS; PROFITABILITY;

EID: 85027952626     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ejor.2014.08.016     Document Type: Article
Times cited : (316)

References (59)
  • 1
    • 0034138544 scopus 로고    scopus 로고
    • The integrated methodology of rough set theory and artificial neural network for business failure prediction
    • B.S. Ahn, S.S. Cho, and C.Y. Kim The integrated methodology of rough set theory and artificial neural network for business failure prediction Expert Systems with Applications 18 2 2000 65 74
    • (2000) Expert Systems with Applications , vol.18 , Issue.2 , pp. 65-74
    • Ahn, B.S.1    Cho, S.S.2    Kim, C.Y.3
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios, discriminant analysis and the prediction of corporate bankruptcy The Journal of Finance 23 4 1968 589 609
    • (1968) The Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 48549109172 scopus 로고
    • The success of business failure prediction models: An international survey
    • E.I. Altman The success of business failure prediction models: An international survey Journal of Banking & Finance 8 2 1984 171 198
    • (1984) Journal of Banking & Finance , vol.8 , Issue.2 , pp. 171-198
    • Altman, E.I.1
  • 6
    • 84863177094 scopus 로고    scopus 로고
    • Bank loans with Chinese characteristics: Some evidence on inside debt in a state-controlled banking system
    • W.B. Bailey, W. Huang, and Z. Yang Bank loans with Chinese characteristics: Some evidence on inside debt in a state-controlled banking system Journal of Financial and Quantitative Analysis 46 6 2011 1795 1830
    • (2011) Journal of Financial and Quantitative Analysis , vol.46 , Issue.6 , pp. 1795-1830
    • Bailey, W.B.1    Huang, W.2    Yang, Z.3
  • 7
    • 0001667056 scopus 로고
    • Corporate financial reporting: A methodological review of empirical research
    • R. Ball, and G. Foster Corporate financial reporting: A methodological review of empirical research Journal of Accounting Research 20 1982 161 234
    • (1982) Journal of Accounting Research , vol.20 , pp. 161-234
    • Ball, R.1    Foster, G.2
  • 8
    • 0002554419 scopus 로고
    • Financial ratios as predictors of failure
    • W.H. Beaver Financial ratios as predictors of failure Journal of Accounting Research 4 1966 71 111
    • (1966) Journal of Accounting Research , vol.4 , pp. 71-111
    • Beaver, W.H.1
  • 9
    • 33947647535 scopus 로고    scopus 로고
    • Multi-criteria classification - A new scheme for application of dominance-based decision rules
    • J. Błaszczyński, S. Greco, and R. Słowiński Multi-criteria classification - A new scheme for application of dominance-based decision rules European Journal of Operational Research 181 3 2007 1030 1044
    • (2007) European Journal of Operational Research , vol.181 , Issue.3 , pp. 1030-1044
    • Błaszczyński, J.1    Greco, S.2    Słowiński, R.3
  • 10
    • 33746377912 scopus 로고    scopus 로고
    • Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach
    • I. Bose, and R. Pal Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach European Journal of Operational Research 174 2 2006 959 982
    • (2006) European Journal of Operational Research , vol.174 , Issue.2 , pp. 959-982
    • Bose, I.1    Pal, R.2
  • 11
    • 0030190036 scopus 로고    scopus 로고
    • Self-organizing neural networks for financial diagnosis
    • S.-C. Carlos Self-organizing neural networks for financial diagnosis Decision Support Systems 17 3 1996 227 238
    • (1996) Decision Support Systems , vol.17 , Issue.3 , pp. 227-238
    • Carlos, S.-C.1
  • 12
    • 84868506559 scopus 로고    scopus 로고
    • A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering
    • M.Y. Chen A hybrid ANFIS model for business failure prediction utilizing particle swarm optimization and subtractive clustering Information Sciences 220 2013 180 195
    • (2013) Information Sciences , vol.220 , pp. 180-195
    • Chen, M.Y.1
  • 13
    • 56349100536 scopus 로고    scopus 로고
    • Using neural networks and data mining techniques for the financial distress prediction model
    • W.S. Chen, and Y.K. Du Using neural networks and data mining techniques for the financial distress prediction model Expert Systems with Applications 36 2 2009 4075 4086
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 4075-4086
    • Chen, W.S.1    Du, Y.K.2
  • 14
    • 83955163613 scopus 로고    scopus 로고
    • Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities
    • S. Cohen, M. Doumpos, E. Neofytou, and C. Zopounidis Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities European Journal of Operational Research 218 1 2012 270 279
    • (2012) European Journal of Operational Research , vol.218 , Issue.1 , pp. 270-279
    • Cohen, S.1    Doumpos, M.2    Neofytou, E.3    Zopounidis, C.4
  • 18
    • 0030143666 scopus 로고    scopus 로고
    • A survey of business failures with an emphasis on prediction methods and industrial applications
    • A.I. Dimitras, S.H. Zanakis, and C. Zopounidis A survey of business failures with an emphasis on prediction methods and industrial applications European Journal of Operational Research 90 3 1996 487 513
    • (1996) European Journal of Operational Research , vol.90 , Issue.3 , pp. 487-513
    • Dimitras, A.I.1    Zanakis, S.H.2    Zopounidis, C.3
  • 19
    • 38649138750 scopus 로고    scopus 로고
    • Forecasting financial condition of Chinese listed companies based on support vector machine
    • Y. Ding, X. Song, and Y. Zen Forecasting financial condition of Chinese listed companies based on support vector machine Expert Systems with Applications 34 4 2008 3081 3089
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 3081-3089
    • Ding, Y.1    Song, X.2    Zen, Y.3
  • 20
    • 84861094050 scopus 로고    scopus 로고
    • Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time
    • P. du Jardin, and E. Séverin Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time European Journal of Operational Research 221 2 2012 378 396
    • (2012) European Journal of Operational Research , vol.221 , Issue.2 , pp. 378-396
    • Du Jardin, P.1    Séverin, E.2
  • 22
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • D. Fletcher, and E. Goss Forecasting with neural networks: An application using bankruptcy data Information & Management 24 3 1993 159 167
    • (1993) Information & Management , vol.24 , Issue.3 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 23
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • H. Frydman, E.I. Altman, and D.L. Kao Introducing recursive partitioning for financial classification: The case of financial distress Journal of Finance 40 1 1985 269 291
    • (1985) Journal of Finance , vol.40 , Issue.1 , pp. 269-291
    • Frydman, H.1    Altman, E.I.2    Kao, D.L.3
  • 27
    • 79953722581 scopus 로고    scopus 로고
    • Global investing risk: A case study of knowledge assessment via rough sets
    • S. Greco, B. Matarazzo, R. Slowinski, and S. Zanakis Global investing risk: A case study of knowledge assessment via rough sets Annals of Operations Research 185 1 2011 105 138
    • (2011) Annals of Operations Research , vol.185 , Issue.1 , pp. 105-138
    • Greco, S.1    Matarazzo, B.2    Slowinski, R.3    Zanakis, S.4
  • 28
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
    • H. Jo, I. Han, and H. Lee Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis Expert Systems with Applications 13 2 1997 97 108
    • (1997) Expert Systems with Applications , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2    Lee, H.3
  • 29
    • 0000740938 scopus 로고
    • A five-state financial distress prediction model
    • A. Lau A five-state financial distress prediction model Journal of Accounting Research 25 1 1987 127 138
    • (1987) Journal of Accounting Research , vol.25 , Issue.1 , pp. 127-138
    • Lau, A.1
  • 30
    • 84894218665 scopus 로고    scopus 로고
    • Chinese companies distress prediction: An application of data envelopment analysis
    • Z. Li, J. Crook, and G. Andreeva Chinese companies distress prediction: An application of data envelopment analysis Journal of the Operational Research Society 65 3 2013 466 479
    • (2013) Journal of the Operational Research Society , vol.65 , Issue.3 , pp. 466-479
    • Li, Z.1    Crook, J.2    Andreeva, G.3
  • 31
    • 55249100209 scopus 로고    scopus 로고
    • Gaussian case based reasoning for business-failure prediction with empirical data in China
    • H. Li, and J. Sun Gaussian case based reasoning for business-failure prediction with empirical data in China Information Sciences 179 1-2 2009 89 108
    • (2009) Information Sciences , vol.179 , Issue.12 , pp. 89-108
    • Li, H.1    Sun, J.2
  • 32
    • 84890123891 scopus 로고    scopus 로고
    • Novel feature selection methods to financial distress prediction
    • F. Lin, D. Liang, C.C. Yeh, and J.C. Huang Novel feature selection methods to financial distress prediction Expert Systems with Applications 41 5 2014 2472 2483
    • (2014) Expert Systems with Applications , vol.41 , Issue.5 , pp. 2472-2483
    • Lin, F.1    Liang, D.2    Yeh, C.C.3    Huang, J.C.4
  • 33
    • 49349134343 scopus 로고
    • Early warnings of bank failure: A logit regression approach
    • D. Martin Early warnings of bank failure: A logit regression approach Journal of Banking and Finance 1 3 1977 249 276
    • (1977) Journal of Banking and Finance , vol.1 , Issue.3 , pp. 249-276
    • Martin, D.1
  • 36
    • 85028102835 scopus 로고    scopus 로고
    • Government of India Accessed 06.03.14
    • Ministry of Corporate Affairs (2014). Government of India. < http://www.mca.gov.in/MCA21/default-comp-list.html > Accessed 06.03.14.
    • (2014) Ministry of Corporate Affairs
  • 38
    • 0000666375 scopus 로고
    • Financial ratios and the probabilistic prediction of bankruptcy
    • J.A. Ohlson Financial ratios and the probabilistic prediction of bankruptcy Journal of Accounting Research 18 1 1980 109 131
    • (1980) Journal of Accounting Research , vol.18 , Issue.1 , pp. 109-131
    • Ohlson, J.A.1
  • 39
    • 85028098323 scopus 로고    scopus 로고
    • Corporate insolvency
    • Accessed 06.03.14
    • Orr, K. G. (2003). Corporate insolvency. Times of Malta. < http://www.timesofmalta.com/articles/view/20130422/local/Corporate-insolvency.466585 > Accessed 06.03.14.
    • (2003) Times of Malta
    • Orr, K.G.1
  • 40
    • 84868063376 scopus 로고    scopus 로고
    • Accessed 06.03.14
    • Palmeri, C. (2008). JPMorgan chase to buy Washington mutual. < http://www.businessweek.com/stories/2008-09-26/jpmorgan-chase-to-buy-washington-mutualbusinessweek-business-news-stock-market-and-financial-advice > Accessed 06.03.14.
    • (2008) JPMorgan Chase to Buy Washington Mutual
    • Palmeri, C.1
  • 41
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review
    • P. Ravi Kumar, and V. Ravi Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review European Journal of Operational Research 180 1 2007 1 28
    • (2007) European Journal of Operational Research , vol.180 , Issue.1 , pp. 1-28
    • Ravi Kumar, P.1    Ravi, V.2
  • 44
    • 7444228338 scopus 로고    scopus 로고
    • The CRISP-DM model: The new blueprint for data mining
    • C. Shearer The CRISP-DM model: The new blueprint for data mining Journal of Data Warehousing 5 4 2000 13 22
    • (2000) Journal of Data Warehousing , vol.5 , Issue.4 , pp. 13-22
    • Shearer, C.1
  • 45
    • 84866451766 scopus 로고    scopus 로고
    • Prediction of corporate financial distress: An application of the American banking industry
    • F.S. Shie, M.Y. Chen, and Y.-S. Liu Prediction of corporate financial distress: An application of the American banking industry Neural Computing and Applications 21 7 2012 1687 1696
    • (2012) Neural Computing and Applications , vol.21 , Issue.7 , pp. 1687-1696
    • Shie, F.S.1    Chen, M.Y.2    Liu, Y.-S.3
  • 46
    • 0036776357 scopus 로고    scopus 로고
    • A genetic algorithm application in bankruptcy prediction modeling
    • K.S. Shin, and Y.J. Lee A genetic algorithm application in bankruptcy prediction modeling Expert Systems with Applications 23 3 2002 321 328
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 321-328
    • Shin, K.S.1    Lee, Y.J.2
  • 47
    • 41749100893 scopus 로고    scopus 로고
    • Data mining method for listed companies' financial distress prediction
    • J. Sun, and H. Li Data mining method for listed companies' financial distress prediction Knowledge-Based Systems 21 1 2008 1 5
    • (2008) Knowledge-Based Systems , vol.21 , Issue.1 , pp. 1-5
    • Sun, J.1    Li, H.2
  • 48
    • 45049088570 scopus 로고    scopus 로고
    • Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers
    • J. Sun, and H. Li Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers Expert Systems with Applications 35 3 2008 818 827
    • (2008) Expert Systems with Applications , vol.35 , Issue.3 , pp. 818-827
    • Sun, J.1    Li, H.2
  • 49
    • 0033713738 scopus 로고    scopus 로고
    • Combining multiple classifiers by averaging or by multiplying?
    • D.M. Tax, M. Van Breukelen, R.P. Duin, and J. Kittler Combining multiple classifiers by averaging or by multiplying? Pattern Recognition 33 9 2000 1475 1485
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1475-1485
    • Tax, D.M.1    Van Breukelen, M.2    Duin, R.P.3    Kittler, J.4
  • 51
    • 84887039251 scopus 로고    scopus 로고
    • Combining cluster analysis with classifier ensembles to predict financial distress
    • C.-F. Tsai Combining cluster analysis with classifier ensembles to predict financial distress Information Fusion 16 2014 46 58
    • (2014) Information Fusion , vol.16 , pp. 46-58
    • Tsai, C.-F.1
  • 52
    • 77949647346 scopus 로고    scopus 로고
    • LASSO with cross-validation for genomic selection
    • M.G. Usai, M.E. Goddard, and B. Hayes LASSO with cross-validation for genomic selection Genetical Research 91 6 2009 427 436
    • (2009) Genetical Research , vol.91 , Issue.6 , pp. 427-436
    • Usai, M.G.1    Goddard, M.E.2    Hayes, B.3
  • 54
    • 84906951536 scopus 로고    scopus 로고
    • Financial distress drivers in Brazilian banks: A dynamic slacks approach
    • 10.1016/j.ejor.2014.06.044
    • P. Wanke, C.P. Barros, and J.R. Faria Financial distress drivers in Brazilian banks: A dynamic slacks approach European Journal of Operational Research 2014 10.1016/j.ejor.2014.06.044
    • (2014) European Journal of Operational Research
    • Wanke, P.1    Barros, C.P.2    Faria, J.R.3
  • 55
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • R.L. Wilson, and R. Sharda Bankruptcy prediction using neural networks Decision Support Systems 11 5 1994 545 557
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2
  • 56
    • 84155189126 scopus 로고    scopus 로고
    • The prediction for listed companies' financial distress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory
    • Z. Xiao, X. Yang, Y. Pang, and X. Dang The prediction for listed companies' financial distress by using multiple prediction methods with rough set and Dempster-Shafer evidence theory Knowledge-Based Systems 26 2012 196 206
    • (2012) Knowledge-Based Systems , vol.26 , pp. 196-206
    • Xiao, Z.1    Yang, X.2    Pang, Y.3    Dang, X.4
  • 57
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • L. Xu, A. Krzyzak, and C.Y. Suen Methods of combining multiple classifiers and their applications to handwriting recognition IEEE Transactions on Systems, Man and Cybernetics 22 3 1992 418 435
    • (1992) IEEE Transactions on Systems, Man and Cybernetics , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 58
    • 0001953906 scopus 로고
    • Methodological issues related to the estimation of financial distress prediction models
    • M.E. Zmijewski Methodological issues related to the estimation of financial distress prediction models Journal of Accounting Research 22 1984 59 82
    • (1984) Journal of Accounting Research , vol.22 , pp. 59-82
    • Zmijewski, M.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.