-
1
-
-
26844455787
-
Model selection in Neural Networks: Some difficulties
-
DOI 10.1016/j.ejor.2004.05.026, PII S0377221704004278
-
B. Curry and P. H. Morgan, Model selection in neural networks: Some difficulties, European Journal of Operational Research 170 (2006) 567-577. (Pubitemid 41455535)
-
(2006)
European Journal of Operational Research
, vol.170
, Issue.2
, pp. 567-577
-
-
Curry, B.1
Morgan, P.H.2
-
2
-
-
0025751820
-
Approximation capabilities of multilayer feedforward neural networks
-
K. Hornik, Approximation capabilities of multilayer feedforward neural networks, Neural Networks 4 (1991) 251-257.
-
(1991)
Neural Networks
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
3
-
-
16544370118
-
Multilayered greedy network-growing algorithm: Extension of greedy network-growing algorithm to multi-layered networks
-
R. Kamimura, Multilayered greedy network-growing algorithm: Extension of greedy network-growing algorithm to multi-layered networks, Int. Journal of Neural Systems 14(1) 9-26 (2004).
-
(2004)
Int. Journal of Neural Systems
, vol.14
, Issue.1
, pp. 9-26
-
-
Kamimura, R.1
-
4
-
-
0001958391
-
Study of a growth algorithm for a feedforward network
-
[1(1) (1989) 55-59]
-
J.-P. Nadal, Study of a growth algorithm for a feedforward network, Int. Journal of Neural Systems 1(4) (1991) 317-326 [1(1) (1989) 55-59].
-
(1991)
Int. Journal of Neural Systems
, vol.1
, Issue.4
, pp. 317-326
-
-
Nadal, J.-P.1
-
5
-
-
1942454824
-
New training strategies for constructive neural networks with application to regression problems
-
DOI 10.1016/j.neunet.2004.02.002, PII S0893608004000279
-
L. Ma and K. Khorasani, New training strategies for constructive neural networks with application to regression problems, Neural Networks 17 (2004) 589-609. (Pubitemid 38510341)
-
(2004)
Neural Networks
, vol.17
, Issue.4
, pp. 589-609
-
-
Ma, L.1
Khorasani, K.2
-
6
-
-
37249029174
-
A hybrid forward algorithm for RBF neural network construction
-
DOI 10.1109/TNN.2006.880860
-
J.-X. Peng, K. Li and D.-S. Huang, A hybrid forward algorithm for RBF neural network construction, IEEE Transactions on Neural Networks 19(2) (2006) 1439-1451. (Pubitemid 44824258)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.6
, pp. 1439-1451
-
-
Peng, J.-X.1
Li, K.2
Huang, D.-S.3
-
7
-
-
0029185114
-
Use of a quasi Newton method in a feedforward neural network construction algorithm
-
R. Setiono and L. C. K. Hui, Use of a quasi Newton method in a feedforward neural network construction algorithm, IEEE Transactions on Neural Networks 6(2) (1995) 326-332.
-
(1995)
IEEE Transactions on Neural Networks
, vol.6
, Issue.2
, pp. 326-332
-
-
Setiono, R.1
Hui, L.C.K.2
-
8
-
-
24344455644
-
Sensitivity analysis applied to the construction of radial basis function networks
-
DOI 10.1016/j.neunet.2005.02.006, PII S0893608005000547
-
D. Shi, D. S. Yeung and J. Gao, Sensitivity analysis applied to the construction of radial basis function networks, Neural Networks 18 (2005) 951-957. (Pubitemid 41253510)
-
(2005)
Neural Networks
, vol.18
, Issue.7
, pp. 951-957
-
-
Shi, D.1
Yeung, D.S.2
Gao, J.3
-
9
-
-
0035505658
-
A new pruning heuristic based on variance analysis of sensitivity information
-
A. Engelbrecht, A new pruning heuristic based on variance analysis of sensitivity information, IEEE Transactions on Neural Networks 12(6) (2001) 1386-1399.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.6
, pp. 1386-1399
-
-
Engelbrecht, A.1
-
10
-
-
33644884686
-
A node pruning agorithm based on a fourier amplitude sensitivity test method
-
DOI 10.1109/TNN.2006.871707
-
P. Lauret, E. Fock and T. A. Mara, A node pruning algorithm based on a fourier amplitude sensitivity test method, IEEE Transactions on Neural Networks 17(2) (2006) 273-293. (Pubitemid 43380055)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.2
, pp. 273-293
-
-
Lauret, P.1
Fock, E.2
Mara, T.A.3
-
11
-
-
33750378348
-
A new training and pruning algorithm based on node dependence and Jacobian rank deficiency
-
DOI 10.1016/j.neucom.2005.11.005, PII S0925231206000075
-
J. Xu and D. W. C. Ho, A new training and pruning algorithm based on node dependence and Jacobian rank deficiency, Neurocomputing 70 (2006) 544-558. (Pubitemid 44615765)
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 544-558
-
-
Xu, J.1
Ho, D.W.C.2
-
12
-
-
32544452874
-
Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure
-
DOI 10.1016/j.neucom.2005.04.010, PII S0925231205001852
-
X. Zeng and D. S. Yeung, Hidden neuron pruning of multilayer perceptrons using a quantified sensitivity measure, Neurocomputing 69 (2006) 825-837. (Pubitemid 43230385)
-
(2006)
Neurocomputing
, vol.69
, Issue.7-9 SPEC. ISS.
, pp. 825-837
-
-
Zeng, X.1
Yeung, D.S.2
-
13
-
-
13844256702
-
A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation
-
DOI 10.1109/TNN.2004.836241
-
D. Huang, P. Saratchandran and N. Sundararajan, A generalized growing and pruning RBF (GGAPRBF) neural network for function approximation, IEEE Transactions on Neural Networks 16(1) (2005) 57-67. (Pubitemid 40241910)
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.1
, pp. 57-67
-
-
Huang, G.-B.1
Saratchandran, P.2
Sundararajan, N.3
-
14
-
-
56449086760
-
An integrated growingpruning method for feedforward network training
-
P. L. Narasimha, W. H. Delashmit, M. T. Manry, J. Li and F. Maldonado, An integrated growingpruning method for feedforward network training, Neurocomputing 71 (2008) 2831-2847.
-
(2008)
Neurocomputing
, vol.71
, pp. 2831-2847
-
-
Narasimha, P.L.1
Delashmit, W.H.2
Manry, M.T.3
Li, J.4
Maldonado, F.5
-
15
-
-
0042525842
-
Neural-network construction and selection in nonlinear modeling
-
I. Rivals and L. Personnaz, Neural-network construction and selection in nonlinear modeling, IEEE Transactions on Neural Networks 14(4) (2003) 804-819.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.4
, pp. 804-819
-
-
Rivals, I.1
Personnaz, L.2
-
16
-
-
13844298045
-
Estimating optimal feature subsets using efficient estimation of high-dimensional mutual information
-
DOI 10.1109/TNN.2004.841414
-
T. W. S. Chow and D. Huang, Estimating optimal feature subsets using efficient estimation of highdimensional mutual information, IEEE Transactions on Neural Networks 16(1) (2005) 213-224. (Pubitemid 40241922)
-
(2005)
IEEE Transactions on Neural Networks
, vol.16
, Issue.1
, pp. 213-224
-
-
Chow, T.W.S.1
Huang, D.2
-
17
-
-
0030129019
-
Improving backpropagation learning with feature selection
-
R. Setiono and H. Liu, Improving backpropagation learning with feature selection, Applied Intelligence 6(2) (1996) 129-140.
-
(1996)
Applied Intelligence
, vol.6
, Issue.2
, pp. 129-140
-
-
Setiono, R.1
Liu, H.2
-
18
-
-
59349101361
-
Feature selection in bankruptcy prediction
-
C.-F. Tsai, Feature selection in bankruptcy prediction, Knowledge Based Systems 22(2) (2009) 120-127.
-
(2009)
Knowledge Based Systems
, vol.22
, Issue.2
, pp. 120-127
-
-
Tsai, C.-F.1
-
19
-
-
77958043391
-
Variable selection in nonlinear modeling based on RBF networks and evolutionary computation
-
P. Patrinos, A. Alexandridis, K. Ninos and H. Sarimveis, Variable selection in nonlinear modeling based on RBF networks and evolutionary computation, Int. Journal of Neural Systems 20(5) (2010) 365-379.
-
(2010)
Int. Journal of Neural Systems
, vol.20
, Issue.5
, pp. 365-379
-
-
Patrinos, P.1
Alexandridis, A.2
Ninos, K.3
Sarimveis, H.4
-
20
-
-
0034061686
-
Variable selection using neural-network models
-
DOI 10.1016/S0925-2312(99)00146-0, PII S0925231299001460
-
G. Castellano and A. M. Fanelli, Variable section using neural-network models, Neurocomputing 31 (2000) 1-13. (Pubitemid 30149404)
-
(2000)
Neurocomputing
, vol.31
, Issue.1-4
, pp. 1-13
-
-
Castellano, G.1
Fanelli, A.M.2
-
21
-
-
49449083313
-
Feature selection using localized generalization error for supervised classification problems using RBFNN
-
W. W. Y. Ng, D. S. Yeung, M. Firth, E. C. C. Tsang and X.-Z. Wang, Feature selection using localized generalization error for supervised classification problems using RBFNN, Pattern Recognition 41 (2008) 3706-3719.
-
(2008)
Pattern Recognition
, vol.41
, pp. 3706-3719
-
-
Ng, W.W.Y.1
Yeung, D.S.2
Firth, M.3
Tsang, E.C.C.4
Wang, X.-Z.5
-
22
-
-
0031140388
-
Neural-network feature selector
-
PII S1045922797027628
-
R. Setiono and H. Liu, Neural-network feature selector, IEEE Transactions on Neural Networks 8(7) (1997) 654-662. (Pubitemid 127767809)
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.3
, pp. 654-662
-
-
Setiono, R.1
Liu, H.2
-
23
-
-
0030633575
-
A penalty-function approach for pruning feedforward neural networks
-
R. Setiono, A penalty-function approach for pruning feedforward neural networks, Neural Computation 9(1) (1997) 185-204. (Pubitemid 127622532)
-
(1997)
Neural Computation
, vol.9
, Issue.1
, pp. 185-204
-
-
Setiono, R.1
-
24
-
-
0025447562
-
A simple procedure for pruning back-propagation trained neural networks
-
E. D. Karnin, A simple procedure for pruning back-propagation trained neural networks, IEEE Transactions on Neural Networks 1(2) (1990) 239-242.
-
(1990)
IEEE Transactions on Neural Networks
, vol.1
, Issue.2
, pp. 239-242
-
-
Karnin, E.D.1
-
25
-
-
0001037725
-
Improving generalization of neural networks through pruning
-
H. H. Thodberg, Improving generalization of neural networks through pruning, Int. Journal of Neural Systems 1(4) (1991) 317-326.
-
(1991)
Int. Journal of Neural Systems
, vol.1
, Issue.4
, pp. 317-326
-
-
Thodberg, H.H.1
-
26
-
-
0034574644
-
A local training and pruning approach for neural networks
-
S.-J. Chang, C.-S. Leung, K.-W. Wong and J. Sum, A local training and pruning approach for neural networks, Int. Journal of Neural Systems 10(6) (2000) 425-438.
-
(2000)
Int. Journal of Neural Systems
, vol.10
, Issue.6
, pp. 425-438
-
-
Chang, S.-J.1
Leung, C.-S.2
Wong, K.-W.3
Sum, J.4
-
27
-
-
0028480401
-
Two original weight pruning methods based on statistical tests and rounding techniques
-
G. Ledoux and J. F. Grandin, Two original weight pruning methods based on statistical tests and rounding techniques, in IEE Proc. Vision, Image and Signal Processing 141(4) (1994) 230-237.
-
(1994)
IEE Proc. Vision, Image and Signal Processing
, vol.141
, Issue.4
, pp. 230-237
-
-
Ledoux, G.1
Grandin, J.F.2
-
29
-
-
1542435014
-
Entropy learning and relevance criteria for neural network pruning
-
G. S. Ng, A. Wahab and D. Shi, Entropy learning and relevance criteria for neural network pruning, Int. Journal of Neural Systems 13(5) (2003) 291-305.
-
(2003)
Int. Journal of Neural Systems
, vol.13
, Issue.5
, pp. 291-305
-
-
Ng, G.S.1
Wahab, A.2
Shi, D.3
-
30
-
-
55349138530
-
UCI Repository of machine learning databases
-
University of California. Available from
-
A. Asuncion and D. J. Newman, UCI Repository of machine learning databases. Irvine, CA: School of of Information and Computer Sciences, University of California. Available from http://www.ics.uci.edu/mlearn/ MLRepository.html (2007).
-
(2007)
Irvine CA: School of of Information and Computer Sciences
-
-
Asuncion, A.1
Newman, D.J.2
-
31
-
-
0004114283
-
-
Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, Germany, Anonymous ftp available from
-
L. Prechelt, Proben1 - A set of benchmarks and benchmarking rules for neural network training algorithms, Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, Germany. Anonymous ftp available from ftp://pub/papers/techreports/1994/1994-21.ps.gz on ftp.ira.uka.de (1994).
-
(1994)
Proben1 - A Set of Benchmarks and Benchmarking Rules for Neural Network Training Algorithms
-
-
Prechelt, L.1
-
32
-
-
0037534150
-
Using neural network rule extraction and decision tables for credit-risk evaluation
-
B. Baesens, R. Setiono, C. Mues,C. and J. Vanthienen, Using neural network rule extraction and decision tables for credit-risk evaluation, Management Science 49(3) (2003) 312-329.
-
(2003)
Management Science
, vol.49
, Issue.3
, pp. 312-329
-
-
Baesens, B.1
Setiono, R.2
MuesC, C..3
Vanthienen, J.4
-
33
-
-
50849098868
-
A note on knowledge discovery using neural networks and its application to credit screening
-
R. Setiono, B. Baesens and C. Mues, A note on knowledge discovery using neural networks and its application to credit screening, European Journal of Operational Research 192(1) (2009) 1009-1018.
-
(2009)
European Journal of Operational Research
, vol.192
, Issue.1
, pp. 1009-1018
-
-
Setiono, R.1
Baesens, B.2
Mues, C.3
-
34
-
-
25144464662
-
Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
-
DOI 10.1016/j.ejor.2004.05.018, PII S0377221704003984, Balancing Assembly and Transfer Lines
-
R. S. Sexton, S. McMurtrey and D. J. Cleavenger, Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem, European Journal of Operational Research 168 (2006) 1009-1018. (Pubitemid 41336607)
-
(2006)
European Journal of Operational Research
, vol.168
, Issue.3
, pp. 1009-1018
-
-
Sexton, R.S.1
McMurtrey, S.2
Cleavenger, D.3
-
35
-
-
2342472859
-
A study on rule extraction from several combined neural networks
-
G. Bologna, A study on rule extraction from several combined neural networks, Int. Journal of Neural Systems 11(3) (2001) 247-255.
-
(2001)
Int. Journal of Neural Systems
, vol.11
, Issue.3
, pp. 247-255
-
-
Bologna, G.1
-
36
-
-
30344459717
-
Fuzzy rule extraction from a feed forward neural network by training a representative fuzzy neural network using gradient descent
-
DOI 10.1142/S0218488505003746
-
R. K. Brouwer, Fuzzy rule extraction from a feed forward neural network by training a representative fuzzy neural network using gradient descent, Int. Journal of Uncertainty, Fuzziness and Knowledge- Based Systems 13(6) (2005) 673-698. (Pubitemid 43068929)
-
(2005)
International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems
, vol.13
, Issue.6
, pp. 673-698
-
-
Brouwer, R.K.1
-
37
-
-
78649583381
-
Knowledge extraction from evolving spiking neural networks with rank order population coding
-
S. Soltic and N. Kasabov, Knowledge extraction from evolving spiking neural networks with rank order population coding, Int. Journal of Neural Systems 20(6) (2010) 437-445.
-
(2010)
Int. Journal of Neural Systems
, vol.20
, Issue.6
, pp. 437-445
-
-
Soltic, S.1
Kasabov, N.2
-
38
-
-
40549122717
-
Recursive neural network rule extraction for data with mixed attributes
-
DOI 10.1109/TNN.2007.908641
-
R. Setiono, B. Baesens and C. Mues, Recursive neural network rule extraction for data with mixed attributes, IEEE Transactions on Neural Networks 19(2) (2008) 299-307. (Pubitemid 351359294)
-
(2008)
IEEE Transactions on Neural Networks
, vol.19
, Issue.2
, pp. 299-307
-
-
Setiono, R.1
Baesens, B.2
Mues, C.3
-
39
-
-
0003979924
-
-
Addison Wesley, Redwood City, CA
-
J. Herts, A. Krogh and P. G. Palmer, Introduction to the Theory of Neural Computation, Addison Wesley, Redwood City, CA (1991).
-
(1991)
Introduction to the Theory of Neural Computation
-
-
Herts, J.1
Krogh, A.2
Palmer, P.G.3
-
40
-
-
84919662779
-
-
Oxford, University Press, Oxford, UK
-
B. Baesens and T. Van Gestel, Credit Risk Management, Basic Concepts: Financial Risk Components, Rating Analysis, Models, Economic and Regulatory Capital, Oxford University Press, Oxford, UK (2009).
-
(2009)
Credit Risk Management, Basic Concepts: Financial Risk Components, Rating Analysis, Models, Economic and Regulatory Capital
-
-
Baesens, B.1
Van Gestel, T.2
-
44
-
-
0030291564
-
A comparison of neural networks and linear scoring models in the credit union environment
-
DOI 10.1016/0377-2217(95)00246-4
-
V. S. Desai, J. N. Crook and G. A. Overstreet Jr, A comparison of neural networks and linear scoring models in the credit union environment, European Journal of Operational Research 95(1) (1996) 24-37. (Pubitemid 126391970)
-
(1996)
European Journal of Operational Research
, vol.95
, Issue.1
, pp. 24-37
-
-
Desai, V.S.1
Crook, J.N.2
Overstreet Jr., G.A.3
-
45
-
-
70249110487
-
A neural network model for credit risk evaluation
-
A. Khashman, A neural network model for credit risk evaluation, Int. Journal of Neural Systems 19(4) (2009) 285-294.
-
(2009)
Int. Journal of Neural Systems
, vol.19
, Issue.4
, pp. 285-294
-
-
Khashman, A.1
-
46
-
-
1942451946
-
Optimizing classifier performance via the Wilcoxon- Mann-Whitney statistic
-
L. Yan, R. Dodier, M. C. Mozer and R. Wolniewicz, Optimizing classifier performance via the Wilcoxon- Mann-Whitney statistic, in Proc. Int. Conference on Machine Learning (2003), 848-855.
-
(2003)
Proc. Int. Conference on Machine Learning
, pp. 848-855
-
-
Yan, L.1
Dodier, R.2
Mozer, M.C.3
Wolniewicz, R.4
-
48
-
-
33646023117
-
An introduction to ROC analysis
-
T. Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 27 (2006) 861-874.
-
(2006)
Pattern Recognition Letters
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
49
-
-
70249110487
-
A neural network model for credit risk evaluation
-
A. Khasnan, A neural network model for credit risk evaluation, Int. Journal of Neural Systems 19(4) (2009) 285-294.
-
(2009)
Int. Journal of Neural Systems
, vol.19
, Issue.4
, pp. 285-294
-
-
Khasnan, A.1
-
50
-
-
0038209756
-
Benchmarking state of the art classification algorithms for credit scoring
-
B. Baesens, T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens and J. Vanthienen, Benchmarking state of the art classification algorithms for credit scoring, Journal of the Operational Research Society 54(6) (2003) 627-635.
-
(2003)
Journal of the Operational Research Society
, vol.54
, Issue.6
, pp. 627-635
-
-
Baesens, B.1
Van T. Gestel2
Viaene, S.3
Stepanova, M.4
Suykens, J.5
Vanthienen, J.6
-
51
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
R. C. Holte, Very simple classification rules perform well on most commonly used datasets, Machine Learning 11(1) (2003) 63-90.
-
(2003)
Machine Learning
, vol.11
, Issue.1
, pp. 63-90
-
-
Holte, R.C.1
-
52
-
-
0038636391
-
A comparative assessment of classification methods
-
M. Y. Kiang, A comparative assessment of classification methods, Decision Support Systems 35(4) (2003) 441-454.
-
(2003)
Decision Support Systems
, vol.35
, Issue.4
, pp. 441-454
-
-
Kiang, M.Y.1
-
53
-
-
79961071682
-
Computational intelligence methods for rule-based data understanding
-
W. Duch, R. Setiono and J. Zurada, Computational intelligence methods for rule-based data understanding, Proceedings of the IEEE 32(3) (2004) 251-270.
-
(2004)
Proceedings of the IEEE
, vol.32
, Issue.3
, pp. 251-270
-
-
Duch, W.1
Setiono, R.2
Zurada, J.3
-
55
-
-
0025508828
-
Predicting bank failure: A neural network approach
-
K.-Y. Tam and M. Kiang, Predicting bank failure: A neural network approach, Applied Artificial Intelligence 4 (1990) 265-282.
-
(1990)
Applied Artificial Intelligence
, vol.4
, pp. 265-282
-
-
Tam, K.-Y.1
Kiang, M.2
-
56
-
-
64049084825
-
Predicting business failure using multiple case-based reasoning combined with support vector machine
-
H. Li and J. Sun, Predicting business failure using multiple case-based reasoning combined with support vector machine, Expert Systems with Application 36 (2009) 10085-10096.
-
(2009)
Expert Systems with Application
, vol.36
, pp. 10085-10096
-
-
Li, H.1
Sun, J.2
-
57
-
-
16244399834
-
Predicting bond ratings using publicly available information
-
DOI 10.1016/j.eswa.2005.01.007, PII S0957417405000084
-
K. S. Kim, Predicting bond rating using publicly available information, Expert Systems with Application 29(1) (2005) 75-81. (Pubitemid 40454394)
-
(2005)
Expert Systems with Applications
, vol.29
, Issue.1
, pp. 75-81
-
-
Kim, K.S.1
-
58
-
-
2442655599
-
Neural network techniques for financial performance prediction: Integrating fundamental and technical analysis
-
M. Lam, Neural network techniques for financial performance prediction: Integrating fundamental and technical analysis, Decision Support Systems 37(4) (2004) 567-581.
-
(2004)
Decision Support Systems
, vol.37
, Issue.4
, pp. 567-581
-
-
Lam, M.1
|