-
1
-
-
0038209756
-
Benchmarking state-of-the-art classification algorithms for credit scoring
-
Baesens B., Van Gestel T., Viaene S., Stepanova M., Suykens J., and Vanthienen J. Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society 54 6 (2003) 627-635
-
(2003)
Journal of the Operational Research Society
, vol.54
, Issue.6
, pp. 627-635
-
-
Baesens, B.1
Van Gestel, T.2
Viaene, S.3
Stepanova, M.4
Suykens, J.5
Vanthienen, J.6
-
2
-
-
0012579787
-
The importance of credit scoring models in improving cash flow and collection
-
Brill J. The importance of credit scoring models in improving cash flow and collection. Business Credit 100 1 (1998) 16-17
-
(1998)
Business Credit
, vol.100
, Issue.1
, pp. 16-17
-
-
Brill, J.1
-
3
-
-
34047108293
-
-
Chang, C. C., & Lin, C. J. (2001) LIBSVM: a library for support vector machines. Available from http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
-
-
-
4
-
-
0037401347
-
Credit scoring and rejected instances reassigning through evolutionary computation techniques
-
Chen M.C., and Huang S.H. Credit scoring and rejected instances reassigning through evolutionary computation techniques. Expert Systems with Applications 24 4 (2003) 433-441
-
(2003)
Expert Systems with Applications
, vol.24
, Issue.4
, pp. 433-441
-
-
Chen, M.C.1
Huang, S.H.2
-
5
-
-
10644295762
-
The contribution of data mining to information science
-
Chen S.Y., and Liu X. The contribution of data mining to information science. Journal of Information Science 30 6 (2004) 550-558
-
(2004)
Journal of Information Science
, vol.30
, Issue.6
, pp. 550-558
-
-
Chen, S.Y.1
Liu, X.2
-
6
-
-
34047110873
-
-
Chen, Y.-W., & Lin, C.-J. (2005). Combining SVMs with various feature selection strategies. Available from http://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf.
-
-
-
-
9
-
-
0030291564
-
A comparison of neural networks and linear scoring models in the credit union environment
-
Desai V.S., Crook J.N., and Overstreet G.A. A comparison of neural networks and linear scoring models in the credit union environment. European Journal of Operational Research 95 1 (1996) 24-37
-
(1996)
European Journal of Operational Research
, vol.95
, Issue.1
, pp. 24-37
-
-
Desai, V.S.1
Crook, J.N.2
Overstreet, G.A.3
-
10
-
-
0344235442
-
-
Fröhlich, H., & Chapelle, O. (2003). Feature selection for support vector machines by means of genetic algorithms. In Proceedings of the 15th IEEE international conference on tools with artificial intelligence, Sacramento, California, USA, pp. 142-148.
-
-
-
-
11
-
-
0001867238
-
Interpreting neural-network connection weights
-
Garson G.D. Interpreting neural-network connection weights. AI Expert 6 4 (1991) 47-51
-
(1991)
AI Expert
, vol.6
, Issue.4
, pp. 47-51
-
-
Garson, G.D.1
-
13
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., and Bapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 46 1-3 (2002) 389-422
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Bapnik, V.4
-
14
-
-
34047137296
-
-
Henley, W. E. (1995). Statistical aspects of credit scoring. Dissertation, The Open University, Milton Keynes, UK.
-
-
-
-
15
-
-
1542603058
-
A k-nearest neighbor classifier for assessing consumer credit risk
-
Henley W.E., and Hand D.J. A k-nearest neighbor classifier for assessing consumer credit risk. Statistician 44 1 (1996) 77-95
-
(1996)
Statistician
, vol.44
, Issue.1
, pp. 77-95
-
-
Henley, W.E.1
Hand, D.J.2
-
16
-
-
0036851193
-
Comparing a genetic fuzzy and a neurofuzzy classifier for credit scoring
-
Hoffmann F., Baesens B., Martens J., Put F., and Vanthienen J. Comparing a genetic fuzzy and a neurofuzzy classifier for credit scoring. International Journal of Intelligent Systems 17 11 (2002) 1067-1083
-
(2002)
International Journal of Intelligent Systems
, vol.17
, Issue.11
, pp. 1067-1083
-
-
Hoffmann, F.1
Baesens, B.2
Martens, J.3
Put, F.4
Vanthienen, J.5
-
18
-
-
17844388095
-
Hybrid mining approach in the design of credit scoring models
-
Hsieh N.-C. Hybrid mining approach in the design of credit scoring models. Expert Systems with Applications 28 4 (2005) 655-665
-
(2005)
Expert Systems with Applications
, vol.28
, Issue.4
, pp. 655-665
-
-
Hsieh, N.-C.1
-
19
-
-
34047162537
-
-
Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Available from http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
-
-
-
-
20
-
-
0036158552
-
A simple decomposition method for support vector machine
-
Hsu C.W., and Lin C.J. A simple decomposition method for support vector machine. Machine Learning 46 1-3 (2002) 219-314
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 219-314
-
-
Hsu, C.W.1
Lin, C.J.2
-
21
-
-
2442665617
-
Credit rating analysis with support vector machines and neural networks: a market comparative study
-
Huang Z., Chen H., Hsu C.-J., Chen W.-H., and Wu S. Credit rating analysis with support vector machines and neural networks: a market comparative study. Decision Support Systems 37 4 (2004) 543-558
-
(2004)
Decision Support Systems
, vol.37
, Issue.4
, pp. 543-558
-
-
Huang, Z.1
Chen, H.2
Hsu, C.-J.3
Chen, W.-H.4
Wu, S.5
-
22
-
-
84957069814
-
-
Joachims, T. (1998). Text categorization with support vector machines. In Proceedings of European conference on machine learning (ECML), Chemintz, DE, pp.137-142.
-
-
-
-
23
-
-
34047192044
-
-
John, G., Kohavi, R., & Peger, K. (1994). Irrelevant features and the subset selection problem. In Proceedings of the eleventh international conference on machine learning, San Mateo, CA, USA, pp. 121-129.
-
-
-
-
25
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., and John G. Wrappers for feature subset selection. Artificial Intelligence 97 1-2 (1997) 273-324
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
27
-
-
17844382437
-
A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines
-
Lee T.-S., and Chen I.-F. A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. Expert Systems with Applications 28 4 (2005) 743-752
-
(2005)
Expert Systems with Applications
, vol.28
, Issue.4
, pp. 743-752
-
-
Lee, T.-S.1
Chen, I.-F.2
-
28
-
-
0036776547
-
Credit scoring using the hybrid neural discriminant technique
-
Lee T.-S., Chiu C.-C., Lu C.-J., and Chen I.-F. Credit scoring using the hybrid neural discriminant technique. Expert Systems with Applications 23 3 (2002) 245-254
-
(2002)
Expert Systems with Applications
, vol.23
, Issue.3
, pp. 245-254
-
-
Lee, T.-S.1
Chiu, C.-C.2
Lu, C.-J.3
Chen, I.-F.4
-
30
-
-
0036027367
-
Differentiating between good credits and bad credits using neuro-fuzzy systems
-
Malhotra R., and Malhotra D.K. Differentiating between good credits and bad credits using neuro-fuzzy systems. European Journal of Operational Research 136 1 (2002) 190-211
-
(2002)
European Journal of Operational Research
, vol.136
, Issue.1
, pp. 190-211
-
-
Malhotra, R.1
Malhotra, D.K.2
-
31
-
-
0742307309
-
Feature subset selection for support vector machines through discriminative function pruning analysis
-
Mao K.Z. Feature subset selection for support vector machines through discriminative function pruning analysis. IEEE Transactions on Systems, Man, and Cybernetics 34 1 (2004) 60-67
-
(2004)
IEEE Transactions on Systems, Man, and Cybernetics
, vol.34
, Issue.1
, pp. 60-67
-
-
Mao, K.Z.1
-
32
-
-
34047180701
-
-
Murphy, P. M., Aha, D. W. (2001). UCI repository of machine learning databases. Department of Information and Computer Science, University of California Irvine, CA. Available from http://www.ics.uci.edu/mlearn/MLRepository.html.
-
-
-
-
35
-
-
33744584654
-
Induction of decision trees
-
Quinlan J.R. Induction of decision trees. Machine Learning 1 1 (1986) 81-106
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
37
-
-
15944379834
-
An examination of the conceptual issues involved in developing credit-scoring models
-
Reichert A.K., Cho C.C., and Wagner G.M. An examination of the conceptual issues involved in developing credit-scoring models. Journal of Business and Economic Statistics 1 2 (1983) 101-114
-
(1983)
Journal of Business and Economic Statistics
, vol.1
, Issue.2
, pp. 101-114
-
-
Reichert, A.K.1
Cho, C.C.2
Wagner, G.M.3
-
38
-
-
27144463192
-
On comparing classifiers: pitfalls to avoid and a recommended approach
-
Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery 1 (1997) 317-327
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, pp. 317-327
-
-
Salzberg, S.L.1
-
40
-
-
27844539754
-
Filter-versus wrapper-based feature selection for credit scoring
-
Somol P., Baesens B., Pudil P., and Vanthienen J. Filter-versus wrapper-based feature selection for credit scoring. International Journal of Intelligent Systems 20 10 (2005) 985-999
-
(2005)
International Journal of Intelligent Systems
, vol.20
, Issue.10
, pp. 985-999
-
-
Somol, P.1
Baesens, B.2
Pudil, P.3
Vanthienen, J.4
-
41
-
-
84997479670
-
Managerial applications of the neural networks: the case of bank failure prediction
-
Tam K.Y., and Kiang M.Y. Managerial applications of the neural networks: the case of bank failure prediction. Management Science 38 7 (1992) 926-947
-
(1992)
Management Science
, vol.38
, Issue.7
, pp. 926-947
-
-
Tam, K.Y.1
Kiang, M.Y.2
-
42
-
-
0001466281
-
A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers
-
Thomas L.C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers. International Journal of Forecasting 16 2 (2000) 149-172
-
(2000)
International Journal of Forecasting
, vol.16
, Issue.2
, pp. 149-172
-
-
Thomas, L.C.1
-
44
-
-
0034118581
-
Neural network credit scoring models
-
West D. Neural network credit scoring models. Computers and Operations Research 27 11-12 (2000) 1131-1152
-
(2000)
Computers and Operations Research
, vol.27
, Issue.11-12
, pp. 1131-1152
-
-
West, D.1
-
45
-
-
84898948710
-
Feature selection for SVM
-
Solla S.A., Leen T.K., and Muller K.-R. (Eds), MIT Press, Cambridge, MA
-
Weston J., Mukherjee S., Chapelle O., Pontil M., Poggio T., and Vapnik V. Feature selection for SVM. In: Solla S.A., Leen T.K., and Muller K.-R. (Eds). Advances in neural information processing systems Vol. 13 (2001), MIT Press, Cambridge, MA 668-674
-
(2001)
Advances in neural information processing systems
, vol.13
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
46
-
-
84960349226
-
-
Yu, G. X., Ostrouchov, G., Geist, A., & Samatova, N. F. (2003). An SVM-based algorithm for identification of photosynthesis-specific genome features. In 2nd IEEE computer society bioinformatics conference, CA, USA, pp. 235-243.
-
-
-
|