-
1
-
-
0029484103
-
Survey and critique of techniques for extracting rules from trained artificial neural networks
-
Andrews R., Diederich J., and Tickle A.B. Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Systems 8 6 (1995) 373-389
-
(1995)
Knowledge-Based Systems
, vol.8
, Issue.6
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle, A.B.3
-
2
-
-
0038209756
-
Benchmarking state-of-the-art classification algorithms for credit scoring
-
Baesens B., Van Gestel T., Viaene S., Stepanova M., Suykens J., and Vanthienen J. Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society 54 6 (2003) 627-635
-
(2003)
Journal of the Operational Research Society
, vol.54
, Issue.6
, pp. 627-635
-
-
Baesens, B.1
Van Gestel, T.2
Viaene, S.3
Stepanova, M.4
Suykens, J.5
Vanthienen, J.6
-
3
-
-
0037534150
-
Using neural network rule extraction and decision tables for credit-risk evaluation
-
Baesens B., Setiono R., Mues C., and Vanthienen J. Using neural network rule extraction and decision tables for credit-risk evaluation. Management Science 49 3 (2003) 312-329
-
(2003)
Management Science
, vol.49
, Issue.3
, pp. 312-329
-
-
Baesens, B.1
Setiono, R.2
Mues, C.3
Vanthienen, J.4
-
4
-
-
34447271573
-
-
N. Barakat, J. Diederich, Learning-based rule-extraction from support vector machines. In: 14th International Conference on Computer Theory and Applications ICCTA 2004 Proceedings, Alexandria, Egypt, 2004.
-
-
-
-
5
-
-
1542576024
-
Biological data mining with neural networks: Implementation and application of a flexible decision tree extraction algorithm to genomic problem domains
-
Browne A., Hudson B., Whitley D., and Picton P. Biological data mining with neural networks: Implementation and application of a flexible decision tree extraction algorithm to genomic problem domains. Neurocomputing 57 (2004) 275-293
-
(2004)
Neurocomputing
, vol.57
, pp. 275-293
-
-
Browne, A.1
Hudson, B.2
Whitley, D.3
Picton, P.4
-
6
-
-
34447290290
-
-
M.W. Craven. Extracting comprehensible models from trained neural networks. Ph.D. thesis, University of Winsconsin-Madison, 1996. Supervisor-J.W. Shavlik.
-
-
-
-
8
-
-
0003798635
-
-
Cambridge University Press, New York, NY, USA
-
Cristianini N., and Shawe-Taylor J. An introduction to Support Vector Machines and Other Kernel-Based Learning Methods (2000), Cambridge University Press, New York, NY, USA
-
(2000)
An introduction to Support Vector Machines and Other Kernel-Based Learning Methods
-
-
Cristianini, N.1
Shawe-Taylor, J.2
-
9
-
-
0032594950
-
Support vector machines for spam categorization
-
Drucker H., Wu D., and Vapnik V. Support vector machines for spam categorization. IEEE-NN 10 5 (1999) 1048-1054
-
(1999)
IEEE-NN
, vol.10
, Issue.5
, pp. 1048-1054
-
-
Drucker, H.1
Wu, D.2
Vapnik, V.3
-
10
-
-
34447288790
-
-
D.W. Dwyer, A.E. Kocagil, R.M. Stein, Moody's kmv riskcalc v3.1 model, 2004.
-
-
-
-
11
-
-
32344439223
-
Rule extraction from linear support vector machines
-
ACM Press, New York, NY, USA
-
Fung G., Sandilya S., and Bharat Rao R. Rule extraction from linear support vector machines. KDD '05: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining (2005), ACM Press, New York, NY, USA 32-40
-
(2005)
KDD '05: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
, pp. 32-40
-
-
Fung, G.1
Sandilya, S.2
Bharat Rao, R.3
-
12
-
-
33646475871
-
Bayesian kernel based classification for financial distress detection
-
Van Gestel T., Baesens B., Suykens J., Van den Poel D., Baestaens D.-E., and Willekens M. Bayesian kernel based classification for financial distress detection. European Journal of Operational Research 172 3 (2006) 979-1003
-
(2006)
European Journal of Operational Research
, vol.172
, Issue.3
, pp. 979-1003
-
-
Van Gestel, T.1
Baesens, B.2
Suykens, J.3
Van den Poel, D.4
Baestaens, D.-E.5
Willekens, M.6
-
13
-
-
34447275782
-
-
T. Van Gestel, J.A.K. Suykens, B. Baesens, S. Viaene, J. Vanthienenand G. Dedene, B. De Moor, J. Vandewalle. Benchmarking least squares support vector machine classifiers. CTEO, Technical Report 0037, K.U. Leuven, Belgium, 2000.
-
-
-
-
14
-
-
0035392694
-
Financial time series prediction using least squares support vector machines with the evidence framework
-
Van Gestel T., Suykens J.A.K., Baestaens D.-E., Lambrechts A., Lanckriet G., Vandaele B., De Moor B., and Vandewalle J. Financial time series prediction using least squares support vector machines with the evidence framework. IEEE Transactions on Neural Networks 12 4 (2001) 809-821
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.4
, pp. 809-821
-
-
Van Gestel, T.1
Suykens, J.A.K.2
Baestaens, D.-E.3
Lambrechts, A.4
Lanckriet, G.5
Vandaele, B.6
De Moor, B.7
Vandewalle, J.8
-
15
-
-
34447250865
-
-
S. Hettich, S.D. Bay. The uci kdd archive, 1996. .
-
-
-
-
16
-
-
10044295085
-
-
U. Johansson, R. König, L. Niklasson. The truth is in there - rule extraction from opaque models using genetic programming. In: 17th International Florida AI Research Symposium Conference FLAIRS Proceedings, 2004.
-
-
-
-
17
-
-
84942590722
-
-
J.T.Yao. Sensitivity analysis for data mining. In: 22nd International Conference of NAFIPS Proceedings, 2003, pp. 272-277.
-
-
-
-
19
-
-
0043166415
-
Preoperative prediction of malignancy of ovarium tumor using least squares support vector machines
-
Lu C., Van Gestel T., Suykens J.A.K., Van Huffel S., Vergote I., and Timmerman D. Preoperative prediction of malignancy of ovarium tumor using least squares support vector machines. Artificial Intelligence in Medicine 28 3 (1999) 281-306
-
(1999)
Artificial Intelligence in Medicine
, vol.28
, Issue.3
, pp. 281-306
-
-
Lu, C.1
Van Gestel, T.2
Suykens, J.A.K.3
Van Huffel, S.4
Vergote, I.5
Timmerman, D.6
-
20
-
-
0034299894
-
The cost-minimizing inverse classification problem: A genetic algorithm approach
-
Mannino M.V., and Koushik M.V. The cost-minimizing inverse classification problem: A genetic algorithm approach. Decision Support Systems 29 3 (2000) 283-300
-
(2000)
Decision Support Systems
, vol.29
, Issue.3
, pp. 283-300
-
-
Mannino, M.V.1
Koushik, M.V.2
-
21
-
-
34447260085
-
-
H. Nùnez, C. Angulo, A. Catala, Rule extraction from support vector machines. In: European Symposium on Artificial Neural Networks Proceedings, 2002, pp. 107-112.
-
-
-
-
22
-
-
34447284090
-
-
H. Nùnez, C. Angulo, A. Catala. Rule based learning systems from SVM and RBFNN. Tendencias de la mineria de datos en espana, Red Espaola de Minera de Datos, 2004.
-
-
-
-
23
-
-
10244252786
-
Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction
-
Pochet N., De Smet F., Suykens J.A.K., and De Moor B.L.R. Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction. Bioinformatics 20 17 (2004) 3185-3195
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3185-3195
-
-
Pochet, N.1
De Smet, F.2
Suykens, J.A.K.3
De Moor, B.L.R.4
-
24
-
-
33744584654
-
Induction of decision trees
-
Quinlan J.R. Induction of decision trees. Machine Learning 1 1 (1986) 81-106
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
26
-
-
0000696616
-
Neural networks and related methods for classification
-
Ripley B.D. Neural networks and related methods for classification. Journal of the Royal Statistical Society B 56 (1994) 409-456
-
(1994)
Journal of the Royal Statistical Society B
, vol.56
, pp. 409-456
-
-
Ripley, B.D.1
-
28
-
-
0003450542
-
-
Springer-Verlag, New York, Inc., New York, NY, USA
-
Vapnik V.N. The Nature of Statistical Learning Theory (1995), Springer-Verlag, New York, Inc., New York, NY, USA
-
(1995)
The Nature of Statistical Learning Theory
-
-
Vapnik, V.N.1
|