-
1
-
-
14544303628
-
Simple improved confidence intervals for comparing matched proportions
-
DOI 10.1002/sim.1781
-
Agresti, A., & Min, Y. (2005). Simple improved confidence intervals for comparing matched proportions. Statistics in Medicine, 24(5), 729-740. (Pubitemid 40298123)
-
(2005)
Statistics in Medicine
, vol.24
, Issue.5
, pp. 729-740
-
-
Agresti, A.1
Min, Y.2
-
2
-
-
0031521799
-
Analyzing credit risk data: A comparison of logistic discrimination, classification tree analysis, and feedforward networks
-
Arminger, G., Enache, D., & Bonne, T. (1997). Analyzing credit risk data: A comparison of logistic discrimination, classification tree analysis, and feedforward networks. Computational Statistics, 12(2), 293-310.
-
(1997)
Computational Statistics
, vol.12
, Issue.2
, pp. 293-310
-
-
Arminger, G.1
Enache, D.2
Bonne, T.3
-
3
-
-
0038209756
-
Benchmarking state-of-The-art classification algorithms for credit scoring
-
Baesens, B., Van Gestel, T., Viaene, S., Stepanova, M., Suykens, J., & Vanthienen, J. (2003). Benchmarking state-of-the-art classification algorithms for credit scoring. Journal of the Operational Research Society, 54(6), 627-635.
-
(2003)
Journal of the Operational Research Society
, vol.54
, Issue.6
, pp. 627-635
-
-
Baesens, B.1
Van Gestel, T.2
Viaene, S.3
Stepanova, M.4
Suykens, J.5
Vanthienen, J.6
-
4
-
-
84862685421
-
Identifying representative trees from ensembles
-
Banerjee, M., Ding, Y., & Noone, A. M. (2012). Identifying representative trees from ensembles. Statistics in Medicine, 31(15), 1601-1616.
-
(2012)
Statistics in Medicine
, vol.31
, Issue.15
, pp. 1601-1616
-
-
Banerjee, M.1
Ding, Y.2
Noone, A.M.3
-
5
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2), 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
6
-
-
84860701629
-
Analysis of a random forests model
-
Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13, 1063-1095.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 1063-1095
-
-
Biau, G.1
-
7
-
-
77949521444
-
On the rate of convergence of the bagged nearest neighbor estimate
-
Biau, G., Cerou, F., & Guyader, A. (2010a). On the rate of convergence of the bagged nearest neighbor estimate. Journal of Machine Learning Research, 11, 687-712.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 687-712
-
-
Biau, G.1
Cerou, F.2
Guyader, A.3
-
8
-
-
77950220460
-
Rates of convergence of the functional knearest neighbor estimate
-
Biau, G., Cerou, F., & Guyader, A. (2010b). Rates of convergence of the functional knearest neighbor estimate. IEEE Transactions on Information Theory, 56(4), 2034-2040.
-
(2010)
IEEE Transactions on Information Theory
, vol.56
, Issue.4
, pp. 2034-2040
-
-
Biau, G.1
Cerou, F.2
Guyader, A.3
-
9
-
-
77956747417
-
On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification
-
Biau, G., & Devroye, L. (2010). On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification. Journal of Multivariate Analysis, 101(10), 2499-2518.
-
(2010)
Journal of Multivariate Analysis
, vol.101
, Issue.10
, pp. 2499-2518
-
-
Biau, G.1
Devroye, L.2
-
10
-
-
54249099241
-
Consistency of random forests and other averaging classifiers
-
Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research, 9, 2015-2033.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2015-2033
-
-
Biau, G.1
Devroye, L.2
Lugosi, G.3
-
12
-
-
65549136074
-
Sampling uncertainty and confidence intervals for the Brier score and Brier skill score
-
Bradley, A. A., Schwartz, S. S., & Hashino, T. (2008). Sampling uncertainty and confidence intervals for the Brier score and Brier skill score. Weather Forecast, 23(5), 992-1006.
-
(2008)
Weather Forecast
, vol.23
, Issue.5
, pp. 992-1006
-
-
Bradley, A.A.1
Schwartz, S.S.2
Hashino, T.3
-
13
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
14
-
-
0035478854
-
Random forests
-
DOI 10.1023/A:1010933404324
-
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. (Pubitemid 32933532)
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
15
-
-
0003802343
-
-
Pacific Grove, CA: Wadsworth and Books Cole Advanced Books and Software
-
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Pacific Grove, CA: Wadsworth and Books Cole Advanced Books and Software.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
17
-
-
80255133264
-
An experimental comparison of classification algorithms for imbalanced credit scoring data sets
-
Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Application, 39(3), 3446-3453. http://dx.doi.org/10.1016/j.eswa. 2011.09.033.
-
(2012)
Expert Systems with Application
, vol.39
, Issue.3
, pp. 3446-3453
-
-
Brown, I.1
Mues, C.2
-
18
-
-
0003637516
-
-
Ph.D. University of Technology, Sydney. Retrieved from
-
Buntine, W. L. (1992). A theory of learning classification rules. Ph.D. University of Technology, Sydney. Retrieved from http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.49.5614.
-
(1992)
A Theory of Learning Classification Rules
-
-
Buntine, W.L.1
-
19
-
-
34447100569
-
Recent developments in consumer credit risk assessment
-
DOI 10.1016/j.ejor.2006.09.100, PII S0377221706011866
-
Crook, J. N., Edelman, D. B., & Thomas, L. C. (2007). Recent developments in consumer credit risk assessment. European Journal of Operational Research, 183(3), 1447-1465. (Pubitemid 47030750)
-
(2007)
European Journal of Operational Research
, vol.183
, Issue.3
, pp. 1447-1465
-
-
Crook, J.N.1
Edelman, D.B.2
Thomas, L.C.3
-
20
-
-
0023710206
-
Comparing the areas under 2 or more correlated receiver operating characteristic curves -A nonparametric approach
-
Delong, E. R., Delong, D. M., & Clarkepearson, D. I. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves -A nonparametric approach. Biometrics, 44(3), 837-845.
-
(1988)
Biometrics
, vol.44
, Issue.3
, pp. 837-845
-
-
Delong, E.R.1
Delong, D.M.2
Clarkepearson, D.I.3
-
21
-
-
21844511932
-
On the strong universal consistency of nearest neighbor regression function estimates
-
Devroye, L., Györfi, L., Krzyzak, A., & Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates. Annals of Statistics, 22(3), 1371-1385.
-
(1994)
Annals of Statistics
, vol.22
, Issue.3
, pp. 1371-1385
-
-
Devroye, L.1
Györfi, L.2
Krzyzak, A.3
Lugosi, G.4
-
23
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
Díaz-Uriarte, R., & Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
Alvarez De Andres, S.2
-
24
-
-
33947274775
-
Strictly proper scoring rules, prediction, and estimation
-
Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of American Statistics Association, 102(477), 359-378.
-
(2007)
Journal of American Statistics Association
, vol.102
, Issue.477
, pp. 359-378
-
-
Gneiting, T.1
Raftery, A.E.2
-
27
-
-
0034922124
-
Application of resampling techniques to the statistical analysis of the brier score
-
Ikeda, M., Itoh, S., Ishigaki, T., & Yamauchi, K. (2001). Application of resampling techniques to the statistical analysis of the Brier score. Methods of Information in Medicine, 40(3), 259-264. (Pubitemid 32701487)
-
(2001)
Methods of Information in Medicine
, vol.40
, Issue.3
, pp. 259-264
-
-
Ikeda, M.1
Itoh, S.2
Ishigaki, T.3
Yamauchi, K.4
-
29
-
-
58149347608
-
Patient-centered yes/no prognosis using learning machines
-
König, I. R., Malley, J. D., Pajevic, S., Weimar, C., Diener, H.-C., & Ziegler, A., on behalf of the German Stroke Study Collaborators (2008). Patient-centered yes/no prognosis using learning machines. International Journal of Data Mining and Bioinformatics, 2, 289-341. http://dx.doi.org/10.1504/IJDMB. 2008.022149.
-
(2008)
International Journal of Data Mining and Bioinformatics
, vol.2
, pp. 289-341
-
-
König, I.R.1
Malley, J.D.2
Pajevic, S.3
Weimar, C.4
Diener, H.-C.5
Ziegler, A.6
-
30
-
-
84866731649
-
Risk estimation and risk prediction using machine-learning methods
-
Kruppa, J., Ziegler, A., & König, I. R. (2012). Risk estimation and risk prediction using machine-learning methods. Human Genetics, 131(10), 1639-1654.
-
(2012)
Human Genetics
, vol.131
, Issue.10
, pp. 1639-1654
-
-
Kruppa, J.1
Ziegler, A.2
König, I.R.3
-
31
-
-
79954529373
-
Soft or hard classification? Large margin unified machines
-
Liu, Y., Zhang, H. H., & Wu, Y. (2011). Soft or hard classification? Large margin unified machines. Journal of American Statistics Association, 106, 166-177. http://dx.doi.org/10.1198/jasa.2011.tm10319.
-
(2011)
Journal of American Statistics Association
, vol.106
, pp. 166-177
-
-
Liu, Y.1
Zhang, H.H.2
Wu, Y.3
-
32
-
-
84855764322
-
Probability machines: Consistent probability estimation using nonparametric learning machines
-
Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability machines: consistent probability estimation using nonparametric learning machines. Methods of Information in Medicine, 51(1), 74-81.
-
(2012)
Methods of Information in Medicine
, vol.51
, Issue.1
, pp. 74-81
-
-
Malley, J.D.1
Kruppa, J.2
Dasgupta, A.3
Malley, K.G.4
Ziegler, A.5
-
33
-
-
0032583107
-
Improved confidence intervals for the difference between binomial proportions based on paired data
-
DOI 10.1002/(SICI)1097-0258(19981130)17:22<2635::AID-SIM954>3.0. CO;2-C
-
Newcombe, R. G. (1998a). Improved confidence intervals for the difference between binomial proportions based on paired data. Statistics in Medicine, 17(22), 2635-2650. (Pubitemid 28510655)
-
(1998)
Statistics in Medicine
, vol.17
, Issue.22
, pp. 2635-2650
-
-
Newcombe, R.G.1
-
34
-
-
0032580320
-
Two-sided confidence intervals for the single proportion: Comparison of seven methods
-
DOI 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2- E
-
Newcombe, R. G. (1998b). Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17(8), 857-872. (Pubitemid 28185165)
-
(1998)
Statistics in Medicine
, vol.17
, Issue.8
, pp. 857-872
-
-
Newcombe, R.G.1
-
35
-
-
77949388276
-
The behaviour of random forest permutation-based variable importance measures under predictor correlation
-
Nicodemus, K. K., Malley, J. D., Strobl, C., & Ziegler, A. (2010). The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics, 11, 110.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 110
-
-
Nicodemus, K.K.1
Malley, J.D.2
Strobl, C.3
Ziegler, A.4
-
36
-
-
47649095087
-
Gauging the performance of SNPs, biomarkers, and clinical factors for predicting risk of breast cancer
-
DOI 10.1093/jnci/djn215
-
Pepe, M. S., & Janes, H. E. (2008). Gauging the performance of SNPs, biomarkers, and clinical factors for predicting risk of breast cancer. Journal of the National Cancer Institute, 100(14), 978-979. (Pubitemid 352019802)
-
(2008)
Journal of the National Cancer Institute
, vol.100
, Issue.14
, pp. 978-979
-
-
Pepe, M.S.1
Janes, H.E.2
-
37
-
-
0042346121
-
Tree induction for probability-based ranking
-
Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52, 199-215.
-
(2003)
Machine Learning
, vol.52
, pp. 199-215
-
-
Provost, F.1
Domingos, P.2
-
40
-
-
77954485448
-
On safari to random jungle: A fast implementation of random forests for high-dimensional data
-
Schwarz, D. F., König, I. R., & Ziegler, A. (2010). On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics, 26(14), 1752-1758.
-
(2010)
Bioinformatics
, vol.26
, Issue.14
, pp. 1752-1758
-
-
Schwarz, D.F.1
König, I.R.2
Ziegler, A.3
-
42
-
-
0034650213
-
Confidence intervals for differences in correlated binary proportions (multiple letters)
-
DOI 10.1002/(SICI)1097-0258(20000115)19:1<133::AID-SIM373>3.0.CO;2- M
-
Tango, T. (2000). Confidence intervals for differences in correlated binary proportions. Statistics in Medicine, 19(1), 133-139. (Pubitemid 30051257)
-
(2000)
Statistics in Medicine
, vol.19
, Issue.1
, pp. 133-139
-
-
Tango, T.1
-
44
-
-
22744447363
-
The impact of sample bias on consumer credit scoring performance and profitability
-
DOI 10.1057/palgrave.jors.2601920
-
Verstraeten, G., & Van den Poel, D. (2005). The impact of sample bias on consumer credit scoring performance and profitability. Journal of the Operational Research Society, 56(8), 981-992. (Pubitemid 41028659)
-
(2005)
Journal of the Operational Research Society
, vol.56
, Issue.8
, pp. 981-992
-
-
Verstraeten, G.1
Van Den Poel, D.2
-
45
-
-
35348869458
-
Robust truncated-hinge-loss support vector machines
-
Wu, Y., & Liu, Y. (2007). Robust truncated-hinge-loss support vector machines. Journals of American Statistical Association, 102(479), 974-983.
-
(2007)
Journals of American Statistical Association
, vol.102
, Issue.479
, pp. 974-983
-
-
Wu, Y.1
Liu, Y.2
|