메뉴 건너뛰기




Volumn 40, Issue 13, 2013, Pages 5125-5131

Consumer credit risk: Individual probability estimates using machine learning

Author keywords

Credit scoring; Logistic regression; Machine learning; Probability estimation; Probability machines; Random forest

Indexed keywords

ARTIFICIAL INTELLIGENCE; C++ (PROGRAMMING LANGUAGE); DECISION TREES; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; PROBABILITY; REGRESSION ANALYSIS; RISK ASSESSMENT; RISK PERCEPTION;

EID: 84878300417     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.03.019     Document Type: Article
Times cited : (157)

References (45)
  • 1
    • 14544303628 scopus 로고    scopus 로고
    • Simple improved confidence intervals for comparing matched proportions
    • DOI 10.1002/sim.1781
    • Agresti, A., & Min, Y. (2005). Simple improved confidence intervals for comparing matched proportions. Statistics in Medicine, 24(5), 729-740. (Pubitemid 40298123)
    • (2005) Statistics in Medicine , vol.24 , Issue.5 , pp. 729-740
    • Agresti, A.1    Min, Y.2
  • 2
    • 0031521799 scopus 로고    scopus 로고
    • Analyzing credit risk data: A comparison of logistic discrimination, classification tree analysis, and feedforward networks
    • Arminger, G., Enache, D., & Bonne, T. (1997). Analyzing credit risk data: A comparison of logistic discrimination, classification tree analysis, and feedforward networks. Computational Statistics, 12(2), 293-310.
    • (1997) Computational Statistics , vol.12 , Issue.2 , pp. 293-310
    • Arminger, G.1    Enache, D.2    Bonne, T.3
  • 4
    • 84862685421 scopus 로고    scopus 로고
    • Identifying representative trees from ensembles
    • Banerjee, M., Ding, Y., & Noone, A. M. (2012). Identifying representative trees from ensembles. Statistics in Medicine, 31(15), 1601-1616.
    • (2012) Statistics in Medicine , vol.31 , Issue.15 , pp. 1601-1616
    • Banerjee, M.1    Ding, Y.2    Noone, A.M.3
  • 5
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36(1-2), 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 6
    • 84860701629 scopus 로고    scopus 로고
    • Analysis of a random forests model
    • Biau, G. (2012). Analysis of a random forests model. Journal of Machine Learning Research, 13, 1063-1095.
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 1063-1095
    • Biau, G.1
  • 7
    • 77949521444 scopus 로고    scopus 로고
    • On the rate of convergence of the bagged nearest neighbor estimate
    • Biau, G., Cerou, F., & Guyader, A. (2010a). On the rate of convergence of the bagged nearest neighbor estimate. Journal of Machine Learning Research, 11, 687-712.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 687-712
    • Biau, G.1    Cerou, F.2    Guyader, A.3
  • 8
    • 77950220460 scopus 로고    scopus 로고
    • Rates of convergence of the functional knearest neighbor estimate
    • Biau, G., Cerou, F., & Guyader, A. (2010b). Rates of convergence of the functional knearest neighbor estimate. IEEE Transactions on Information Theory, 56(4), 2034-2040.
    • (2010) IEEE Transactions on Information Theory , vol.56 , Issue.4 , pp. 2034-2040
    • Biau, G.1    Cerou, F.2    Guyader, A.3
  • 9
    • 77956747417 scopus 로고    scopus 로고
    • On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification
    • Biau, G., & Devroye, L. (2010). On the layered nearest neighbour estimate, the bagged nearest neighbour estimate and the random forest method in regression and classification. Journal of Multivariate Analysis, 101(10), 2499-2518.
    • (2010) Journal of Multivariate Analysis , vol.101 , Issue.10 , pp. 2499-2518
    • Biau, G.1    Devroye, L.2
  • 10
    • 54249099241 scopus 로고    scopus 로고
    • Consistency of random forests and other averaging classifiers
    • Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research, 9, 2015-2033.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2015-2033
    • Biau, G.1    Devroye, L.2    Lugosi, G.3
  • 12
    • 65549136074 scopus 로고    scopus 로고
    • Sampling uncertainty and confidence intervals for the Brier score and Brier skill score
    • Bradley, A. A., Schwartz, S. S., & Hashino, T. (2008). Sampling uncertainty and confidence intervals for the Brier score and Brier skill score. Weather Forecast, 23(5), 992-1006.
    • (2008) Weather Forecast , vol.23 , Issue.5 , pp. 992-1006
    • Bradley, A.A.1    Schwartz, S.S.2    Hashino, T.3
  • 13
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 17
    • 80255133264 scopus 로고    scopus 로고
    • An experimental comparison of classification algorithms for imbalanced credit scoring data sets
    • Brown, I., & Mues, C. (2012). An experimental comparison of classification algorithms for imbalanced credit scoring data sets. Expert Systems with Application, 39(3), 3446-3453. http://dx.doi.org/10.1016/j.eswa. 2011.09.033.
    • (2012) Expert Systems with Application , vol.39 , Issue.3 , pp. 3446-3453
    • Brown, I.1    Mues, C.2
  • 18
    • 0003637516 scopus 로고
    • Ph.D. University of Technology, Sydney. Retrieved from
    • Buntine, W. L. (1992). A theory of learning classification rules. Ph.D. University of Technology, Sydney. Retrieved from http://citeseerx.ist.psu.edu/ viewdoc/summary?doi=10.1.1.49.5614.
    • (1992) A Theory of Learning Classification Rules
    • Buntine, W.L.1
  • 19
    • 34447100569 scopus 로고    scopus 로고
    • Recent developments in consumer credit risk assessment
    • DOI 10.1016/j.ejor.2006.09.100, PII S0377221706011866
    • Crook, J. N., Edelman, D. B., & Thomas, L. C. (2007). Recent developments in consumer credit risk assessment. European Journal of Operational Research, 183(3), 1447-1465. (Pubitemid 47030750)
    • (2007) European Journal of Operational Research , vol.183 , Issue.3 , pp. 1447-1465
    • Crook, J.N.1    Edelman, D.B.2    Thomas, L.C.3
  • 20
    • 0023710206 scopus 로고
    • Comparing the areas under 2 or more correlated receiver operating characteristic curves -A nonparametric approach
    • Delong, E. R., Delong, D. M., & Clarkepearson, D. I. (1988). Comparing the areas under 2 or more correlated receiver operating characteristic curves -A nonparametric approach. Biometrics, 44(3), 837-845.
    • (1988) Biometrics , vol.44 , Issue.3 , pp. 837-845
    • Delong, E.R.1    Delong, D.M.2    Clarkepearson, D.I.3
  • 21
    • 21844511932 scopus 로고
    • On the strong universal consistency of nearest neighbor regression function estimates
    • Devroye, L., Györfi, L., Krzyzak, A., & Lugosi, G. (1994). On the strong universal consistency of nearest neighbor regression function estimates. Annals of Statistics, 22(3), 1371-1385.
    • (1994) Annals of Statistics , vol.22 , Issue.3 , pp. 1371-1385
    • Devroye, L.1    Györfi, L.2    Krzyzak, A.3    Lugosi, G.4
  • 23
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Díaz-Uriarte, R., & Alvarez de Andres, S. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    Alvarez De Andres, S.2
  • 24
    • 33947274775 scopus 로고    scopus 로고
    • Strictly proper scoring rules, prediction, and estimation
    • Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of American Statistics Association, 102(477), 359-378.
    • (2007) Journal of American Statistics Association , vol.102 , Issue.477 , pp. 359-378
    • Gneiting, T.1    Raftery, A.E.2
  • 27
    • 0034922124 scopus 로고    scopus 로고
    • Application of resampling techniques to the statistical analysis of the brier score
    • Ikeda, M., Itoh, S., Ishigaki, T., & Yamauchi, K. (2001). Application of resampling techniques to the statistical analysis of the Brier score. Methods of Information in Medicine, 40(3), 259-264. (Pubitemid 32701487)
    • (2001) Methods of Information in Medicine , vol.40 , Issue.3 , pp. 259-264
    • Ikeda, M.1    Itoh, S.2    Ishigaki, T.3    Yamauchi, K.4
  • 28
  • 30
    • 84866731649 scopus 로고    scopus 로고
    • Risk estimation and risk prediction using machine-learning methods
    • Kruppa, J., Ziegler, A., & König, I. R. (2012). Risk estimation and risk prediction using machine-learning methods. Human Genetics, 131(10), 1639-1654.
    • (2012) Human Genetics , vol.131 , Issue.10 , pp. 1639-1654
    • Kruppa, J.1    Ziegler, A.2    König, I.R.3
  • 31
    • 79954529373 scopus 로고    scopus 로고
    • Soft or hard classification? Large margin unified machines
    • Liu, Y., Zhang, H. H., & Wu, Y. (2011). Soft or hard classification? Large margin unified machines. Journal of American Statistics Association, 106, 166-177. http://dx.doi.org/10.1198/jasa.2011.tm10319.
    • (2011) Journal of American Statistics Association , vol.106 , pp. 166-177
    • Liu, Y.1    Zhang, H.H.2    Wu, Y.3
  • 32
    • 84855764322 scopus 로고    scopus 로고
    • Probability machines: Consistent probability estimation using nonparametric learning machines
    • Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., & Ziegler, A. (2012). Probability machines: consistent probability estimation using nonparametric learning machines. Methods of Information in Medicine, 51(1), 74-81.
    • (2012) Methods of Information in Medicine , vol.51 , Issue.1 , pp. 74-81
    • Malley, J.D.1    Kruppa, J.2    Dasgupta, A.3    Malley, K.G.4    Ziegler, A.5
  • 33
    • 0032583107 scopus 로고    scopus 로고
    • Improved confidence intervals for the difference between binomial proportions based on paired data
    • DOI 10.1002/(SICI)1097-0258(19981130)17:22<2635::AID-SIM954>3.0. CO;2-C
    • Newcombe, R. G. (1998a). Improved confidence intervals for the difference between binomial proportions based on paired data. Statistics in Medicine, 17(22), 2635-2650. (Pubitemid 28510655)
    • (1998) Statistics in Medicine , vol.17 , Issue.22 , pp. 2635-2650
    • Newcombe, R.G.1
  • 34
    • 0032580320 scopus 로고    scopus 로고
    • Two-sided confidence intervals for the single proportion: Comparison of seven methods
    • DOI 10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2- E
    • Newcombe, R. G. (1998b). Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17(8), 857-872. (Pubitemid 28185165)
    • (1998) Statistics in Medicine , vol.17 , Issue.8 , pp. 857-872
    • Newcombe, R.G.1
  • 35
    • 77949388276 scopus 로고    scopus 로고
    • The behaviour of random forest permutation-based variable importance measures under predictor correlation
    • Nicodemus, K. K., Malley, J. D., Strobl, C., & Ziegler, A. (2010). The behaviour of random forest permutation-based variable importance measures under predictor correlation. BMC Bioinformatics, 11, 110.
    • (2010) BMC Bioinformatics , vol.11 , pp. 110
    • Nicodemus, K.K.1    Malley, J.D.2    Strobl, C.3    Ziegler, A.4
  • 36
    • 47649095087 scopus 로고    scopus 로고
    • Gauging the performance of SNPs, biomarkers, and clinical factors for predicting risk of breast cancer
    • DOI 10.1093/jnci/djn215
    • Pepe, M. S., & Janes, H. E. (2008). Gauging the performance of SNPs, biomarkers, and clinical factors for predicting risk of breast cancer. Journal of the National Cancer Institute, 100(14), 978-979. (Pubitemid 352019802)
    • (2008) Journal of the National Cancer Institute , vol.100 , Issue.14 , pp. 978-979
    • Pepe, M.S.1    Janes, H.E.2
  • 37
    • 0042346121 scopus 로고    scopus 로고
    • Tree induction for probability-based ranking
    • Provost, F., & Domingos, P. (2003). Tree induction for probability-based ranking. Machine Learning, 52, 199-215.
    • (2003) Machine Learning , vol.52 , pp. 199-215
    • Provost, F.1    Domingos, P.2
  • 40
    • 77954485448 scopus 로고    scopus 로고
    • On safari to random jungle: A fast implementation of random forests for high-dimensional data
    • Schwarz, D. F., König, I. R., & Ziegler, A. (2010). On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics, 26(14), 1752-1758.
    • (2010) Bioinformatics , vol.26 , Issue.14 , pp. 1752-1758
    • Schwarz, D.F.1    König, I.R.2    Ziegler, A.3
  • 42
    • 0034650213 scopus 로고    scopus 로고
    • Confidence intervals for differences in correlated binary proportions (multiple letters)
    • DOI 10.1002/(SICI)1097-0258(20000115)19:1<133::AID-SIM373>3.0.CO;2- M
    • Tango, T. (2000). Confidence intervals for differences in correlated binary proportions. Statistics in Medicine, 19(1), 133-139. (Pubitemid 30051257)
    • (2000) Statistics in Medicine , vol.19 , Issue.1 , pp. 133-139
    • Tango, T.1
  • 44
    • 22744447363 scopus 로고    scopus 로고
    • The impact of sample bias on consumer credit scoring performance and profitability
    • DOI 10.1057/palgrave.jors.2601920
    • Verstraeten, G., & Van den Poel, D. (2005). The impact of sample bias on consumer credit scoring performance and profitability. Journal of the Operational Research Society, 56(8), 981-992. (Pubitemid 41028659)
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.8 , pp. 981-992
    • Verstraeten, G.1    Van Den Poel, D.2
  • 45
    • 35348869458 scopus 로고    scopus 로고
    • Robust truncated-hinge-loss support vector machines
    • Wu, Y., & Liu, Y. (2007). Robust truncated-hinge-loss support vector machines. Journals of American Statistical Association, 102(479), 974-983.
    • (2007) Journals of American Statistical Association , vol.102 , Issue.479 , pp. 974-983
    • Wu, Y.1    Liu, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.