메뉴 건너뛰기




Volumn 39, Issue 5, 2012, Pages 5325-5331

A hybrid ensemble approach for enterprise credit risk assessment based on Support Vector Machine

Author keywords

Bagging; Ensemble learning; Enterprise credit risk assessment; Random subspace; SVM

Indexed keywords

BAGGING; CREDIT RISK ASSESSMENT; ENSEMBLE LEARNING; RANDOM SUBSPACES; SVM;

EID: 84855863614     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2011.11.003     Document Type: Article
Times cited : (139)

References (30)
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Machine Learning 24 2 1996 123 140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Machine Learning 45 1 2001 5 32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 4
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes, and V. Vapnik Support-vector networks Machine Learning 20 3 1995 273 297
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • V. Desai, J. Crook, and G. Overstreet A comparison of neural networks and linear scoring models in the credit union environment European Journal of Operations Research 95 1 1996 24 37
    • (1996) European Journal of Operations Research , vol.95 , Issue.1 , pp. 24-37
    • Desai, V.1    Crook, J.2    Overstreet, G.3
  • 6
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization Machine Learning 40 2 2000 139 157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 7
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman Multivariate adaptive regression splines The Annals of Statistics 19 1 1991 1 141
    • (1991) The Annals of Statistics , vol.19 , Issue.1 , pp. 1-141
    • Friedman, J.H.1
  • 10
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Z. Huang, H. Chen, C.J. Hsu, W.H. Chen, and S.S. Wu Credit rating analysis with support vector machines and neural networks: A market comparative study Decision Support Systems 37 4 2004 543 558
    • (2004) Decision Support Systems , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.J.3    Chen, W.H.4    Wu, S.S.5
  • 11
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • C.L. Huang, M.C. Chen, and C.J. Wang Credit scoring with a data mining approach based on support vector machines Expert Systems with Applications 33 4 2007 847 856
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.L.1    Chen, M.C.2    Wang, C.J.3
  • 12
    • 58349100252 scopus 로고    scopus 로고
    • A selective ensemble based on expected probabilities for bankruptcy prediction
    • C. Hung, and J.H. Chen A selective ensemble based on expected probabilities for bankruptcy prediction Expert Systems with Applications 36 3 2009 5297 5303
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5297-5303
    • Hung, C.1    Chen, J.H.2
  • 13
    • 84978600970 scopus 로고
    • Multivariate normality and forecasting of business bankruptcy
    • G. Karels, and A. Prakash Multivariate normality and forecasting of business bankruptcy Journal of Business Finance Accounting 14 4 1987 573 593
    • (1987) Journal of Business Finance Accounting , vol.14 , Issue.4 , pp. 573-593
    • Karels, G.1    Prakash, A.2
  • 14
    • 0041055721 scopus 로고
    • Credit scoring branches out
    • P. Makowski Credit scoring branches out Credit World 74 2 1985 30 37
    • (1985) Credit World , vol.74 , Issue.2 , pp. 30-37
    • Makowski, P.1
  • 15
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • L. Nanni, and A. Lumini An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring Expert Systems with Applications 36 2 2009 3028 3033
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 17
    • 15944379834 scopus 로고
    • An examination of the conceptual issues involved in developing credit-scoring models
    • A.K. Reichert, C.C. Cho, and G.M. Wagner An examination of the conceptual issues involved in developing credit-scoring models Journal of Business and Economic Statistics 1 2 1983 101 114
    • (1983) Journal of Business and Economic Statistics , vol.1 , Issue.2 , pp. 101-114
    • Reichert, A.K.1    Cho, C.C.2    Wagner, G.M.3
  • 18
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire The strength of weak learnability Machine Learning 5 2 1990 197 227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 19
    • 24144458623 scopus 로고    scopus 로고
    • Support vector machines for classifying and describing credit applicants: Detecting typical and critical regions
    • K.B. Schebesch, and R. Stecking Support vector machines for classifying and describing credit applicants: Detecting typical and critical regions Journal of the Operational Research Society 56 9 2005 1082 1088
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1082-1088
    • Schebesch, K.B.1    Stecking, R.2
  • 20
    • 0035501773 scopus 로고    scopus 로고
    • A case-based approach using inductive indexing for corporate bond rating
    • K.S. Shin, and I. Han A case-based approach using inductive indexing for corporate bond rating Decision Support Systems 32 1 2001 41 52
    • (2001) Decision Support Systems , vol.32 , Issue.1 , pp. 41-52
    • Shin, K.S.1    Han, I.2
  • 21
    • 0001466281 scopus 로고    scopus 로고
    • A survey of credit and behavioral scoring: Forecasting financial risks of lending to customers
    • L.C. Thomas A survey of credit and behavioral scoring: Forecasting financial risks of lending to customers International Journal of Forecasting 16 2 2000 149 172
    • (2000) International Journal of Forecasting , vol.16 , Issue.2 , pp. 149-172
    • Thomas, L.C.1
  • 22
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • C.F. Tsai, and J.W. Wu Using neural network ensembles for bankruptcy prediction and credit scoring Expert Systems with Applications 34 4 2008 2639 2649
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.F.1    Wu, J.W.2
  • 24
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • G. Wang, J.X. Hao, J. Ma, and H.B. Jiang A comparative assessment of ensemble learning for credit scoring Expert Systems with Applications 38 1 2011 223 230
    • (2011) Expert Systems with Applications , vol.38 , Issue.1 , pp. 223-230
    • Wang, G.1    Hao, J.X.2    Ma, J.3    Jiang, H.B.4
  • 25
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • D. West Neural network credit scoring models Computers and Operations Research 27 11-12 2000 1131 1152
    • (2000) Computers and Operations Research , vol.27 , Issue.1112 , pp. 1131-1152
    • West, D.1
  • 26
    • 0033705131 scopus 로고    scopus 로고
    • Multiple algorithms for fraud detection
    • R. Wheeler, and S. Aitken Multiple algorithms for fraud detection Knowledge-Based Systems 13 2/3 2000 93 99
    • (2000) Knowledge-Based Systems , vol.13 , Issue.2-3 , pp. 93-99
    • Wheeler, R.1    Aitken, S.2
  • 28
    • 0026692226 scopus 로고
    • Stacked generalization
    • D.H. Wolpert Stacked generalization Neural Networks 5 2 1992 241 259
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 29
    • 36148959733 scopus 로고    scopus 로고
    • Credit risk assessment with a multistage neural network ensemble learning approach
    • L.A. Yu, S.Y. Wang, and K.K. Lai Credit risk assessment with a multistage neural network ensemble learning approach Expert Systems with Applications 34 2 2008 1434 1444
    • (2008) Expert Systems with Applications , vol.34 , Issue.2 , pp. 1434-1444
    • Yu, L.A.1    Wang, S.Y.2    Lai, K.K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.