메뉴 건너뛰기




Volumn 29, Issue 1, 2005, Pages 41-47

Building credit scoring models using genetic programming

Author keywords

Artificial neural network (ANN); Credit scoring; Decision trees; Genetic programming (GP); Rough sets

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECISION THEORY; LEARNING SYSTEMS; MATHEMATICAL MODELS; NEURAL NETWORKS; REGRESSION ANALYSIS; STATISTICS;

EID: 16244405300     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2005.01.003     Document Type: Article
Times cited : (280)

References (36)
  • 2
    • 0034138544 scopus 로고    scopus 로고
    • The integrated methodology of rough set theory and artificial neural network for business failure prediction
    • B.S. Ahn, S.S. Cho, and C.Y. Kim The integrated methodology of rough set theory and artificial neural network for business failure prediction Expert Systems with Applications 18 2 2000 65 74
    • (2000) Expert Systems with Applications , vol.18 , Issue.2 , pp. 65-74
    • Ahn, B.S.1    Cho, S.S.2    Kim, C.Y.3
  • 4
    • 0043234660 scopus 로고    scopus 로고
    • Variable precision rough set theory and data discretisation an application to corporate failure prediction
    • M.J. Beynon, and M.J. Peel Variable precision rough set theory and data discretisation an application to corporate failure prediction OMEGA: the International Journal of Management Science 29 6 2001 561 576
    • (2001) OMEGA: The International Journal of Management Science , vol.29 , Issue.6 , pp. 561-576
    • Beynon, M.J.1    Peel, M.J.2
  • 5
    • 35248856974 scopus 로고    scopus 로고
    • A methodology for combining symbolic regression and design of experiments to improve empirical model building
    • F. Castillo, K. Marshall, J. Green, and A. Kordon A methodology for combining symbolic regression and design of experiments to improve empirical model building Genetic and Evolutionary Computation Conference 2003 1975 1985
    • (2003) Genetic and Evolutionary Computation Conference , pp. 1975-1985
    • Castillo, F.1    Marshall, K.2    Green, J.3    Kordon, A.4
  • 9
    • 0037361782 scopus 로고    scopus 로고
    • Symbolic and numerical regression: Experiments and applications
    • J.W. Davidson, D.A. Savic, and G.A. Walters Symbolic and numerical regression: Experiments and applications Information Sciences 150 1/2 2003 95 117
    • (2003) Information Sciences , vol.150 , Issue.12 , pp. 95-117
    • Davidson, J.W.1    Savic, D.A.2    Walters, G.A.3
  • 11
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in credit union environment
    • V. Desai, J. Crook, and G. Overstreet A comparison of neural networks and linear scoring models in credit union environment European Journal of Operations Management 95 1 1996 24 37
    • (1996) European Journal of Operations Management , vol.95 , Issue.1 , pp. 24-37
    • Desai, V.1    Crook, J.2    Overstreet, G.3
  • 12
  • 15
    • 0036193080 scopus 로고    scopus 로고
    • A methodology to explain neural network classification
    • R. Feraud, and F. Cleror A methodology to explain neural network classification Neural Network 15 2 2002 237 246
    • (2002) Neural Network , vol.15 , Issue.2 , pp. 237-246
    • Feraud, R.1    Cleror, F.2
  • 17
    • 0003081097 scopus 로고
    • Using neural networks for credit scoring
    • H.L. Jensen Using neural networks for credit scoring Managerial Finance 18 1 1992 15 26
    • (1992) Managerial Finance , vol.18 , Issue.1 , pp. 15-26
    • Jensen, H.L.1
  • 24
    • 0035898976 scopus 로고    scopus 로고
    • Rough set theory applied to (fuzzy) ideal theory
    • J.N. Mordeson Rough set theory applied to (fuzzy) ideal theory Fuzzy Sets and Systems 121 2 2001 315 324
    • (2001) Fuzzy Sets and Systems , vol.121 , Issue.2 , pp. 315-324
    • Mordeson, J.N.1
  • 25
    • 0031209593 scopus 로고    scopus 로고
    • Determining the saliency of input variables in neural network classifiers
    • R. Nath, B. Rajagopalan, and R. Ryker Determining the saliency of input variables in neural network classifiers Computers and Operations Researches 24 8 1997 767 773
    • (1997) Computers and Operations Researches , vol.24 , Issue.8 , pp. 767-773
    • Nath, R.1    Rajagopalan, B.2    Ryker, R.3
  • 28
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • S. Piramuthu Financial credit-risk evaluation with neural and neurofuzzy systems European Journal of Operational Research 112 2 1999 310 321
    • (1999) European Journal of Operational Research , vol.112 , Issue.2 , pp. 310-321
    • Piramuthu, S.1
  • 30
    • 0036498107 scopus 로고    scopus 로고
    • A comparative study of fuzzy rough sets
    • A.M. Radzikowska, and E.E. Kerre A comparative study of fuzzy rough sets Fuzzy Sets and Systems 126 2 2002 137 155
    • (2002) Fuzzy Sets and Systems , vol.126 , Issue.2 , pp. 137-155
    • Radzikowska, A.M.1    Kerre, E.E.2
  • 32
    • 0036778839 scopus 로고    scopus 로고
    • Character preclassification based on genetic programming
    • C.D. Stefano, A.D. Cioppa, and A. Marcelli Character preclassification based on genetic programming Pattern Recognition Letters 23 12 2002 1439 1448
    • (2002) Pattern Recognition Letters , vol.23 , Issue.12 , pp. 1439-1448
    • Stefano, C.D.1    Cioppa, A.D.2    Marcelli, A.3
  • 34
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • D. West Neural network credit scoring models Computers and Operations Research 27 11/12 2000 1131 1152
    • (2000) Computers and Operations Research , vol.27 , Issue.1112 , pp. 1131-1152
    • West, D.1
  • 35
    • 1342340355 scopus 로고    scopus 로고
    • A Bayesian discretizer for real-valued attributes
    • X.D. Wu A Bayesian discretizer for real-valued attributes The Computer Journal 39 8 1996 688 691
    • (1996) The Computer Journal , vol.39 , Issue.8 , pp. 688-691
    • Wu, X.D.1
  • 36
    • 2442688288 scopus 로고    scopus 로고
    • Genetic programming in classifying large-scale data: An ensemble method
    • Y. Zhang, and S. Bhattacharyya Genetic programming in classifying large-scale data: an ensemble method Information Science 163 1/3 2004 85 101
    • (2004) Information Science , vol.163 , Issue.13 , pp. 85-101
    • Zhang, Y.1    Bhattacharyya, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.