메뉴 건너뛰기




Volumn 42, Issue 4, 2015, Pages 1789-1796

Classification Restricted Boltzmann Machine for comprehensible credit scoring model

Author keywords

Comprehensible model; Credit scoring; Imbalanced data; Restricted Boltzmann Machine

Indexed keywords

EXPERT SYSTEMS;

EID: 84910615991     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.10.016     Document Type: Article
Times cited : (75)

References (24)
  • 1
    • 56349130760 scopus 로고    scopus 로고
    • Support vector machines for credit scoring and discovery of significant features
    • Bellotti, T., & Crook, J. (2009). Support vector machines for credit scoring and discovery of significant features. Expert Systems with Applications, 36, 3302-3308.
    • (2009) Expert Systems with Applications , vol.36 , pp. 3302-3308
    • Bellotti, T.1    Crook, J.2
  • 3
    • 84857651191 scopus 로고    scopus 로고
    • Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models
    • De Bock, K. W., & Van den Poel, D. (2012). Reconciling performance and interpretability in customer churn prediction using ensemble learning based on generalized additive models. Expert Systems with Applications, 39, 6816-6826.
    • (2012) Expert Systems with Applications , vol.39 , pp. 6816-6826
    • De Bock, K.W.1    Van Den Poel, D.2
  • 4
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research, 7, 1-30.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 8
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771-1800.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 9
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65-70.
    • (1979) Scandinavian Journal of Statistics , pp. 65-70
    • Holm, S.1
  • 10
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • Huang, C. L., Chen, M. C., & Wang, C. J. (2007). Credit scoring with a data mining approach based on support vector machines. Expert Systems with Applications, 33, 847-856.
    • (2007) Expert Systems with Applications , vol.33 , pp. 847-856
    • Huang, C.L.1    Chen, M.C.2    Wang, C.J.3
  • 11
    • 79952442610 scopus 로고    scopus 로고
    • Using Gaussian process based kernel classifiers for credit rating forecasting
    • Huang, S. C. (2011). Using Gaussian process based kernel classifiers for credit rating forecasting. Expert Systems with Applications, 38, 8607-8611.
    • (2011) Expert Systems with Applications , vol.38 , pp. 8607-8611
    • Huang, S.C.1
  • 12
    • 33646142788 scopus 로고    scopus 로고
    • Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
    • Huang, Y. M., Hung, C. M., & Jiau, H. C. (2006). Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem. Nonlinear Analysis: Real World Applications, 7, 720-747.
    • (2006) Nonlinear Analysis: Real World Applications , vol.7 , pp. 720-747
    • Huang, Y.M.1    Hung, C.M.2    Jiau, H.C.3
  • 13
    • 84947918649 scopus 로고    scopus 로고
    • Learning when negative examples abound
    • Kubat, M., Holte, R., & Matwin, S. (1997). Learning when negative examples abound. ECML, 146-153.
    • (1997) ECML , pp. 146-153
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 14
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • Kubat, M., & Matwin, S. (1997). Addressing the curse of imbalanced training sets: One-sided selection. In ICML (pp. 179-186).
    • (1997) ICML , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 17
    • 45749110924 scopus 로고    scopus 로고
    • Representational power of restricted Boltzmann machines and deep belief networks
    • Le Roux, N., & Bengio, Y. (2008). Representational power of restricted Boltzmann machines and deep belief networks. Neural Computation, 20, 1631-1649.
    • (2008) Neural Computation , vol.20 , pp. 1631-1649
    • Le Roux, N.1    Bengio, Y.2
  • 20
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • Nanni, L., & Lumini, A. (2009). An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring. Expert Systems with Applications, 36, 3028-3033.
    • (2009) Expert Systems with Applications , vol.36 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 22
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West, D. (2000). Neural network credit scoring models. Computers & Operations Research, 27, 1131-1152.
    • (2000) Computers & Operations Research , vol.27 , pp. 1131-1152
    • West, D.1
  • 23
    • 34447107877 scopus 로고    scopus 로고
    • Adaptive credit scoring with kernel learning methods
    • Yang, Y. (2007). Adaptive credit scoring with kernel learning methods. European Journal of Operational Research, 183, 1521-1536.
    • (2007) European Journal of Operational Research , vol.183 , pp. 1521-1536
    • Yang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.