메뉴 건너뛰기




Volumn 37, Issue 4, 2010, Pages 3326-3336

Multiple classifier application to credit risk assessment

Author keywords

Credit risk prediction; Ensemble; Machine learning; Noise; Statistical pattern recognition; Supervised learning

Indexed keywords

ACTIVE AREA; ATTRIBUTE NOISE; CLASSIFICATION PERFORMANCE; CLASSIFIER ENSEMBLES; CREDIT RISK ASSESSMENT; CREDIT RISKS; DATA SETS; ENSEMBLE OF CLASSIFIERS; EXPERIMENTAL EVALUATION; INDIVIDUAL CLASSIFIERS; MACHINE-LEARNING; MULTIPLE CLASSIFIERS; PREDICTION ACCURACY; PREDICTIVE ACCURACY; QUALITY FACTORS; STATISTICAL PATTERN RECOGNITION;

EID: 71349085322     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2009.10.018     Document Type: Article
Times cited : (148)

References (60)
  • 1
    • 0000217085 scopus 로고
    • Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms
    • Aha D.W. Tolerating noisy, irrelevant and novel attributes in instance-based learning algorithms. International Journal of Man-Machine Studies 36 2 (1992) 267-287
    • (1992) International Journal of Man-Machine Studies , vol.36 , Issue.2 , pp. 267-287
    • Aha, D.W.1
  • 4
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and prediction of corporate bankruptcy
    • Altman E.I. Financial ratios, discriminant analysis and prediction of corporate bankruptcy. Journal of Finance 23 4 (1968) 589-609
    • (1968) Journal of Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 5
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit risk evaluation
    • Baesens B., Setiono R., Mues C.H., and Vanthienen J. Using neural network rule extraction and decision tables for credit risk evaluation. Management Science 49 (2003) 312-329
    • (2003) Management Science , vol.49 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.H.3    Vanthienen, J.4
  • 6
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • Bauer E., and Kohavi R. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning 36 1-2 (1999) 105-139
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 9
    • 0004536889 scopus 로고
    • Methods for credit scoring applied to slow payers
    • L. C. Thomas, J. N. Crook, & D. B. Edelman Eds, Oxford: Clarendon
    • Boyle, M., Crook, J. N., Hamilton, R., & Thomas, L. C. (1992). Methods for credit scoring applied to slow payers. In L. C. Thomas, J. N. Crook, & D. B. Edelman (Eds.), Credit scoring and credit control (pp. 75-90). Oxford: Clarendon.
    • (1992) Credit scoring and credit control , pp. 75-90
    • Boyle, M.1    Crook, J.N.2    Hamilton, R.3    Thomas, L.C.4
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 26 2 (1996) 123-140
    • (1996) Machine Learning , vol.26 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 13
    • 59949100093 scopus 로고
    • Assessing credit card applications using machine learning
    • Carter C., and Catlett J. Assessing credit card applications using machine learning. IEEE Expert (1987) 71-79
    • (1987) IEEE Expert , pp. 71-79
    • Carter, C.1    Catlett, J.2
  • 18
  • 19
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40 2 (2000) 139-158
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.1
  • 22
    • 0041767187 scopus 로고
    • Evolving Bayesian classifier for credit control - A comparison with other machine learning methods
    • Forgaty T.C., and Ireson N.S. Evolving Bayesian classifier for credit control - A comparison with other machine learning methods. IMA Journal of Mathematics Applied in Business and Industry 5 (1993) 63-76
    • (1993) IMA Journal of Mathematics Applied in Business and Industry , vol.5 , pp. 63-76
    • Forgaty, T.C.1    Ireson, N.S.2
  • 23
    • 0031211090 scopus 로고    scopus 로고
    • A decision theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R. A decision theoretic generalization of on-line learning and an application to boosting. Journal of Computing and Systems 55 (1996) 119-139
    • (1996) Journal of Computing and Systems , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 24
    • 84944837333 scopus 로고
    • Introducing recursive partitioning for financial classification: The case of financial distress
    • Frydman H.E., Altman E.I., and Kao D. Introducing recursive partitioning for financial classification: The case of financial distress. Journal of Finance 40 1 (1985) 269-291
    • (1985) Journal of Finance , vol.40 , Issue.1 , pp. 269-291
    • Frydman, H.E.1    Altman, E.I.2    Kao, D.3
  • 25
    • 71349086348 scopus 로고    scopus 로고
    • Private communication
    • Hand, D. J. (2008). Private communication.
    • (2008)
    • Hand, D.J.1
  • 26
    • 0040453788 scopus 로고    scopus 로고
    • Statistical classification methods in consumer credit scoring: A review
    • Hand D.J., and Henley W.E. Statistical classification methods in consumer credit scoring: A review. Journal of the Royal Statistical Society 160 (1997) 523-541
    • (1997) Journal of the Royal Statistical Society , vol.160 , pp. 523-541
    • Hand, D.J.1    Henley, W.E.2
  • 27
    • 0037410687 scopus 로고    scopus 로고
    • Choosing k for two-class nearest neighbour classifiers with unbalanced classes
    • Hand D.J., and Vinciotti V. Choosing k for two-class nearest neighbour classifiers with unbalanced classes. Pattern Recognition Letters 24 (2003) 1555-1562
    • (2003) Pattern Recognition Letters , vol.24 , pp. 1555-1562
    • Hand, D.J.1    Vinciotti, V.2
  • 29
    • 1542603058 scopus 로고    scopus 로고
    • A k-nearest neighbour classifier for assessing consumer risk
    • Henley W.E., and Hand D.J. A k-nearest neighbour classifier for assessing consumer risk. Statistician 44 (1996) 77-95
    • (1996) Statistician , vol.44 , pp. 77-95
    • Henley, W.E.1    Hand, D.J.2
  • 31
    • 0036013001 scopus 로고    scopus 로고
    • A probabilistic nearest neighbour method for statistical pattern recognition
    • Holmes C.C., and Adams N.M. A probabilistic nearest neighbour method for statistical pattern recognition. Journal of Royal Statistical Society, Series B 64 (2002) 295-306
    • (2002) Journal of Royal Statistical Society, Series B , vol.64 , pp. 295-306
    • Holmes, C.C.1    Adams, N.M.2
  • 33
    • 0003081097 scopus 로고
    • Using neural networks for credit scoring
    • Jensen H.L. Using neural networks for credit scoring. Managerial Finance 18 (1992) 15-26
    • (1992) Managerial Finance , vol.18 , pp. 15-26
    • Jensen, H.L.1
  • 34
    • 0002365747 scopus 로고
    • Information choice and utilization in an experiment of default prediction
    • Khalik, and El-Sheshai. Information choice and utilization in an experiment of default prediction. Journal of Accounting Research (1980) 325-342
    • (1980) Journal of Accounting Research , pp. 325-342
    • Khalik1    El-Sheshai2
  • 35
  • 37
    • 85031799549 scopus 로고    scopus 로고
    • Kononenko, I. (1991). Semi-naïve Bayesian classifier. In Proceedings of European conference on artificial intelligence (pp. 206-219).
    • Kononenko, I. (1991). Semi-naïve Bayesian classifier. In Proceedings of European conference on artificial intelligence (pp. 206-219).
  • 39
    • 38248998693 scopus 로고
    • Empirical Bayes analysis of the commercial loans evaluation process
    • Leonard K.J. Empirical Bayes analysis of the commercial loans evaluation process. Statistics Probability Letters 18 (1993) 289-296
    • (1993) Statistics Probability Letters , vol.18 , pp. 289-296
    • Leonard, K.J.1
  • 41
    • 0041055721 scopus 로고
    • Credit scoring branches out
    • Makowski P. Credit scoring branches out. Credit World 75 (1985) 30-37
    • (1985) Credit World , vol.75 , pp. 30-37
    • Makowski, P.1
  • 42
    • 71349086876 scopus 로고    scopus 로고
    • MINITAB. (2002). MINITAB Statistical Software for Windows 9.0. PA, USA: MINITAB Inc.
    • MINITAB. (2002). MINITAB Statistical Software for Windows 9.0. PA, USA: MINITAB Inc.
  • 43
    • 0036709435 scopus 로고    scopus 로고
    • An enhanced neural network technique for software risk analysis
    • Neumann D.E. An enhanced neural network technique for software risk analysis. IEEE Transactions on Software Engineering (2002) 904-912
    • (2002) IEEE Transactions on Software Engineering , pp. 904-912
    • Neumann, D.E.1
  • 45
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit risk evaluation with neural and neurofuzzy systems
    • Piramuthu S. Financial credit risk evaluation with neural and neurofuzzy systems. European Journal of Operational Research 112 (1999) 310-321
    • (1999) European Journal of Operational Research , vol.112 , pp. 310-321
    • Piramuthu, S.1
  • 50
    • 0001384863 scopus 로고
    • Quantitative methods in credit management: A survey
    • Rosenberg E., and Gleit A. Quantitative methods in credit management: A survey. Operations Research 42 4 (1994) 589-613
    • (1994) Operations Research , vol.42 , Issue.4 , pp. 589-613
    • Rosenberg, E.1    Gleit, A.2
  • 51
    • 84988828223 scopus 로고
    • Neural networks: A new tool for predicting thrift failures
    • Salchenberger L.M., Cinar E.M., and Lash N.A. Neural networks: A new tool for predicting thrift failures. Decision Sciences 23 (1992) 899-916
    • (1992) Decision Sciences , vol.23 , pp. 899-916
    • Salchenberger, L.M.1    Cinar, E.M.2    Lash, N.A.3
  • 53
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire R. The strength of weak learnability. Machine Learning 5 2 (1990) 197-227
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 54
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • Tam K.Y., and Kiang M.Y. Managerial applications of neural networks: The case of bank failure predictions. Management Science 38 7 (1992) 926-947
    • (1992) Management Science , vol.38 , Issue.7 , pp. 926-947
    • Tam, K.Y.1    Kiang, M.Y.2
  • 56
    • 40849140610 scopus 로고    scopus 로고
    • Good methods for coping with missing data in decision trees
    • Twala B., Jones M.C., and Hand D.J. Good methods for coping with missing data in decision trees. Pattern Recognition Letters 29 (2008) 950-956
    • (2008) Pattern Recognition Letters , vol.29 , pp. 950-956
    • Twala, B.1    Jones, M.C.2    Hand, D.J.3
  • 57
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • West D. Neural network credit scoring models. Computers & Operations Research 27 (2000) 1131-1152
    • (2000) Computers & Operations Research , vol.27 , pp. 1131-1152
    • West, D.1
  • 58
    • 84974012809 scopus 로고
    • A note on the comparison of logit and discriminant models of consumer credit behavior
    • Wiginton J.C. A note on the comparison of logit and discriminant models of consumer credit behavior. Journal of Financial and Quantitative Analysis 15 (1980) 757-770
    • (1980) Journal of Financial and Quantitative Analysis , vol.15 , pp. 757-770
    • Wiginton, J.C.1
  • 59
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks 5 2 (1992) 241-259
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.