메뉴 건너뛰기




Volumn 12, Issue 8, 2012, Pages 2254-2265

Financial distress prediction using support vector machines: Ensemble vs. individual

Author keywords

Financial distress prediction; Multiple classifiers; Support vector machine ensemble

Indexed keywords

BASE CLASSIFIERS; COMPREHENSIVE ANALYSIS; CROSS VALIDATION; DATA SETS; DIVERSITY ANALYSIS; ENSEMBLE METHODS; FEATURE SUBSET; FINANCIAL DISTRESS PREDICTION; INDIVIDUAL PERFORMANCE; KERNEL FUNCTION; LOGISTIC REGRESSIONS; MAJORITY VOTING; MULTIPLE CLASSIFIERS; SVM ALGORITHM; SVM CLASSIFIERS; TRAINING DATASET;

EID: 84861845698     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2012.03.028     Document Type: Article
Times cited : (129)

References (60)
  • 1
    • 0042645563 scopus 로고
    • A comparison of ratios of successful industrial enterprises with those of failed companies
    • P.J. Fitzpartrick A comparison of ratios of successful industrial enterprises with those of failed companies Journal of Accounting Research 10 1932 598 605
    • (1932) Journal of Accounting Research , vol.10 , pp. 598-605
    • Fitzpartrick, P.J.1
  • 3
    • 84980104458 scopus 로고
    • Financial ratios discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios discriminant analysis and the prediction of corporate bankruptcy Journal of Finance 23 1968 589 609
    • (1968) Journal of Finance , vol.23 , pp. 589-609
    • Altman, E.I.1
  • 5
    • 0000666375 scopus 로고
    • Financial ratios and probabilistic prediction of bankruptcy
    • J.A. Ohlson Financial ratios and probabilistic prediction of bankruptcy Journal of Accounting Research 18 1980 109 131
    • (1980) Journal of Accounting Research , vol.18 , pp. 109-131
    • Ohlson, J.A.1
  • 6
    • 84977719043 scopus 로고
    • Chaos and nonlinear dynamics: Application to financial markets
    • D.A. Hsieh Chaos and nonlinear dynamics: application to financial markets Journal of Finance 46 1991 1839 1877
    • (1991) Journal of Finance , vol.46 , pp. 1839-1877
    • Hsieh, D.A.1
  • 7
    • 84978567741 scopus 로고
    • Assessing the vulnerability to failure of American industrial firm: A logistic analysis
    • C.V. Zavgren Assessing the vulnerability to failure of American industrial firm: a logistic analysis Journal of Business Finance and Accounting 12 1985 19 45
    • (1985) Journal of Business Finance and Accounting , vol.12 , pp. 19-45
    • Zavgren, C.V.1
  • 9
    • 0029492199 scopus 로고
    • Effectiveness of neural network types for prediction of business failure
    • J.E. Boritz, and D.B. Kennedy Effectiveness of neural network types for prediction of business failure Expert Systems with Applications 9 1995 503 512
    • (1995) Expert Systems with Applications , vol.9 , pp. 503-512
    • Boritz, J.E.1    Kennedy, D.B.2
  • 10
    • 0000388853 scopus 로고    scopus 로고
    • A comparison of the relative costs of financial distress models: Artificial neural networks, logit and multivariate discriminant analysis
    • H.L. Etheridge, and R.S. Sriram A comparison of the relative costs of financial distress models: artificial neural networks, logit and multivariate discriminant analysis Intelligent Systems in Accounting, Finance and Management 6 1997 235 248
    • (1997) Intelligent Systems in Accounting, Finance and Management , vol.6 , pp. 235-248
    • Etheridge, H.L.1    Sriram, R.S.2
  • 11
    • 0030190036 scopus 로고    scopus 로고
    • Self organizing neural networks for financial diagnosis
    • S.-C. Carlos Self organizing neural networks for financial diagnosis Decision Support Systems 17 1996 227 238
    • (1996) Decision Support Systems , vol.17 , pp. 227-238
    • Carlos, S.-C.1
  • 12
    • 0000152448 scopus 로고
    • Forecasting with neural networks: An application using bankruptcy data
    • D. Fletcher, and E. Goss Forecasting with neural networks: an application using bankruptcy data Information and Management 24 1993 159 167
    • (1993) Information and Management , vol.24 , pp. 159-167
    • Fletcher, D.1    Goss, E.2
  • 13
    • 0030110988 scopus 로고    scopus 로고
    • Neural network prediction analysis: The bankruptcy case
    • DOI 10.1016/0925-2312(94)00060-3
    • M. Leshno, and Y. Spector Neural network prediction analysis: the bankruptcy case Neurocomputing 10 1996 125 147 (Pubitemid 26082145)
    • (1996) Neurocomputing , vol.10 , Issue.2 , pp. 125-147
    • Leshno, M.1    Spector, Y.2
  • 14
    • 13544265385 scopus 로고    scopus 로고
    • A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem
    • DOI 10.1016/j.cor.2004.06.023, PII S0305054804001558, Application of Neural Networks
    • P.C. Pendharkar A threshold varying artificial neural network approach for classification and its application to bankruptcy prediction problem Computers and Operations Research 32 2005 2561 2582 (Pubitemid 40219761)
    • (2005) Computers and Operations Research , vol.32 , Issue.10 , pp. 2561-2582
    • Pendharkar, P.C.1
  • 16
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
    • G. Zhang, M.Y. Hu, B.E. Patuwo, and D.C. Indro Artificial neural networks in bankruptcy prediction: general framework and cross-validation analysis European Journal of Operational Research 116 1999 16 32
    • (1999) European Journal of Operational Research , vol.116 , pp. 16-32
    • Zhang, G.1    Hu, M.Y.2    Patuwo, B.E.3    Indro, D.C.4
  • 17
    • 0030407801 scopus 로고    scopus 로고
    • Neural networks and genetic algorithms for bankruptcy predictions
    • DOI 10.1016/S0957-4174(96)00055-3, PII S0957417496000553
    • B. Back, T. Laitinen, and K. Sere Neural networks and genetic algorithms for bankruptcy predictions Expert Systems with Applications 11 1996 407 413 (Pubitemid 126350919)
    • (1996) Expert Systems with Applications , vol.11 , Issue.SPEC. ISS. , pp. 407-413
    • Back, B.1    Laitinen, T.2    Sere, K.3
  • 19
    • 0035391093 scopus 로고    scopus 로고
    • Bankruptcy prediction for credit risk using neural networks: A survey and new results
    • DOI 10.1109/72.935101, PII S1045922701050068
    • A.F. Atiya Bankruptcy prediction for credit risk using neural networks: a survey and new results IEEE Transactions on Neural Networks 12 2001 929 935 (Pubitemid 32732830)
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.4 , pp. 929-935
    • Atiya, A.F.1
  • 20
    • 0036776357 scopus 로고    scopus 로고
    • A genetic algorithm application in bankruptcy prediction modeling
    • DOI 10.1016/S0957-4174(02)00051-9, PII S0957417402000519
    • K.-S. Shin, and Y.-J. Lee A genetic algorithm application in bankruptcy prediction modeling Expert Systems with Applications 23 2002 321 328 (Pubitemid 35000263)
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 321-328
    • Shin, K.-S.1    Lee, Y.-J.2
  • 21
    • 0041920755 scopus 로고    scopus 로고
    • The discovery of experts' decision rules from qualitative bankruptcy data using genetic algorithms
    • M.-J. Kim, and I. Han The discovery of experts' decision rules from qualitative bankruptcy data using genetic algorithms Expert Systems with Applications 25 2003 637 646
    • (2003) Expert Systems with Applications , vol.25 , pp. 637-646
    • Kim, M.-J.1    Han, I.2
  • 24
    • 0030414816 scopus 로고    scopus 로고
    • Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction
    • DOI 10.1016/S0957-4174(96)00056-5, PII S0957417496000565
    • H. Jo, and I. Han Integration of case-based forecasting, neural network, and discriminant analysis for bankruptcy prediction Expert Systems with Applications 11 1996 415 422 (Pubitemid 126350920)
    • (1996) Expert Systems with Applications , vol.11 , Issue.SPEC. ISS. , pp. 415-422
    • Jo, H.1    Han, I.2
  • 25
    • 0031199479 scopus 로고    scopus 로고
    • Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis
    • PII S0957417497000110
    • H. Jo, and I. Han Bankruptcy prediction using case-based reasoning, neural networks, and discriminant analysis Expert Systems with Applications 13 1997 97 108 (Pubitemid 127400547)
    • (1997) Expert Systems with Applications , vol.13 , Issue.2 , pp. 97-108
    • Jo, H.1    Han, I.2    Lee, H.3
  • 26
    • 0036776641 scopus 로고    scopus 로고
    • A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction
    • DOI 10.1016/S0957-4174(02)00045-3, PII S0957417402000453
    • C.-S. Park, and I. Han A case-based reasoning with the feature weights derived by analytic hierarchy process for bankruptcy prediction Expert Systems with Applications 23 2002 255 264 (Pubitemid 34991878)
    • (2002) Expert Systems with Applications , vol.23 , Issue.3 , pp. 255-264
    • Park, C.-S.1    Han, I.2
  • 28
    • 9244259665 scopus 로고    scopus 로고
    • An application of support vector machines in bankruptcy prediction model
    • K.-S. Shin, T.S. Lee, and H.-J. Kim An application of support vector machines in bankruptcy prediction model Expert Systems with Applications 28 2005 127 135
    • (2005) Expert Systems with Applications , vol.28 , pp. 127-135
    • Shin, K.-S.1    Lee, T.S.2    Kim, H.-J.3
  • 29
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • J.H. Min, and Y.-C. Lee Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters Expert Systems with Applications 28 2005 128 134
    • (2005) Expert Systems with Applications , vol.28 , pp. 128-134
    • Min, J.H.1    Lee, Y.-C.2
  • 31
    • 38649138750 scopus 로고    scopus 로고
    • Forecasting financial condition of Chinese listed companies based on support vector machine
    • DOI 10.1016/j.eswa.2007.06.037, PII S0957417407002382
    • Y. Ding, X. Song, and Y. Zen Forecasting financial condition of Chinese listed companies based on support vector machine Expert Systems with Applications 34 2008 3081 3089 (Pubitemid 351173811)
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 3081-3089
    • Ding, Y.1    Song, X.2    Zen, Y.3
  • 32
    • 33744925661 scopus 로고    scopus 로고
    • Hybrid genetic algorithms and support vector machines for bankruptcy prediction
    • DOI 10.1016/j.eswa.2005.09.070, PII S0957417405002770
    • S.-H. Min, J. Lee, and I. Han Hybrid genetic algorithms and support vector machines for bankruptcy prediction Expert Systems with Applications 31 2006 652 660 (Pubitemid 43841989)
    • (2006) Expert Systems with Applications , vol.31 , Issue.3 , pp. 652-660
    • Min, S.-H.1    Lee, J.2    Han, I.3
  • 33
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • DOI 10.1016/j.eswa.2005.12.008, PII S0957417405003490
    • C.-H. Wu, G.-H. Tzeng, and Y.-J. Goo A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy Expert Systems with Applications 32 2007 397 408 (Pubitemid 44754927)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4
  • 34
    • 33846454686 scopus 로고    scopus 로고
    • Predicting corporate financial distress based on integration of support vector machine and logistic regression
    • DOI 10.1016/j.eswa.2006.05.006, PII S095741740600159X
    • Z. Hua, Y. Wang, and X. Xu Predicting corporate financial distress based on integration of support vector machine and logistic regression Expert Systems with Applications 33 2007 434 440 (Pubitemid 46150047)
    • (2007) Expert Systems with Applications , vol.33 , Issue.2 , pp. 434-440
    • Hua, Z.1    Wang, Y.2    Xu, X.3    Zhang, B.4    Liang, L.5
  • 35
    • 34548682988 scopus 로고    scopus 로고
    • Classifier combination for sketch-based 3D part retrieval
    • DOI 10.1016/j.cag.2007.04.005, PII S0097849307000970
    • S. Hou, and K. Ramani Classifier combination for sketch-based 3D part retrieval Computers and Graphic 31 2007 598 609 (Pubitemid 47418992)
    • (2007) Computers and Graphics (Pergamon) , vol.31 , Issue.4 , pp. 598-609
    • Hou, S.1    Ramani, K.2
  • 36
    • 33750494541 scopus 로고    scopus 로고
    • On bagging and nonlinear estimation
    • DOI 10.1016/j.jspi.2006.06.002, PII S0378375806001339
    • J.H. Friedman, and P. Hall On bagging and nonlinear estimation Journal of Statistical Planning and Inference 137 2007 669 683 (Pubitemid 44660748)
    • (2007) Journal of Statistical Planning and Inference , vol.137 , Issue.3 , pp. 669-683
    • Friedman, J.H.1    Hall, P.2
  • 37
    • 45049088570 scopus 로고    scopus 로고
    • Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers
    • J. Sun, and H. Li Listed companies' financial distress prediction based on weighted majority voting combination of multiple classifiers Expert Systems with Applications 35 2008 818 827
    • (2008) Expert Systems with Applications , vol.35 , pp. 818-827
    • Sun, J.1    Li, H.2
  • 38
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • E. Alfaro, M. Gámez, and D. Elizondo Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks Decision Support Systems 45 2008 110 122
    • (2008) Decision Support Systems , vol.45 , pp. 110-122
    • Alfaro, E.1    Gámez, M.2    Elizondo, D.3
  • 39
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • L. Nanni, and A. Lumini An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring Expert Systems with Applications 36 2009 3028 3033
    • (2009) Expert Systems with Applications , vol.36 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 40
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • DOI 10.1016/j.eswa.2007.05.019, PII S0957417407001558
    • C.-F. Tsai, and J.-W. Wu Using neural network ensembles for bankruptcy prediction and credit scoring Expert Systems with Applications 34 2008 2639 2649 (Pubitemid 351173769)
    • (2008) Expert Systems with Applications , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.-F.1    Wu, J.-W.2
  • 41
    • 58349100252 scopus 로고    scopus 로고
    • A selective ensemble based on expected probabilities for bankruptcy prediction
    • C. Hung, and J.-H. Chen A selective ensemble based on expected probabilities for bankruptcy prediction Expert Systems with Applications 36 2009 5297 5303
    • (2009) Expert Systems with Applications , vol.36 , pp. 5297-5303
    • Hung, C.1    Chen, J.-H.2
  • 42
    • 33750514606 scopus 로고    scopus 로고
    • Modeling intrusion detection system using hybrid intelligent systems
    • DOI 10.1016/j.jnca.2005.06.003, PII S1084804505000445, Network and Information Security: A Computational Intelligence Approach
    • S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas Modelling intrusion detection system using hybrid intelligent systems Journal of Network and Computer Applications 30 2007 114 132 (Pubitemid 44666486)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 114-132
    • Peddabachigari, S.1    Abraham, A.2    Grosan, C.3    Thomas, J.4
  • 44
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • D. Ruta, and B. Gabrys Classifier selection for majority voting Information Fusion 6 2005 63 81
    • (2005) Information Fusion , vol.6 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 45
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems
    • L.I. Kuncheva Diversity in multiple classifier systems Information Fusion 6 2005 3 4
    • (2005) Information Fusion , vol.6 , pp. 3-4
    • Kuncheva, L.I.1
  • 46
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • L. Todorovski, and S. Dzeroski Combining classifiers with meta decision trees Machine Learning 50 2003 223 249
    • (2003) Machine Learning , vol.50 , pp. 223-249
    • Todorovski, L.1    Dzeroski, S.2
  • 47
    • 58249093836 scopus 로고    scopus 로고
    • A feature selection technique for generation of classification committees and its application to categorization of laryngeal images
    • M. Bacauskiene, A. Verikas, A. Gelzinis, and D. Valincius A feature selection technique for generation of classification committees and its application to categorization of laryngeal images Pattern Recognition 42 2009 645 654
    • (2009) Pattern Recognition , vol.42 , pp. 645-654
    • Bacauskiene, M.1    Verikas, A.2    Gelzinis, A.3    Valincius, D.4
  • 48
    • 49449083313 scopus 로고    scopus 로고
    • Feature selection using localized generalization error for supervised classification problems using RBFNN
    • W.W.Y. Ng, D.S. Yeung, and M. Firth Feature selection using localized generalization error for supervised classification problems using RBFNN Pattern Recognition 41 2008 3706 3719
    • (2008) Pattern Recognition , vol.41 , pp. 3706-3719
    • Ng, W.W.Y.1    Yeung, D.S.2    Firth, M.3
  • 49
    • 28544448372 scopus 로고    scopus 로고
    • Constructing response model using ensemble based on feature subset selection
    • DOI 10.1016/j.eswa.2005.07.026, PII S0957417405001624
    • E. Yu, and S. Cho Constructing response model using ensemble based on feature subset selection Expert Systems with Applications 30 2006 352 360 (Pubitemid 41745056)
    • (2006) Expert Systems with Applications , vol.30 , Issue.2 , pp. 352-360
    • Yu, E.1    Cho, S.2
  • 54
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • DOI 10.1016/S0262-8856(01)00045-2, PII S0262885601000452
    • G. Giacinto, and F. Roli Design of effective neural network ensembles for image classification purposes Image and Vision Computing 19 2001 699 707 (Pubitemid 32746163)
    • (2001) Image and Vision Computing , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 55
    • 33748082327 scopus 로고    scopus 로고
    • An evolutionary approach to the combination of multiple classifiers to predict a stock price index
    • DOI 10.1016/j.eswa.2005.09.020, PII S0957417405002101
    • M.-J. Kim, S.-H. Min, and I. Han An evolutionary approach to the combination of multiple classifiers to predict a stock price index Expert Systems with Applications 31 2006 241 247 (Pubitemid 44294438)
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 241-247
    • Kim, M.-J.1    Min, S.-H.2    Han, I.3
  • 56
    • 0037209499 scopus 로고    scopus 로고
    • Combination of multiple classifiers for the customer's purchase behavior prediction
    • E. Kim, W. Kim, and Y. Lee Combination of multiple classifiers for the customer's purchase behavior prediction Decision Support Systems 34 2002 167 175
    • (2002) Decision Support Systems , vol.34 , pp. 167-175
    • Kim, E.1    Kim, W.2    Lee, Y.3
  • 57
    • 58349098335 scopus 로고    scopus 로고
    • Failure prediction of dotcom companies using hybrid intelligent techniques
    • D.K. Chandra, V. Ravi, and I. Bose Failure prediction of dotcom companies using hybrid intelligent techniques Expert Systems with Applications 36 2009 4830 4837
    • (2009) Expert Systems with Applications , vol.36 , pp. 4830-4837
    • Chandra, D.K.1    Ravi, V.2    Bose, I.3
  • 58
    • 58349092749 scopus 로고    scopus 로고
    • Majority voting combination of multiple case-based reasoning for financial distress prediction
    • H. Li, and J. Sun Majority voting combination of multiple case-based reasoning for financial distress prediction Expert Systems with Applications 36 2009 4363 4373
    • (2009) Expert Systems with Applications , vol.36 , pp. 4363-4373
    • Li, H.1    Sun, J.2
  • 60
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.