메뉴 건너뛰기




Volumn 24, Issue , 2014, Pages 977-984

A comparative study of classifier ensembles for bankruptcy prediction

Author keywords

Bankruptcy prediction; Classifier ensembles; Credit scoring; Data mining; Machine learning

Indexed keywords

LEARNING SYSTEMS;

EID: 84908455123     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.08.047     Document Type: Article
Times cited : (154)

References (35)
  • 1
    • 41149115573 scopus 로고    scopus 로고
    • Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks
    • E. Alfaro, N. Garcia, M. Gamez, and D. Elizondo Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks Decis. Support Syst. 45 1 2008 110 122
    • (2008) Decis. Support Syst. , vol.45 , Issue.1 , pp. 110-122
    • Alfaro, E.1    Garcia, N.2    Gamez, M.3    Elizondo, D.4
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 December 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , Issue.DECEMBER , pp. 1-30
    • Demšar, J.1
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T.G. Dietterich An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach. Learn. 40 2000 139 157
    • (2000) Mach. Learn. , vol.40 , pp. 139-157
    • Dietterich, T.G.1
  • 7
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical and experimental analysis of linear combiners for multiple classifier systems
    • G. Fumera, and F. Roli A theoretical and experimental analysis of linear combiners for multiple classifier systems IEEE Trans. Pattern Anal. Mach. Intell. 27 6 2005 942 956
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 8
    • 0028563264 scopus 로고
    • The design and evolution of modular neural network architectures
    • B.L.M. Happel, and J.M.J. Murre The design and evolution of modular neural network architectures Neural Netw. 7 6-7 1994 985 1004
    • (1994) Neural Netw. , vol.7 , Issue.67 , pp. 985-1004
    • Happel, B.L.M.1    Murre, J.M.J.2
  • 10
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: A market comparative study
    • Z. Huang, H. Chen, C.-J. Hsu, W.-H. Chen, and S. Wu Credit rating analysis with support vector machines and neural networks: a market comparative study Decis. Support Syst. 37 4 2004 543 558
    • (2004) Decis. Support Syst. , vol.37 , Issue.4 , pp. 543-558
    • Huang, Z.1    Chen, H.2    Hsu, C.-J.3    Chen, W.-H.4    Wu, S.5
  • 12
    • 0001683059 scopus 로고
    • Task decomposition through competition in a modular connectionist architecture: What and where vision tasks
    • R.A. Jacobs, M.I. Jordan, and A.G. Barto Task decomposition through competition in a modular connectionist architecture: what and where vision tasks Cognit. Sci. 15 2 1991 219 250
    • (1991) Cognit. Sci. , vol.15 , Issue.2 , pp. 219-250
    • Jacobs, R.A.1    Jordan, M.I.2    Barto, A.G.3
  • 13
    • 71349086364 scopus 로고    scopus 로고
    • Ensemble with neural networks for bankruptcy prediction
    • M.-J. Kim, and D.-K. Kang Ensemble with neural networks for bankruptcy prediction Expert Syst. Appl. 37 4 2010 3373 3379
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3373-3379
    • Kim, M.-J.1    Kang, D.-K.2
  • 15
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi A study of cross-validation and bootstrap for accuracy estimation and model selection Int. Jt. Conf. Artif. Intell. 1995 1137 1143
    • (1995) Int. Jt. Conf. Artif. Intell. , pp. 1137-1143
    • Kohavi, R.1
  • 16
    • 0036472946 scopus 로고    scopus 로고
    • A theoretical study oon six classifier fusion strategies
    • L.I. Kuncheva A theoretical study oon six classifier fusion strategies IEEE Trans. Pattern Anal. Mach. Intell. 24 2 2002 281 286
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.2 , pp. 281-286
    • Kuncheva, L.I.1
  • 18
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • L. Nanni, and A. Lumini An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring Expert Syst. Appl. 36 2 2009 3028 3033
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 19
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Opitz, and R. Maclin Popular ensemble methods: an empirical study J. Artif. Intell. Res. 11 1999 169 198
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 20
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: Select real-world applications
    • N.C. Oza, and K. Tumer Classifier ensembles: select real-world applications Inf. Fus. 9 1 2008 4 20
    • (2008) Inf. Fus. , vol.9 , Issue.1 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 22
    • 34548100943 scopus 로고    scopus 로고
    • Multi-classifier systems: Review and a roadmap for developers
    • R. Ranawana, and V. Palade Multi-classifier systems: review and a roadmap for developers Int. Hybrid Intell. Syst. 3 1 2006 35 61
    • (2006) Int. Hybrid Intell. Syst. , vol.3 , Issue.1 , pp. 35-61
    • Ranawana, R.1    Palade, V.2
  • 23
    • 69449097857 scopus 로고    scopus 로고
    • Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography
    • L. Rokach Taxonomy for characterizing ensemble methods in classification tasks: a review and annotated bibliography Comput. Stat. Data Anal. 53 12 2009 4046 4072
    • (2009) Comput. Stat. Data Anal. , vol.53 , Issue.12 , pp. 4046-4072
    • Rokach, L.1
  • 24
    • 0025448521 scopus 로고
    • The strength of weak learnabilty
    • R.E. Schapire The strength of weak learnabilty Mach. Learn. 5 2 1990 197 227
    • (1990) Mach. Learn. , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 26
    • 79953722212 scopus 로고    scopus 로고
    • AdaBoost ensemble for financial distress prediction: An empirical comparison with data from Chinese listed companies
    • J. Sun, M.-Y. Jia, and H. Li AdaBoost ensemble for financial distress prediction: an empirical comparison with data from Chinese listed companies Expert Syst. Appl. 38 8 2011 9305 9312
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 9305-9312
    • Sun, J.1    Jia, M.-Y.2    Li, H.3
  • 27
    • 49549093161 scopus 로고    scopus 로고
    • Financial decision support using neural networks and support vector machines
    • C.-F. Tsai Financial decision support using neural networks and support vector machines Exp. Syst. 25 4 2008 380 393
    • (2008) Exp. Syst. , vol.25 , Issue.4 , pp. 380-393
    • Tsai, C.-F.1
  • 28
    • 59349101361 scopus 로고    scopus 로고
    • Feature selection in bankruptcy prediction
    • C.-F. Tsai Feature selection in bankruptcy prediction Knowl. Based Syst. 22 2 2009 120 127
    • (2009) Knowl. Based Syst. , vol.22 , Issue.2 , pp. 120-127
    • Tsai, C.-F.1
  • 29
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • C.-F. Tsai, and J.-W. Wu Using neural network ensembles for bankruptcy prediction and credit scoring Expert Syst. Appl. 34 4 2008 2639 2649
    • (2008) Expert Syst. Appl. , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.-F.1    Wu, J.-W.2
  • 30
    • 71349085322 scopus 로고    scopus 로고
    • Multiple classifier application to credit risk assessment
    • B. Twala Multiple classifier application to credit risk assessment Expert Syst. Appl. 37 4 2010 3326 3336
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3326-3336
    • Twala, B.1
  • 32
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble trees
    • G. Wang, J. Ma, L. Huang, and K. Xu Two credit scoring models based on dual strategy ensemble trees Knowl. Based Syst. 26 February 2012 61 68
    • (2012) Knowl. Based Syst. , vol.26 , Issue.FEBRUARY , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 33
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • D. West Neural network credit scoring models Comput. Oper. Res. 27 11/12 2000 1131 1152
    • (2000) Comput. Oper. Res. , vol.27 , Issue.11-12 , pp. 1131-1152
    • West, D.1
  • 34
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • D. West, S. Dellana, and J. Qian Neural network ensemble strategies for financial decision applications Comput. Oper. Res. 32 10 2005 2543 2559
    • (2005) Comput. Oper. Res. , vol.32 , Issue.10 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 35
    • 77957832237 scopus 로고    scopus 로고
    • Vertical bagging decision trees model for credit scoring
    • D. Zhang, X. Zhou, S.C.H. Leung, and J. Zheng Vertical bagging decision trees model for credit scoring Expert Syst. Appl. 37 2 2010 7838 7843
    • (2010) Expert Syst. Appl. , vol.37 , Issue.2 , pp. 7838-7843
    • Zhang, D.1    Zhou, X.2    Leung, S.C.H.3    Zheng, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.