-
1
-
-
68249119893
-
DNA damage checkpoint inactivation: Adaptation and recovery
-
Clémenson C, Marsolier-Kergoat MC (2009) DNA damage checkpoint inactivation: Adaptation and recovery. DNA Repair 8(9):1101-1109.
-
(2009)
DNA Repair
, vol.8
, Issue.9
, pp. 1101-1109
-
-
Clémenson, C.1
Marsolier-Kergoat, M.C.2
-
2
-
-
68249099217
-
Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae
-
Putnam CD, Jaehnig EJ, Kolodner RD (2009) Perspectives on the DNA damage and replication checkpoint responses in Saccharomyces cerevisiae. DNA Repair 8(9): 974- 982.
-
(2009)
DNA Repair
, vol.8
, Issue.9
, pp. 974-982
-
-
Putnam, C.D.1
Jaehnig, E.J.2
Kolodner, R.D.3
-
3
-
-
33751419716
-
Surviving the breakup: The DNA damage checkpoint
-
DOI 10.1146/annurev.genet.40.051206.105231
-
Harrison JC, Haber JE (2006) Surviving the breakup: The DNA damage checkpoint. Annu Rev Genet 40:209-235. (Pubitemid 44956785)
-
(2006)
Annual Review of Genetics
, vol.40
, pp. 209-235
-
-
Harrison, J.C.1
Haber, J.E.2
-
4
-
-
0027421043
-
Loss of a yeast telomere: Arrest, recovery, and chromosome loss
-
DOI 10.1016/0092-8674(93)90493-A
-
Sandell LL, Zakian VA (1993) Loss of a yeast telomere: Arrest, recovery, and chromosome loss. Cell 75(4):729-739. (Pubitemid 23346371)
-
(1993)
Cell
, vol.75
, Issue.4
, pp. 729-739
-
-
Sandell, L.L.1
Zakian, V.A.2
-
5
-
-
0030885666
-
CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
-
DOI 10.1016/S0092-8674(00)80375-X
-
Toczyski DP, Galgoczy DJ, Hartwell LH (1997) CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90(6):1097-1106. (Pubitemid 27408523)
-
(1997)
Cell
, vol.90
, Issue.6
, pp. 1097-1106
-
-
Toczyski, D.P.1
Galgoczy, D.J.2
Hartwell, L.H.3
-
6
-
-
0032493889
-
Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage
-
DOI 10.1016/S0092-8674(00)81482-8
-
Lee SE, et al. (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94(3):399-409. (Pubitemid 28376083)
-
(1998)
Cell
, vol.94
, Issue.3
, pp. 399-409
-
-
Lee, S.E.1
Moore, J.K.2
Holmes, A.3
Umezu, K.4
Kolodner, R.D.5
Haber, J.E.6
-
7
-
-
0035105240
-
Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
-
DOI 10.1016/S1097-2765(01)00177-0
-
Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol Cell 7(2):293-300. (Pubitemid 32206497)
-
(2001)
Molecular Cell
, vol.7
, Issue.2
, pp. 293-300
-
-
Pellicioli, A.1
Lee, S.E.2
Lucca, C.3
Foiani, M.4
Haber, J.E.5
-
8
-
-
0035498938
-
Two checkpoint complexes are independently recruited to sites of DNA damage in vivo
-
Melo JA, Cohen J, Toczyski DP (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15(21):2809-2821. (Pubitemid 33042052)
-
(2001)
Genes and Development
, vol.15
, Issue.21
, pp. 2809-2821
-
-
Melo, J.A.1
Cohen, J.2
Toczyski, D.P.3
-
9
-
-
0035838373
-
The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break
-
DOI 10.1016/S0960-9822(01)00296-2
-
Lee SE, Pellicioli A, Malkova A, Foiani M, Haber JE (2001) The Saccharomyces recombination protein Tid1p is required for adaptation from G2/M arrest induced by a double-strand break. Curr Biol 11(13):1053-1057. (Pubitemid 32632721)
-
(2001)
Current Biology
, vol.11
, Issue.13
, pp. 1053-1057
-
-
Lee, S.E.1
Pellicioli, A.2
Malkova, A.3
Foiani, M.4
Haber, J.E.5
-
10
-
-
0242468917
-
Yeast Rad52 and Rad51 Recombination Proteins Define a Second Pathway of DNA Damage Assessment in Response to a Single Double-Strand Break
-
DOI 10.1128/MCB.23.23.8913-8923.2003
-
Lee SE, et al. (2003) Yeast Rad52 and Rad51 recombination proteins define a second pathway of DNA damage assessment in response to a single double-strand break. Mol Cell Biol 23(23):8913-8923. (Pubitemid 37433389)
-
(2003)
Molecular and Cellular Biology
, vol.23
, Issue.23
, pp. 8913-8923
-
-
Lee, S.E.1
Pellicioli, A.2
Vaze, M.B.3
Sugawara, N.4
Malkova, A.5
Foiani, M.6
Haber, J.E.7
-
11
-
-
0344643062
-
PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break
-
DOI 10.1016/S1097-2765(03)00058-3
-
Leroy C, et al. (2003) PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell 11(3):827-835. (Pubitemid 36385133)
-
(2003)
Molecular Cell
, vol.11
, Issue.3
, pp. 827-835
-
-
Leroy, C.1
Lee, S.E.2
Vaze, M.B.3
Ochsenbien, F.4
Guerois, R.5
Haber, J.E.6
Marsolier-Kergoat, M.-C.7
-
12
-
-
0036671706
-
Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
-
DOI 10.1016/S1097-2765(02)00593-2
-
Vaze MB, et al. (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10(2):373-385. (Pubitemid 35007351)
-
(2002)
Molecular Cell
, vol.10
, Issue.2
, pp. 373-385
-
-
Vaze, M.B.1
Pellicioli, A.2
Lee, S.E.3
Ira, G.4
Liberi, G.5
Arbel-Eden, A.6
Foiani, M.7
Haber, J.E.8
-
13
-
-
34247637883
-
Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae
-
DOI 10.1128/MCB.00863-06
-
Guillemain G, et al. (2007) Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae. Mol Cell Biol 27(9):3378-3389. (Pubitemid 46685214)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.9
, pp. 3378-3389
-
-
Guillemain, G.1
Ma, E.2
Mauger, S.3
Miron, S.4
Thai, R.5
Guerois, R.6
Ochsenbein, F.7
Marsolier-Kergoat, M.-C.8
-
14
-
-
84868694661
-
The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end-resection and checkpoint deactivation
-
Eapen VV, Sugawara N, Tsabar M, Wu W-H, Haber JE (2012) The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end-resection and checkpoint deactivation. Mol Cell Biol 32(22):4727-4740.
-
(2012)
Mol Cell Biol
, vol.32
, Issue.22
, pp. 4727-4740
-
-
Eapen, V.V.1
Sugawara, N.2
Tsabar, M.3
Wu, W.-H.4
Haber, J.E.5
-
15
-
-
10944262393
-
DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain
-
DOI 10.1016/j.molcel.2004.11.027, PII S1097276504007191
-
Unal E, et al. (2004) DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16(6):991-1002. (Pubitemid 40018408)
-
(2004)
Molecular Cell
, vol.16
, Issue.6
, pp. 991-1002
-
-
Unal, E.1
Arbel-Eden, A.2
Sattler, U.3
Shroff, R.4
Lichten, M.5
Haber, J.E.6
Koshland, D.7
-
16
-
-
34447532525
-
Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals
-
DOI 10.1083/jcb.200612031
-
Kim JA, Kruhlak M, Dotiwala F, Nussenzweig A, Haber JE (2007) Heterochromatin is refractory to gamma-H2AX modification in yeast and mammals. J Cell Biol 178(2): 209-218. (Pubitemid 47076458)
-
(2007)
Journal of Cell Biology
, vol.178
, Issue.2
, pp. 209-218
-
-
Kim, J.-A.1
Kruhlak, M.2
Dotiwala, F.3
Nussenzweig, A.4
Haber, J.E.5
-
17
-
-
4344718620
-
Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis
-
van Vugt MA, et al. (2004) Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis. J Biol Chem 279(35):36841-36854.
-
(2004)
J Biol Chem
, vol.279
, Issue.35
, pp. 36841-36854
-
-
Van Vugt, M.A.1
-
18
-
-
0033635245
-
The DNA damage checkpoint signal in budding yeast is nuclear limited
-
Demeter J, Lee SE, Haber JE, Stearns T (2000) The DNA damage checkpoint signal in budding yeast is nuclear limited. Mol Cell 6(2):487-492.
-
(2000)
Mol Cell
, vol.6
, Issue.2
, pp. 487-492
-
-
Demeter, J.1
Lee, S.E.2
Haber, J.E.3
Stearns, T.4
-
19
-
-
33845337082
-
Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
-
DOI 10.1083/jcb.200605080
-
Enserink JM, Smolka MB, Zhou H, Kolodner RD (2006) Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J Cell Biol 175(5):729-741. (Pubitemid 44878506)
-
(2006)
Journal of Cell Biology
, vol.175
, Issue.5
, pp. 729-741
-
-
Enserink, J.M.1
Smolka, M.B.2
Zhou, H.3
Kolodner, R.D.4
-
20
-
-
79954549252
-
Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1
-
Dyavaiah M, Rooney JP, Chittur SV, Lin Q, Begley TJ (2011) Autophagy-dependent regulation of the DNA damage response protein ribonucleotide reductase 1. Mol Cancer Res 9(4):462-475.
-
(2011)
Mol Cancer Res
, vol.9
, Issue.4
, pp. 462-475
-
-
Dyavaiah, M.1
Rooney, J.P.2
Chittur, S.V.3
Lin, Q.4
Begley, T.J.5
-
21
-
-
80052841386
-
Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents
-
Bae H, Guan JL (2011) Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with anticancer agents. Mol Cancer Res 9(9):1232-1241.
-
(2011)
Mol Cancer Res
, vol.9
, Issue.9
, pp. 1232-1241
-
-
Bae, H.1
Guan, J.L.2
-
22
-
-
79952259259
-
Molecular biology: The expanding arena of DNA repair
-
Potenski CJ, Klein HL (2011) Molecular biology: The expanding arena of DNA repair. Nature 471(7336):48-49.
-
(2011)
Nature
, vol.471
, Issue.7336
, pp. 48-49
-
-
Potenski, C.J.1
Klein, H.L.2
-
23
-
-
79956220703
-
DNA damage and autophagy
-
Rodriguez-Rocha H, Garcia-Garcia A, Panayiotidis MI, Franco R (2011) DNA damage and autophagy. Mutat Res 711(1-2):158-166.
-
(2011)
Mutat Res
, vol.711
, Issue.1-2
, pp. 158-166
-
-
Rodriguez-Rocha, H.1
Garcia-Garcia, A.2
Panayiotidis, M.I.3
Franco, R.4
-
24
-
-
77951258552
-
Autophagy for the avoidance of degenerative, inflammatory, infectious, and neoplastic disease
-
Kroemer G, White E (2010) Autophagy for the avoidance of degenerative, inflammatory, infectious, and neoplastic disease. Curr Opin Cell Biol 22(2):121-123.
-
(2010)
Curr Opin Cell Biol
, vol.22
, Issue.2
, pp. 121-123
-
-
Kroemer, G.1
White, E.2
-
25
-
-
79952270884
-
HDACs link the DNA damage response, processing of doublestrand breaks and autophagy
-
Robert T, et al. (2011) HDACs link the DNA damage response, processing of doublestrand breaks and autophagy. Nature 471(7336):74-79.
-
(2011)
Nature
, vol.471
, Issue.7336
, pp. 74-79
-
-
Robert, T.1
-
26
-
-
0027083496
-
Morphological classification of the yeast vacuolar protein sorting mutants: Evidence for a prevacuolar compartment in class E vps mutants
-
Raymond CK, Howald-Stevenson I, Vater CA, Stevens TH (1992) Morphological classification of the yeast vacuolar protein sorting mutants: Evidence for a prevacuolar compartment in class E vps mutants. Mol Biol Cell 3(12):1389-1402. (Pubitemid 23091465)
-
(1992)
Molecular Biology of the Cell
, vol.3
, Issue.12
, pp. 1389-1402
-
-
Raymond, C.K.1
Howald-Stevenson, I.2
Vater, C.A.3
Stevens, T.H.4
-
27
-
-
0027532572
-
Phenotypic analysis of proteinase A mutants. Implications for autoactivation and the maturation pathway of the vacuolar hydrolases of Saccharomyces cerevisiae
-
Woolford CA, et al. (1993) Phenotypic analysis of proteinase A mutants. Implications for autoactivation and the maturation pathway of the vacuolar hydrolases of Saccharomyces cerevisiae. J Biol Chem 268(12):8990-8998. (Pubitemid 23118694)
-
(1993)
Journal of Biological Chemistry
, vol.268
, Issue.12
, pp. 8990-8998
-
-
Woolford, C.A.1
Noble, J.A.2
Garman, J.D.3
Tam, M.F.4
Innis, M.A.5
Jones, E.W.6
-
28
-
-
0032511150
-
An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast
-
DOI 10.1016/S0092-8674(00)81211-8
-
Ciosk R, et al. (1998) An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93(6):1067-1076. (Pubitemid 28280799)
-
(1998)
Cell
, vol.93
, Issue.6
, pp. 1067-1076
-
-
Ciosk, R.1
Zachariae, W.2
Michaelis, C.3
Shevchenko, A.4
Mann, M.5
Nasmyth, K.6
-
29
-
-
0030448251
-
Anaphase initiation in saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p
-
Cohen-Fix O, Peters JM, Kirschner MW, Koshland D (1996) Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev 10(24):3081-3093. (Pubitemid 27020537)
-
(1996)
Genes and Development
, vol.10
, Issue.24
, pp. 3081-3093
-
-
Cohen-Fix, O.1
Peters, J.-M.2
Kirschner, M.W.3
Koshland, D.4
-
30
-
-
0035825162
-
A novel role of the budding yeast separin Esp1 in anaphase spindle elongation: Evidence that proper spindle association of Esp1 is regulated by Pds1
-
Jensen S, Segal M, Clarke DJ, Reed SI (2001) A novel role of the budding yeast separin Esp1 in anaphase spindle elongation: Evidence that proper spindle association of Esp1 is regulated by Pds1. J Cell Biol 152(1):27- 40.
-
(2001)
J Cell Biol
, vol.152
, Issue.1
, pp. 27-40
-
-
Jensen, S.1
Segal, M.2
Clarke, D.J.3
Reed, S.I.4
-
31
-
-
10844237288
-
Uncovering novel cell cycle players through the inactivation of securin in budding yeast
-
DOI 10.1534/genetics.104.029033
-
Sarin S, et al. (2004) Uncovering novel cell cycle players through the inactivation of securin in budding yeast. Genetics 168(3):1763-1771. (Pubitemid 40007384)
-
(2004)
Genetics
, vol.168
, Issue.3
, pp. 1763-1771
-
-
Sarin, S.1
Ross, K.E.2
Boucher, L.3
Green, Y.4
Tyers, M.5
Cohen-Fix, O.6
-
32
-
-
0036634246
-
Mitotic regulation: The fine tuning of separase activity
-
Agarwal R, Cohen-Fix O (2002) Mitotic regulation: The fine tuning of separase activity. Cell Cycle 1(4):255-257.
-
(2002)
Cell Cycle
, vol.1
, Issue.4
, pp. 255-257
-
-
Agarwal, R.1
Cohen-Fix, O.2
-
33
-
-
0036606816
-
Phosphorylation of the mitotic regulator Pds1/securin by Cdc28 is required for efficient nuclear localization of Esp1/separase
-
DOI 10.1101/gad.971402
-
Agarwal R, Cohen-Fix O (2002) Phosphorylation of the mitotic regulator Pds1/securin by Cdc28 is required for efficient nuclear localization of Esp1/separase. Genes Dev 16 (11):1371-1382. (Pubitemid 34615090)
-
(2002)
Genes and Development
, vol.16
, Issue.11
, pp. 1371-1382
-
-
Agarwal, R.1
Cohen-Fix, O.2
-
34
-
-
0037737745
-
Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion
-
DOI 10.1074/jbc.M210436200
-
Reggiori F, Wang CW, Stromhaug PE, Shintani T, Klionsky DJ (2003) Vps51 is part of the yeast Vps fifty-three tethering complex essential for retrograde traffic from the early endosome and Cvt vesicle completion. J Biol Chem 278(7):5009-5020. (Pubitemid 36801010)
-
(2003)
Journal of Biological Chemistry
, vol.278
, Issue.7
, pp. 5009-5020
-
-
Reggiori, F.1
Wang, C.-W.2
Stromhaug, P.E.3
Shintani, T.4
Klionsky, D.J.5
-
35
-
-
33846517041
-
Structural insight into the ESCRT-I/-II link and its role in MVB trafficking
-
DOI 10.1038/sj.emboj.7601501, PII 7601501
-
Gill DJ, et al. (2007) Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. EMBO J 26(2):600-612. (Pubitemid 46160959)
-
(2007)
EMBO Journal
, vol.26
, Issue.2
, pp. 600-612
-
-
Gill, D.J.1
Teo, H.2
Sun, J.3
Perisic, O.4
Veprintsev, D.B.5
Emr, S.D.6
Williams, R.L.7
-
36
-
-
35448981935
-
Autophagy: From phenomenology to molecular understanding in less than a decade
-
Klionsky DJ (2007) Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931-937.
-
(2007)
Nat Rev Mol Cell Biol
, vol.8
, Issue.11
, pp. 931-937
-
-
Klionsky, D.J.1
-
37
-
-
77953732653
-
Prime-numbered Atg proteins act at the primary step in autophagy: Unphosphorylatable Atg13 can induce autophagy without TOR inactivation
-
Kamada Y (2010) Prime-numbered Atg proteins act at the primary step in autophagy: Unphosphorylatable Atg13 can induce autophagy without TOR inactivation. Autophagy 6(3):415-416.
-
(2010)
Autophagy
, vol.6
, Issue.3
, pp. 415-416
-
-
Kamada, Y.1
-
39
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R, Hall MN (2011) Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189(4):1177- 1201.
-
(2011)
Genetics
, vol.189
, Issue.4
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
40
-
-
75749090429
-
Tor directly controls the Atg1 kinase complex to regulate autophagy
-
Kamada Y, et al. (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30(4):1049-1058.
-
(2010)
Mol Cell Biol
, vol.30
, Issue.4
, pp. 1049-1058
-
-
Kamada, Y.1
-
41
-
-
34547420591
-
The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage
-
DOI 10.1073/pnas.0609636104
-
Dotiwala F, Haase J, Arbel-Eden A, Bloom K, Haber JE (2007) The yeast DNA damage checkpoint proteins control a cytoplasmic response to DNA damage. Proc Natl Acad Sci USA 104(27):11358-11363. (Pubitemid 47175145)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.27
, pp. 11358-11363
-
-
Dotiwala, F.1
Haase, J.2
Arbel-Eden, A.3
Bloom, K.4
Haber, J.E.5
-
42
-
-
34249828941
-
Cyclin Cln3 Is Retained at the ER and Released by the J Chaperone Ydj1 in Late G1 to Trigger Cell Cycle Entry
-
DOI 10.1016/j.molcel.2007.04.023, PII S1097276507002614
-
Vergés E, Colomina N, Garí E, Gallego C, Aldea M (2007) Cyclin Cln3 is retained at the ER and released by the J chaperone Ydj1 in late G1 to trigger cell cycle entry. Mol Cell 26(5):649-662. (Pubitemid 46856242)
-
(2007)
Molecular Cell
, vol.26
, Issue.5
, pp. 649-662
-
-
Verges, E.1
Colomina, N.2
Gari, E.3
Gallego, C.4
Aldea, M.5
-
43
-
-
70350050734
-
DNA damage checkpoint maintains CDH1 in an active state to inhibit anaphase progression
-
Zhang T, Nirantar S, Lim HH, Sinha I, Surana U (2009) DNA damage checkpoint maintains CDH1 in an active state to inhibit anaphase progression. Dev Cell 17(4): 541-551.
-
(2009)
Dev Cell
, vol.17
, Issue.4
, pp. 541-551
-
-
Zhang, T.1
Nirantar, S.2
Lim, H.H.3
Sinha, I.4
Surana, U.5
-
44
-
-
0034331310
-
The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis
-
Hill E, Clarke M, Barr FA (2000) The Rab6-binding kinesin, Rab6-KIFL, is required for cytokinesis. EMBO J 19(21):5711-5719.
-
(2000)
EMBO J
, vol.19
, Issue.21
, pp. 5711-5719
-
-
Hill, E.1
Clarke, M.2
Barr, F.A.3
-
45
-
-
80052719816
-
Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death
-
Gao W, Shen Z, Shang L, Wang X (2011) Upregulation of human autophagy-initiation kinase ULK1 by tumor suppressor p53 contributes to DNA-damage-induced cell death. Cell Death Differ 18(10):1598-1607.
-
(2011)
Cell Death Differ
, vol.18
, Issue.10
, pp. 1598-1607
-
-
Gao, W.1
Shen, Z.2
Shang, L.3
Wang, X.4
-
46
-
-
79952260746
-
The mTOR inhibitor rapamycin suppresses DNA double-strand break repair
-
Chen H, et al. (2011) The mTOR inhibitor rapamycin suppresses DNA double-strand break repair. Radiat Res 175(2):214-224.
-
(2011)
Radiat Res
, vol.175
, Issue.2
, pp. 214-224
-
-
Chen, H.1
-
47
-
-
0031820288
-
Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae
-
DOI 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
-
Longtine MS, et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14(10):953-961. (Pubitemid 28328001)
-
(1998)
Yeast
, vol.14
, Issue.10
, pp. 953-961
-
-
Longtine, M.S.1
McKenzie III, A.2
Demarini, D.J.3
Shah, N.G.4
Wach, A.5
Brachat, A.6
Philippsen, P.7
Pringle, J.R.8
-
48
-
-
0031031055
-
A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae
-
DOI 10.1073/pnas.94.1.190
-
Ross-Macdonald P, Sheehan A, Roeder GS, Snyder M (1997) A multipurpose transposon system for analyzing protein production, localization, and function in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94(1):190-195. (Pubitemid 27027185)
-
(1997)
Proceedings of the National Academy of Sciences of the United States of America
, vol.94
, Issue.1
, pp. 190-195
-
-
Ross-Macdonald, P.1
Sheehan, A.2
Roeder, G.S.3
Snyder, M.4
-
49
-
-
64349120389
-
Mechanisms for concentrating Rho1 during cytokinesis
-
Yoshida S, Bartolini S, Pellman D (2009) Mechanisms for concentrating Rho1 during cytokinesis. Genes Dev 23(7):810-823.
-
(2009)
Genes Dev
, vol.23
, Issue.7
, pp. 810-823
-
-
Yoshida, S.1
Bartolini, S.2
Pellman, D.3
|