메뉴 건너뛰기




Volumn 38, Issue 1, 2015, Pages 26-35

Autophagy in Huntington disease and huntingtin in autophagy

Author keywords

Autophagy; Caspases; Huntington disease; Myristoylation; Neurodegeneration; Post translational modifications; Therapies; Trafficking

Indexed keywords

ADAPTOR PROTEIN; CASPASE 6; DYNEIN ADENOSINE TRIPHOSPHATASE; HUNTINGTIN; LYSOSOME ASSOCIATED MEMBRANE PROTEIN 2; POLYGLUTAMINE; PROTEIN AGGREGATE; RECEPTOR PROTEIN; HTT PROTEIN, HUMAN; NERVE PROTEIN;

EID: 84922359207     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2014.09.003     Document Type: Review
Times cited : (251)

References (115)
  • 1
    • 77956069555 scopus 로고    scopus 로고
    • Huntington's disease
    • Novak M.J., Tabrizi S.J. Huntington's disease. BMJ 2010, 340:c3109.
    • (2010) BMJ , vol.340 , pp. c3109
    • Novak, M.J.1    Tabrizi, S.J.2
  • 2
    • 0027480960 scopus 로고
    • A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
    • Huntington's Disease Collaborative Research Group A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. Cell 1993, 72:971-983.
    • (1993) Cell , vol.72 , pp. 971-983
  • 3
    • 84903770556 scopus 로고    scopus 로고
    • The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy
    • Cortes C.J., La Spada A.R. The many faces of autophagy dysfunction in Huntington's disease: from mechanism to therapy. Drug. Discov. Today 2014, 19:963-971.
    • (2014) Drug. Discov. Today , vol.19 , pp. 963-971
    • Cortes, C.J.1    La Spada, A.R.2
  • 4
    • 0033757718 scopus 로고    scopus 로고
    • Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice
    • Dragatsis I., et al. Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice. Nat. Genet. 2000, 26:300-306.
    • (2000) Nat. Genet. , vol.26 , pp. 300-306
    • Dragatsis, I.1
  • 5
    • 84993912315 scopus 로고
    • Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue
    • Zeitlin S., et al. Increased apoptosis and early embryonic lethality in mice nullizygous for the Huntington's disease gene homologue. Nat. Genet. 1995, 11:155-163.
    • (1995) Nat. Genet. , vol.11 , pp. 155-163
    • Zeitlin, S.1
  • 6
    • 0029055717 scopus 로고
    • Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes
    • Nasir J., et al. Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes. Cell 1995, 81:811-823.
    • (1995) Cell , vol.81 , pp. 811-823
    • Nasir, J.1
  • 7
    • 0029082383 scopus 로고
    • Inactivation of the mouse Huntington's disease gene homolog Hdh
    • Duyao M.P., et al. Inactivation of the mouse Huntington's disease gene homolog Hdh. Science 1995, 269:407-410.
    • (1995) Science , vol.269 , pp. 407-410
    • Duyao, M.P.1
  • 8
    • 77957294848 scopus 로고    scopus 로고
    • Autophagic pathways and metabolic stress
    • Kaushik S., et al. Autophagic pathways and metabolic stress. Diabetes Obes. Metab. 2010, 12(Suppl. 2):4-14.
    • (2010) Diabetes Obes. Metab. , vol.12 , pp. 4-14
    • Kaushik, S.1
  • 9
    • 77950506157 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy in health and disease
    • Kon M., Cuervo A.M. Chaperone-mediated autophagy in health and disease. FEBS Lett. 2010, 584:1399-1404.
    • (2010) FEBS Lett. , vol.584 , pp. 1399-1404
    • Kon, M.1    Cuervo, A.M.2
  • 10
    • 84882254367 scopus 로고    scopus 로고
    • The role of autophagy in neurodegenerative disease
    • Nixon R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 2013, 19:983-997.
    • (2013) Nat. Med. , vol.19 , pp. 983-997
    • Nixon, R.A.1
  • 11
    • 16844366524 scopus 로고    scopus 로고
    • Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging
    • Lemasters J.J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005, 8:3-5.
    • (2005) Rejuvenation Res. , vol.8 , pp. 3-5
    • Lemasters, J.J.1
  • 12
    • 43049138051 scopus 로고    scopus 로고
    • Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease
    • Kraft C., et al. Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol. 2008, 10:602-610.
    • (2008) Nat. Cell Biol. , vol.10 , pp. 602-610
    • Kraft, C.1
  • 13
    • 84861733247 scopus 로고    scopus 로고
    • Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy
    • Hanna R.A., et al. Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J. Biol. Chem. 2012, 287:19094-19104.
    • (2012) J. Biol. Chem. , vol.287 , pp. 19094-19104
    • Hanna, R.A.1
  • 14
    • 84871000478 scopus 로고    scopus 로고
    • The role of ALFY in selective autophagy
    • Isakson P., et al. The role of ALFY in selective autophagy. Cell Death Differ. 2012, 20:12-20.
    • (2012) Cell Death Differ. , vol.20 , pp. 12-20
    • Isakson, P.1
  • 15
    • 77950903972 scopus 로고    scopus 로고
    • The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
    • Filimonenko M., et al. The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy. Mol. Cell 2010, 38:265-279.
    • (2010) Mol. Cell , vol.38 , pp. 265-279
    • Filimonenko, M.1
  • 16
    • 84883323560 scopus 로고    scopus 로고
    • Mammalian target of rapamycin (mTOR) pathways in neurological diseases
    • Wong M. Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed J. 2013, 36:40-50.
    • (2013) Biomed J. , vol.36 , pp. 40-50
    • Wong, M.1
  • 17
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y., et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 2008, 30:678-688.
    • (2008) Mol. Cell , vol.30 , pp. 678-688
    • Wei, Y.1
  • 18
    • 42249106042 scopus 로고    scopus 로고
    • Novel targets for Huntington's disease in an mTOR-independent autophagy pathway
    • Williams A., et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 2008, 4:295-305.
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 295-305
    • Williams, A.1
  • 19
    • 84870980670 scopus 로고    scopus 로고
    • Ubiquitination and selective autophagy
    • Shaid S., et al. Ubiquitination and selective autophagy. Cell Death Differ. 2013, 20:21-30.
    • (2013) Cell Death Differ. , vol.20 , pp. 21-30
    • Shaid, S.1
  • 20
    • 15244363187 scopus 로고    scopus 로고
    • BAG-1 associates with the polyglutamine-expanded huntingtin aggregates
    • Jana N.R., Nukina N. BAG-1 associates with the polyglutamine-expanded huntingtin aggregates. Neurosci. Lett. 2005, 378:171-175.
    • (2005) Neurosci. Lett. , vol.378 , pp. 171-175
    • Jana, N.R.1    Nukina, N.2
  • 21
    • 9444239187 scopus 로고    scopus 로고
    • Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme
    • Kalchman M.A., et al. Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J. Biol. Chem. 1996, 271:19385-19394.
    • (1996) J. Biol. Chem. , vol.271 , pp. 19385-19394
    • Kalchman, M.A.1
  • 22
    • 11144353613 scopus 로고    scopus 로고
    • SUMO modification of Huntingtin and Huntington's disease pathology
    • Steffan J.S., et al. SUMO modification of Huntingtin and Huntington's disease pathology. Science 2004, 304:100-104.
    • (2004) Science , vol.304 , pp. 100-104
    • Steffan, J.S.1
  • 23
    • 63249135140 scopus 로고    scopus 로고
    • Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease
    • Mitra S., et al. Single neuron ubiquitin-proteasome dynamics accompanying inclusion body formation in huntington disease. J. Biol. Chem. 2009, 284:4398-4403.
    • (2009) J. Biol. Chem. , vol.284 , pp. 4398-4403
    • Mitra, S.1
  • 24
    • 0033037919 scopus 로고    scopus 로고
    • Huntington's disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein
    • Sieradzan K.A., et al. Huntington's disease intranuclear inclusions contain truncated, ubiquitinated huntingtin protein. Exp. Neurol. 1999, 156:92-99.
    • (1999) Exp. Neurol. , vol.156 , pp. 92-99
    • Sieradzan, K.A.1
  • 25
    • 0034754875 scopus 로고    scopus 로고
    • Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation
    • Waelter S., et al. Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell 2001, 12:1393-1407.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 1393-1407
    • Waelter, S.1
  • 26
    • 65549142204 scopus 로고    scopus 로고
    • A role for ubiquitin in selective autophagy
    • Kirkin V., et al. A role for ubiquitin in selective autophagy. Mol. Cell 2009, 34:259-269.
    • (2009) Mol. Cell , vol.34 , pp. 259-269
    • Kirkin, V.1
  • 27
    • 34547807613 scopus 로고    scopus 로고
    • Global changes to the ubiquitin system in Huntington's disease
    • Bennett E.J., et al. Global changes to the ubiquitin system in Huntington's disease. Nature 2007, 448:704-708.
    • (2007) Nature , vol.448 , pp. 704-708
    • Bennett, E.J.1
  • 28
    • 58149380769 scopus 로고    scopus 로고
    • Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons
    • Tydlacka S., et al. Differential activities of the ubiquitin-proteasome system in neurons versus glia may account for the preferential accumulation of misfolded proteins in neurons. J. Neurosci. 2008, 28:13285-13295.
    • (2008) J. Neurosci. , vol.28 , pp. 13285-13295
    • Tydlacka, S.1
  • 29
    • 84912536138 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system in neurodegeneration
    • McKinnon C., Tabrizi S.J. The ubiquitin-proteasome system in neurodegeneration. Antioxid. Redox Signal. 2014, 10.1089/ars.2013.5802.
    • (2014) Antioxid. Redox Signal.
    • McKinnon, C.1    Tabrizi, S.J.2
  • 30
    • 77955291545 scopus 로고    scopus 로고
    • Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments
    • Li X., et al. Inhibiting the ubiquitin-proteasome system leads to preferential accumulation of toxic N-terminal mutant huntingtin fragments. Hum. Mol. Genet. 2010, 19:2445-2455.
    • (2010) Hum. Mol. Genet. , vol.19 , pp. 2445-2455
    • Li, X.1
  • 31
    • 84890988864 scopus 로고    scopus 로고
    • Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies
    • Schipper-Krom S., et al. Dynamic recruitment of active proteasomes into polyglutamine initiated inclusion bodies. FEBS Lett. 2014, 588:151-159.
    • (2014) FEBS Lett. , vol.588 , pp. 151-159
    • Schipper-Krom, S.1
  • 32
    • 38349114036 scopus 로고    scopus 로고
    • Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases
    • Tan J.M., et al. Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum. Mol. Genet. 2008, 17:431-439.
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 431-439
    • Tan, J.M.1
  • 33
    • 84904007385 scopus 로고    scopus 로고
    • The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease
    • Butland S.L., et al. The palmitoyl acyltransferase HIP14 shares a high proportion of interactors with huntingtin: implications for a role in the pathogenesis of Huntington's disease. Hum. Mol. Genet. 2014, 23:4142-4160.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 4142-4160
    • Butland, S.L.1
  • 34
    • 84876085831 scopus 로고    scopus 로고
    • Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates
    • Korac J., et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 2013, 126:580-592.
    • (2013) J. Cell Sci. , vol.126 , pp. 580-592
    • Korac, J.1
  • 35
    • 84855204007 scopus 로고    scopus 로고
    • Optineurin in Huntington's disease intranuclear inclusions
    • Schwab C., et al. Optineurin in Huntington's disease intranuclear inclusions. Neurosci. Lett. 2012, 506:149-154.
    • (2012) Neurosci. Lett. , vol.506 , pp. 149-154
    • Schwab, C.1
  • 36
    • 27944504351 scopus 로고    scopus 로고
    • P62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
    • Bjorkoy G., et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 2005, 171:603-614.
    • (2005) J. Cell Biol. , vol.171 , pp. 603-614
    • Bjorkoy, G.1
  • 37
    • 77956268597 scopus 로고    scopus 로고
    • The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin
    • Tung Y.T., et al. The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin. Cell. Mol. Neurobiol. 2010, 30:795-806.
    • (2010) Cell. Mol. Neurobiol. , vol.30 , pp. 795-806
    • Tung, Y.T.1
  • 38
    • 4744349602 scopus 로고    scopus 로고
    • Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions
    • Nagaoka U., et al. Increased expression of p62 in expanded polyglutamine-expressing cells and its association with polyglutamine inclusions. J. Neurochem. 2004, 91:57-68.
    • (2004) J. Neurochem. , vol.91 , pp. 57-68
    • Nagaoka, U.1
  • 39
    • 34548259958 scopus 로고    scopus 로고
    • P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
    • Pankiv S., et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 2007, 282:24131-24145.
    • (2007) J. Biol. Chem. , vol.282 , pp. 24131-24145
    • Pankiv, S.1
  • 40
    • 79957916551 scopus 로고    scopus 로고
    • P62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects
    • Bartlett B.J., et al. p62, Ref(2)P and ubiquitinated proteins are conserved markers of neuronal aging, aggregate formation and progressive autophagic defects. Autophagy 2011, 7:572-583.
    • (2011) Autophagy , vol.7 , pp. 572-583
    • Bartlett, B.J.1
  • 41
    • 74249103961 scopus 로고    scopus 로고
    • Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3
    • Menzies F.M., et al. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 2010, 133:93-104.
    • (2010) Brain , vol.133 , pp. 93-104
    • Menzies, F.M.1
  • 42
    • 75149188760 scopus 로고    scopus 로고
    • Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation
    • Wang Y., et al. Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. Autophagy 2010, 6:182-183.
    • (2010) Autophagy , vol.6 , pp. 182-183
    • Wang, Y.1
  • 43
    • 0041589248 scopus 로고    scopus 로고
    • Alpha-synuclein is degraded by both autophagy and the proteasome
    • Webb J.L., et al. Alpha-synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 2003, 278:25009-25013.
    • (2003) J. Biol. Chem. , vol.278 , pp. 25009-25013
    • Webb, J.L.1
  • 44
    • 79954425069 scopus 로고    scopus 로고
    • Protein misfolding disorders and macroautophagy
    • Menzies F.M., et al. Protein misfolding disorders and macroautophagy. Curr. Opin. Cell Biol. 2011, 23:190-197.
    • (2011) Curr. Opin. Cell Biol. , vol.23 , pp. 190-197
    • Menzies, F.M.1
  • 45
    • 0034307476 scopus 로고    scopus 로고
    • Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy
    • Kegel K.B., et al. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J. Neurosci. 2000, 20:7268-7278.
    • (2000) J. Neurosci. , vol.20 , pp. 7268-7278
    • Kegel, K.B.1
  • 46
    • 0035364748 scopus 로고    scopus 로고
    • Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration
    • Petersen A., et al. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Hum. Mol. Genet. 2001, 10:1243-1254.
    • (2001) Hum. Mol. Genet. , vol.10 , pp. 1243-1254
    • Petersen, A.1
  • 47
    • 77951665859 scopus 로고    scopus 로고
    • Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease
    • Martinez-Vicente M., et al. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease. Nat. Neurosci. 2010, 13:567-576.
    • (2010) Nat. Neurosci. , vol.13 , pp. 567-576
    • Martinez-Vicente, M.1
  • 48
    • 2642586352 scopus 로고    scopus 로고
    • Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease
    • Ravikumar B., et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 2004, 36:585-595.
    • (2004) Nat. Genet. , vol.36 , pp. 585-595
    • Ravikumar, B.1
  • 49
    • 84892755229 scopus 로고    scopus 로고
    • The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation
    • Wong Y.C., Holzbaur E.L. The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin, leading to defective cargo degradation. J. Neurosci. 2014, 34:1293-1305.
    • (2014) J. Neurosci. , vol.34 , pp. 1293-1305
    • Wong, Y.C.1    Holzbaur, E.L.2
  • 50
    • 65249141171 scopus 로고    scopus 로고
    • Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus
    • del Toro D., et al. Mutant huntingtin impairs post-Golgi trafficking to lysosomes by delocalizing optineurin/Rab8 complex from the Golgi apparatus. Mol. Biol. Cell 2009, 20:1478-1492.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1478-1492
    • del Toro, D.1
  • 51
    • 0035487007 scopus 로고    scopus 로고
    • The mitochondrial permeability transition initiates autophagy in rat hepatocytes
    • Elmore S.P., et al. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J. 2001, 15:2286-2287.
    • (2001) FASEB J. , vol.15 , pp. 2286-2287
    • Elmore, S.P.1
  • 52
    • 34249934085 scopus 로고    scopus 로고
    • Selective degradation of mitochondria by mitophagy
    • Kim I., et al. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys. 2007, 462:245-253.
    • (2007) Arch. Biochem. Biophys. , vol.462 , pp. 245-253
    • Kim, I.1
  • 53
    • 84901592715 scopus 로고    scopus 로고
    • Inhibition of mitochondrial protein import by mutant huntingtin
    • Yano H., et al. Inhibition of mitochondrial protein import by mutant huntingtin. Nat. Neurosci. 2014, 17:822-831.
    • (2014) Nat. Neurosci. , vol.17 , pp. 822-831
    • Yano, H.1
  • 54
    • 84896834601 scopus 로고    scopus 로고
    • HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response
    • Rotblat B., et al. HACE1 reduces oxidative stress and mutant Huntingtin toxicity by promoting the NRF2 response. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:3032-3037.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 3032-3037
    • Rotblat, B.1
  • 55
    • 83455199097 scopus 로고    scopus 로고
    • Constitutive upregulation of chaperone-mediated autophagy in Huntington's disease
    • Koga H., et al. Constitutive upregulation of chaperone-mediated autophagy in Huntington's disease. J. Neurosci. 2011, 31:18492-18505.
    • (2011) J. Neurosci. , vol.31 , pp. 18492-18505
    • Koga, H.1
  • 56
    • 84893427651 scopus 로고    scopus 로고
    • Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction
    • Baldo B., et al. Maintenance of basal levels of autophagy in Huntington's disease mouse models displaying metabolic dysfunction. PLoS ONE 2012, 8:e83050.
    • (2012) PLoS ONE , vol.8 , pp. e83050
    • Baldo, B.1
  • 57
    • 33644783812 scopus 로고    scopus 로고
    • Regional and cellular gene expression changes in human Huntington's disease brain
    • Hodges A., et al. Regional and cellular gene expression changes in human Huntington's disease brain. Hum. Mol. Genet. 2006, 15:965-977.
    • (2006) Hum. Mol. Genet. , vol.15 , pp. 965-977
    • Hodges, A.1
  • 58
    • 80255135608 scopus 로고    scopus 로고
    • Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain
    • Kuhn A., et al. Population-specific expression analysis (PSEA) reveals molecular changes in diseased brain. Nat. Methods 2011, 8:945-947.
    • (2011) Nat. Methods , vol.8 , pp. 945-947
    • Kuhn, A.1
  • 59
    • 84903601682 scopus 로고    scopus 로고
    • Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells
    • Ge D., et al. Identification of a novel MTOR activator and discovery of a competing endogenous RNA regulating autophagy in vascular endothelial cells. Autophagy 2014, 10:957-971.
    • (2014) Autophagy , vol.10 , pp. 957-971
    • Ge, D.1
  • 60
    • 84964313038 scopus 로고    scopus 로고
    • Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease
    • Kamat P.K., et al. Autophagy of mitochondria: a promising therapeutic target for neurodegenerative disease. Cell Biochem. Biophys. 2014, 10.1007/s12013-014-0006-5.
    • (2014) Cell Biochem. Biophys.
    • Kamat, P.K.1
  • 61
    • 78650284389 scopus 로고    scopus 로고
    • Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli
    • Costa V., et al. Mitochondrial fission and cristae disruption increase the response of cell models of Huntington's disease to apoptotic stimuli. EMBO Mol. Med. 2010, 2:490-503.
    • (2010) EMBO Mol. Med. , vol.2 , pp. 490-503
    • Costa, V.1
  • 62
    • 84880667166 scopus 로고    scopus 로고
    • The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients
    • Metzger S., et al. The V471A polymorphism in autophagy-related gene ATG7 modifies age at onset specifically in Italian Huntington disease patients. PLoS ONE 2013, 8:e68951.
    • (2013) PLoS ONE , vol.8 , pp. e68951
    • Metzger, S.1
  • 63
    • 78649250124 scopus 로고    scopus 로고
    • Early alterations of autophagy in Huntington disease-like mice
    • Heng M.Y., et al. Early alterations of autophagy in Huntington disease-like mice. Autophagy 2010, 6:1206-1208.
    • (2010) Autophagy , vol.6 , pp. 1206-1208
    • Heng, M.Y.1
  • 64
    • 84857858536 scopus 로고    scopus 로고
    • Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons
    • Maday S., et al. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. J. Cell Biol. 2012, 196:407-417.
    • (2012) J. Cell Biol. , vol.196 , pp. 407-417
    • Maday, S.1
  • 65
    • 22844436451 scopus 로고    scopus 로고
    • Dynein mutations impair autophagic clearance of aggregate-prone proteins
    • Ravikumar B., et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 2005, 37:771-776.
    • (2005) Nat. Genet. , vol.37 , pp. 771-776
    • Ravikumar, B.1
  • 66
    • 84888199555 scopus 로고    scopus 로고
    • Releasing the brake: restoring fast axonal transport in neurodegenerative disorders
    • Hinckelmann M-V.V., et al. Releasing the brake: restoring fast axonal transport in neurodegenerative disorders. Trends Cell Biol. 2013, 23:634-643.
    • (2013) Trends Cell Biol. , vol.23 , pp. 634-643
    • Hinckelmann, M.-V.V.1
  • 67
    • 84901323796 scopus 로고    scopus 로고
    • Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of Huntingtin
    • Martin D.D., et al. Identification of a post-translationally myristoylated autophagy-inducing domain released by caspase cleavage of Huntingtin. Hum. Mol. Genet. 2014, 23:3166-3179.
    • (2014) Hum. Mol. Genet. , vol.23 , pp. 3166-3179
    • Martin, D.D.1
  • 68
    • 35448994487 scopus 로고    scopus 로고
    • Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity
    • Atwal R.S., et al. Huntingtin has a membrane association signal that can modulate huntingtin aggregation, nuclear entry and toxicity. Hum. Mol. Genet. 2007, 16:2600-2615.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 2600-2615
    • Atwal, R.S.1
  • 69
    • 0035955697 scopus 로고    scopus 로고
    • The biology and enzymology of protein N-myristoylation
    • Farazi T.A., et al. The biology and enzymology of protein N-myristoylation. J. Biol. Chem. 2001, 276:39501-39504.
    • (2001) J. Biol. Chem. , vol.276 , pp. 39501-39504
    • Farazi, T.A.1
  • 70
    • 78650516076 scopus 로고    scopus 로고
    • Post-translational myristoylation: fat matters in cellular life and death
    • Martin D.D., et al. Post-translational myristoylation: fat matters in cellular life and death. Biochimie 2011, 93:18-31.
    • (2011) Biochimie , vol.93 , pp. 18-31
    • Martin, D.D.1
  • 71
    • 84855374451 scopus 로고    scopus 로고
    • Tandem reporter assay for myristoylated proteins post-translationally (TRAMPP) identifies novel substrates for post-translational myristoylation: PKCepsilon, a case study
    • Martin D.D., et al. Tandem reporter assay for myristoylated proteins post-translationally (TRAMPP) identifies novel substrates for post-translational myristoylation: PKCepsilon, a case study. FASEB J. 2012, 26:13-28.
    • (2012) FASEB J. , vol.26 , pp. 13-28
    • Martin, D.D.1
  • 72
    • 77956408419 scopus 로고    scopus 로고
    • Does Huntingtin play a role in selective macroautophagy?
    • Steffan J.S. Does Huntingtin play a role in selective macroautophagy?. Cell Cycle 2010, 9:3401-3413.
    • (2010) Cell Cycle , vol.9 , pp. 3401-3413
    • Steffan, J.S.1
  • 73
    • 79956358522 scopus 로고    scopus 로고
    • Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
    • Fan W., et al. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc. Natl. Acad. Sci. U.S.A. 2011, 108:7769-7774.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 7769-7774
    • Fan, W.1
  • 74
    • 84899750506 scopus 로고    scopus 로고
    • ILIR: A web resource for prediction of Atg8-family interacting proteins
    • Kalvari I., et al. iLIR: A web resource for prediction of Atg8-family interacting proteins. Autophagy 2014, 10:913-925.
    • (2014) Autophagy , vol.10 , pp. 913-925
    • Kalvari, I.1
  • 75
    • 69149098580 scopus 로고    scopus 로고
    • Mouse models of Huntington disease: variations on a theme
    • Ehrnhoefer D.E., et al. Mouse models of Huntington disease: variations on a theme. Dis. Model Mech. 2009, 2:123-129.
    • (2009) Dis. Model Mech. , vol.2 , pp. 123-129
    • Ehrnhoefer, D.E.1
  • 76
    • 33745003424 scopus 로고    scopus 로고
    • Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin
    • Graham R.K., et al. Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 2006, 125:1179-1191.
    • (2006) Cell , vol.125 , pp. 1179-1191
    • Graham, R.K.1
  • 77
    • 80053573543 scopus 로고    scopus 로고
    • Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease
    • Ehrnhoefer D.E., et al. Small changes, big impact: posttranslational modifications and function of huntingtin in Huntington disease. Neuroscientist 2011, 17:475-492.
    • (2011) Neuroscientist , vol.17 , pp. 475-492
    • Ehrnhoefer, D.E.1
  • 78
    • 84898814706 scopus 로고    scopus 로고
    • Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A
    • Bhat K.P., et al. Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5706-5711.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5706-5711
    • Bhat, K.P.1
  • 79
    • 84869502341 scopus 로고    scopus 로고
    • Molecular determinants of selective clearance of protein inclusions by autophagy
    • Wong E., et al. Molecular determinants of selective clearance of protein inclusions by autophagy. Nat. Commun. 2012, 3:1240.
    • (2012) Nat. Commun. , vol.3 , pp. 1240
    • Wong, E.1
  • 80
    • 72149107077 scopus 로고    scopus 로고
    • Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice
    • Gu X., et al. Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice. Neuron 2009, 64:828-840.
    • (2009) Neuron , vol.64 , pp. 828-840
    • Gu, X.1
  • 81
    • 72149124383 scopus 로고    scopus 로고
    • IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome
    • Thompson L.M., et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J. Cell Biol. 2009, 187:1083-1099.
    • (2009) J. Cell Biol. , vol.187 , pp. 1083-1099
    • Thompson, L.M.1
  • 82
    • 84870378784 scopus 로고    scopus 로고
    • Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems
    • Jia H., et al. Selective histone deacetylase (HDAC) inhibition imparts beneficial effects in Huntington's disease mice: implications for the ubiquitin-proteasomal and autophagy systems. Hum. Mol. Genet. 2012, 21:5280-5293.
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 5280-5293
    • Jia, H.1
  • 83
    • 82155182012 scopus 로고    scopus 로고
    • SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington's disease
    • Mielcarek M., et al. SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington's disease. PLoS ONE 2011, 6:e27746.
    • (2011) PLoS ONE , vol.6 , pp. e27746
    • Mielcarek, M.1
  • 84
    • 84889031644 scopus 로고    scopus 로고
    • HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration
    • Mielcarek M., et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol. 2013, 11:e1001717.
    • (2013) PLoS Biol. , vol.11 , pp. e1001717
    • Mielcarek, M.1
  • 85
    • 63049132756 scopus 로고    scopus 로고
    • Acetylation targets mutant huntingtin to autophagosomes for degradation
    • Jeong H., et al. Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 2009, 137:60-72.
    • (2009) Cell , vol.137 , pp. 60-72
    • Jeong, H.1
  • 86
    • 84894565195 scopus 로고    scopus 로고
    • Self-consumption: the interplay of autophagy and apoptosis
    • Marino G., et al. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 2014, 15:81-94.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 81-94
    • Marino, G.1
  • 87
    • 84873546725 scopus 로고    scopus 로고
    • Life in the balance - a mechanistic view of the crosstalk between autophagy and apoptosis
    • Rubinstein A.D., Kimchi A. Life in the balance - a mechanistic view of the crosstalk between autophagy and apoptosis. J. Cell Sci. 2012, 125:5259-5268.
    • (2012) J. Cell Sci. , vol.125 , pp. 5259-5268
    • Rubinstein, A.D.1    Kimchi, A.2
  • 88
    • 77953271477 scopus 로고    scopus 로고
    • Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization
    • Li Z., et al. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 2010, 141:859-871.
    • (2010) Cell , vol.141 , pp. 859-871
    • Li, Z.1
  • 89
    • 84862113237 scopus 로고    scopus 로고
    • Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology
    • Hyman B.T., Yuan J. Apoptotic and non-apoptotic roles of caspases in neuronal physiology and pathophysiology. Nat. Rev. Neurosci. 2012, 13:395-406.
    • (2012) Nat. Rev. Neurosci. , vol.13 , pp. 395-406
    • Hyman, B.T.1    Yuan, J.2
  • 90
    • 84878745785 scopus 로고    scopus 로고
    • Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning
    • Cusack C.L., et al. Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat. Commun. 2013, 4:1876.
    • (2013) Nat. Commun. , vol.4 , pp. 1876
    • Cusack, C.L.1
  • 91
    • 84893080766 scopus 로고    scopus 로고
    • Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms
    • Erturk A., et al. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J. Neurosci. 2014, 34:1672-1688.
    • (2014) J. Neurosci. , vol.34 , pp. 1672-1688
    • Erturk, A.1
  • 92
    • 84899888552 scopus 로고    scopus 로고
    • Genetic analysis reveals that amyloid precursor protein and death receptor 6 function in the same pathway to control axonal pruning independent of beta-secretase
    • Olsen O., et al. Genetic analysis reveals that amyloid precursor protein and death receptor 6 function in the same pathway to control axonal pruning independent of beta-secretase. J. Neurosci. 2014, 34:6438-6447.
    • (2014) J. Neurosci. , vol.34 , pp. 6438-6447
    • Olsen, O.1
  • 93
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Hara T., et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006, 441:885-889.
    • (2006) Nature , vol.441 , pp. 885-889
    • Hara, T.1
  • 94
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Komatsu M., et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 2006, 441:880-884.
    • (2006) Nature , vol.441 , pp. 880-884
    • Komatsu, M.1
  • 95
    • 82855181986 scopus 로고    scopus 로고
    • Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy
    • Lee S., et al. Primary lysosomal dysfunction causes cargo-specific deficits of axonal transport leading to Alzheimer-like neuritic dystrophy. Autophagy 2011, 7:1562-1563.
    • (2011) Autophagy , vol.7 , pp. 1562-1563
    • Lee, S.1
  • 96
    • 33947372556 scopus 로고    scopus 로고
    • Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration
    • Yue Z. Regulation of neuronal autophagy in axon: implication of autophagy in axonal function and dysfunction/degeneration. Autophagy 2007, 3:139-141.
    • (2007) Autophagy , vol.3 , pp. 139-141
    • Yue, Z.1
  • 97
    • 84907182003 scopus 로고    scopus 로고
    • Does autophagy work in synaptic plasticity and memory?
    • Shehata M., Inokuchi K. Does autophagy work in synaptic plasticity and memory?. Rev. Neurosci. 2014, 25:543-557.
    • (2014) Rev. Neurosci. , vol.25 , pp. 543-557
    • Shehata, M.1    Inokuchi, K.2
  • 98
    • 78149487690 scopus 로고    scopus 로고
    • Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo
    • Graham R.K., et al. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo. J. Neurosci. 2010, 30:15019-15029.
    • (2010) J. Neurosci. , vol.30 , pp. 15019-15029
    • Graham, R.K.1
  • 99
    • 84861630493 scopus 로고    scopus 로고
    • Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment
    • Gafni J., et al. Caspase-6 activity in a BACHD mouse modulates steady-state levels of mutant huntingtin protein but is not necessary for production of a 586 amino acid proteolytic fragment. J. Neurosci. 2012, 32:7454-7465.
    • (2012) J. Neurosci. , vol.32 , pp. 7454-7465
    • Gafni, J.1
  • 100
    • 78649251041 scopus 로고    scopus 로고
    • The in vitro cleavage of the hAtg proteins by cell death proteases
    • Norman J.M., et al. The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 2010, 6:1042-1056.
    • (2010) Autophagy , vol.6 , pp. 1042-1056
    • Norman, J.M.1
  • 101
    • 82855175119 scopus 로고    scopus 로고
    • Caspase-6 and neurodegeneration
    • Graham R.K., et al. Caspase-6 and neurodegeneration. Trends Neurosci. 2011, 34:646-656.
    • (2011) Trends Neurosci. , vol.34 , pp. 646-656
    • Graham, R.K.1
  • 102
    • 84903649554 scopus 로고    scopus 로고
    • A nonapoptotic role for CASP2/caspase 2: Modulation of autophagy
    • Tiwari M., et al. A nonapoptotic role for CASP2/caspase 2: Modulation of autophagy. Autophagy 2014, 10:1054-1070.
    • (2014) Autophagy , vol.10 , pp. 1054-1070
    • Tiwari, M.1
  • 103
    • 84891738225 scopus 로고    scopus 로고
    • Autophagy and human diseases
    • Jiang P., Mizushima N. Autophagy and human diseases. Cell Res. 2014, 24:69-79.
    • (2014) Cell Res. , vol.24 , pp. 69-79
    • Jiang, P.1    Mizushima, N.2
  • 104
    • 79955641945 scopus 로고    scopus 로고
    • Cytoplasmic dynein in neurodegeneration
    • Eschbach J., Dupuis L. Cytoplasmic dynein in neurodegeneration. Pharmacol. Ther. 2011, 130:348-363.
    • (2011) Pharmacol. Ther. , vol.130 , pp. 348-363
    • Eschbach, J.1    Dupuis, L.2
  • 105
    • 84875753542 scopus 로고    scopus 로고
    • Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington's disease and other neurodegenerative disorders
    • Sarkar S. Chemical screening platforms for autophagy drug discovery to identify therapeutic candidates for Huntington's disease and other neurodegenerative disorders. Drug Discov. Today Technol. 2013, 10:e137-e144.
    • (2013) Drug Discov. Today Technol. , vol.10 , pp. e137-e144
    • Sarkar, S.1
  • 106
    • 57649227693 scopus 로고    scopus 로고
    • Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies
    • Sarkar S., et al. Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death Differ. 2009, 16:46-56.
    • (2009) Cell Death Differ. , vol.16 , pp. 46-56
    • Sarkar, S.1
  • 107
    • 80655124407 scopus 로고    scopus 로고
    • A comprehensive glossary of autophagy-related molecules and processes (2nd edition)
    • Klionsky D.J., et al. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy 2011, 7:1273-1294.
    • (2011) Autophagy , vol.7 , pp. 1273-1294
    • Klionsky, D.J.1
  • 108
    • 84876085831 scopus 로고    scopus 로고
    • Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates
    • Korac J., et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 2013, 126:580-592.
    • (2013) J. Cell Sci. , vol.126 , pp. 580-592
    • Korac, J.1
  • 109
    • 79953760562 scopus 로고    scopus 로고
    • Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis
    • Lemaire K., et al. Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis. PLoS ONE 2011, 6:e18517.
    • (2011) PLoS ONE , vol.6 , pp. e18517
    • Lemaire, K.1
  • 110
    • 84859911402 scopus 로고    scopus 로고
    • The incredible ULKs
    • Alers S., et al. The incredible ULKs. Cell Commun. Signal. 2011, 10:7.
    • (2011) Cell Commun. Signal. , vol.10 , pp. 7
    • Alers, S.1
  • 111
    • 84902519822 scopus 로고    scopus 로고
    • Regulation of p53 level by UBE4B in breast cancer
    • Zhang Y., et al. Regulation of p53 level by UBE4B in breast cancer. PLoS ONE 2014, 9:e90154.
    • (2014) PLoS ONE , vol.9 , pp. e90154
    • Zhang, Y.1
  • 112
    • 80051687260 scopus 로고    scopus 로고
    • Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14
    • Huang K., et al. Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Hum. Mol. Genet. 2011, 20:3356-3365.
    • (2011) Hum. Mol. Genet. , vol.20 , pp. 3356-3365
    • Huang, K.1
  • 113
    • 84867365063 scopus 로고    scopus 로고
    • A new, robust, and nonradioactive approach for exploring N-myristoylation
    • Rampoldi F., et al. A new, robust, and nonradioactive approach for exploring N-myristoylation. J. Lipid Res. 2012, 53:2459-2468.
    • (2012) J. Lipid Res. , vol.53 , pp. 2459-2468
    • Rampoldi, F.1
  • 114
    • 84873421215 scopus 로고    scopus 로고
    • Regulation of co- and post-translational myristoylation of proteins during apoptosis: interplay of N-myristoyltransferases and caspases
    • Perinpanayagam M.A., et al. Regulation of co- and post-translational myristoylation of proteins during apoptosis: interplay of N-myristoyltransferases and caspases. FASEB J. 2013, 27:811-821.
    • (2013) FASEB J. , vol.27 , pp. 811-821
    • Perinpanayagam, M.A.1
  • 115
    • 84879247889 scopus 로고    scopus 로고
    • Caspase-6 as a novel early target in the treatment of Alzheimer's disease
    • LeBlanc A.C. Caspase-6 as a novel early target in the treatment of Alzheimer's disease. Eur. J. Neurosci. 2013, 37:2005-2018.
    • (2013) Eur. J. Neurosci. , vol.37 , pp. 2005-2018
    • LeBlanc, A.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.