메뉴 건너뛰기




Volumn 13, Issue , 2014, Pages 37-47

Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways

Author keywords

Coexpression with signaling pathways; Implication networks; Lung cancer biomarkers

Indexed keywords

BIOLOGICAL MARKER;

EID: 84908270368     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S14054     Document Type: Review
Times cited : (28)

References (185)
  • 1
    • 41649119247 scopus 로고    scopus 로고
    • Protein networks in disease
    • Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008;18(4):644-52.
    • (2008) Genome Res. , vol.18 , Issue.4 , pp. 644-652
    • Ideker, T.1    Sharan, R.2
  • 2
    • 38849146505 scopus 로고    scopus 로고
    • Understanding biological functions through molecular networks
    • Han JD. Understanding biological functions through molecular networks. Cell Res. 2008;18(2):224-37.
    • (2008) Cell Res. , vol.18 , Issue.2 , pp. 224-237
    • Han, J.D.1
  • 3
    • 52149097555 scopus 로고    scopus 로고
    • Regulatory networks define phenotypic classes of human stem cell lines
    • Muller FJ, Laurent LC, Kostka D, et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature. 2008;455(7211):401-5.
    • (2008) Nature. , vol.455 , Issue.7211 , pp. 401-405
    • Muller, F.J.1    Laurent, L.C.2    Kostka, D.3
  • 4
    • 63149129627 scopus 로고    scopus 로고
    • Correlation signature of the macroscopic states of the gene regulatory network in cancer
    • Slavov N, Dawson KA. Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proc Natl Acad Sci U S A. 2009;106(11):4079-84.
    • (2009) Proc Natl Acad Sci U S A. , vol.106 , Issue.11 , pp. 4079-4084
    • Slavov, N.1    Dawson, K.A.2
  • 5
    • 59849125136 scopus 로고    scopus 로고
    • Dynamic modularity in protein interaction networks predicts breast cancer outcome
    • Taylor IW, Linding R, Warde-Farley D, et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009;27(2):199-204.
    • (2009) Nat Biotechnol. , vol.27 , Issue.2 , pp. 199-204
    • Taylor, I.W.1    Linding, R.2    Warde-Farley, D.3
  • 6
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: Understanding cancer using microarrays
    • Segal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays. Nat Genet. 2005;37(suppl):S38-45.
    • (2005) Nat Genet. , vol.37 , pp. S38-S45
    • Segal, E.1    Friedman, N.2    Kaminski, N.3    Regev, A.4    Koller, D.5
  • 7
    • 33847377573 scopus 로고    scopus 로고
    • A robustness-based approach to systems-oriented drug design
    • Kitano H. A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov. 2007;6(3):202-10.
    • (2007) Nat Rev Drug Discov. , vol.6 , Issue.3 , pp. 202-210
    • Kitano, H.1
  • 9
    • 54249155522 scopus 로고    scopus 로고
    • Network pharmacology: The next paradigm in drug discovery
    • Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4(11):682-90.
    • (2008) Nat Chem Biol. , vol.4 , Issue.11 , pp. 682-690
    • Hopkins, A.L.1
  • 10
    • 37549036729 scopus 로고    scopus 로고
    • Survivin, cancer networks and pathway-directed drug discovery
    • Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer. 2008;8(1):61-70.
    • (2008) Nat Rev Cancer. , vol.8 , Issue.1 , pp. 61-70
    • Altieri, D.C.1
  • 11
    • 35748935235 scopus 로고    scopus 로고
    • Proteins, drug targets and the mechanisms they control: The simple truth about complex networks
    • Araujo RP, Liotta LA, Petricoin EF. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov. 2007;6(11):871-80.
    • (2007) Nat Rev Drug Discov. , vol.6 , Issue.11 , pp. 871-880
    • Araujo, R.P.1    Liotta, L.A.2    Petricoin, E.F.3
  • 12
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol. 2008;9(10):770-80.
    • (2008) Nat Rev Mol Cell Biol. , vol.9 , Issue.10 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 13
    • 34250887474 scopus 로고    scopus 로고
    • Taking gene-expression profiling to the clinic: When will molecular signatures become relevant to patient care?
    • Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer. 2007;7(7):545-53.
    • (2007) Nat Rev Cancer. , vol.7 , Issue.7 , pp. 545-553
    • Sotiriou, C.1    Piccart, M.J.2
  • 14
    • 33744957443 scopus 로고    scopus 로고
    • Microarray analysis and tumor classification
    • Quackenbush J. Microarray analysis and tumor classification. N Engl J Med. 2006;354(23):2463-72.
    • (2006) N Engl J Med. , vol.354 , Issue.23 , pp. 2463-2472
    • Quackenbush, J.1
  • 15
    • 33744502855 scopus 로고    scopus 로고
    • Cancer biomarkers - an invitation to the table
    • Dalton WS, Friend SH. Cancer biomarkers - an invitation to the table. Science. 2006;312(5777):1165-8.
    • (2006) Science. , vol.312 , Issue.5777 , pp. 1165-1168
    • Dalton, W.S.1    Friend, S.H.2
  • 16
    • 27744569713 scopus 로고    scopus 로고
    • Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
    • Gold C, Holub A, Sollich P. Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Neural Netw. 2005;18(5-6):693-701.
    • (2005) Neural Netw. , vol.18 , Issue.5-6 , pp. 693-701
    • Gold, C.1    Holub, A.2    Sollich, P.3
  • 17
    • 24144440779 scopus 로고    scopus 로고
    • Gene extraction for cancer diagnosis by support vector machines-An improvement
    • Huang TM, Kecman V. Gene extraction for cancer diagnosis by support vector machines-An improvement. Artif Intell Med. 2005;35(1-2):185-94.
    • (2005) Artif Intell Med. , vol.35 , Issue.1-2 , pp. 185-194
    • Huang, T.M.1    Kecman, V.2
  • 18
    • 0034894874 scopus 로고    scopus 로고
    • Feature (gene) selection in gene expression-based tumor classification
    • Xiong M, Li W, Zhao J, Jin L, Boerwinkle E. Feature (gene) selection in gene expression-based tumor classification. Mol Genet Metab. 2001;73(3):239-47.
    • (2001) Mol Genet Metab. , vol.73 , Issue.3 , pp. 239-247
    • Xiong, M.1    Li, W.2    Zhao, J.3    Jin, L.4    Boerwinkle, E.5
  • 19
    • 0000336139 scopus 로고
    • Regression models and life-tables (with discussion)
    • Cox D. Regression models and life-tables (with discussion). J R Stat Soc B Methodol. 1972;34:187-220.
    • (1972) J R Stat Soc B Methodol. , vol.34 , pp. 187-220
    • Cox, D.1
  • 21
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • Hall MA, Holmes G. Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans Knowl Data Eng. 2003;15(3):1437-47.
    • (2003) IEEE Trans Knowl Data Eng. , vol.15 , Issue.3 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 23
    • 36148975519 scopus 로고    scopus 로고
    • Robust fisher discriminant analysis
    • Weiss Y, Schoch G, Platt J eds. 18. Cambridge, MA: MIT Press
    • Kim SJ, Magnani A, Boyd SP. Robust fisher discriminant analysis. In: Weiss Y, Schoch G, Platt J eds. Advances in Neural Information Processing Systems 18. Cambridge, MA: MIT Press; 2006:659-66.
    • (2006) Advances in Neural Information Processing Systems , pp. 659-666
    • Kim, S.J.1    Magnani, A.2    Boyd, S.P.3
  • 24
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45:5-32.
    • (2001) Mach Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 25
    • 13244289883 scopus 로고    scopus 로고
    • Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes
    • Jiang H, Deng Y, Chen HS, et al. Joint analysis of two microarray gene-expression data sets to select lung adenocarcinoma marker genes. BMC Bioinformatics. 2004;5:81.
    • (2004) BMC Bioinformatics. , vol.5 , pp. 81
    • Jiang, H.1    Deng, Y.2    Chen, H.S.3
  • 26
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R, Alvarez DA. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:3.
    • (2006) BMC Bioinformatics. , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    Alvarez, D.A.2
  • 27
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A. 1999;96(6):2907-12.
    • (1999) Proc Natl Acad Sci U S A. , vol.96 , Issue.6 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 28
    • 84864045847 scopus 로고    scopus 로고
    • Information bottleneck optimization and independent component extraction with spiking neurons
    • Scholkopf B, Platt J, Hoffman PC eds. 19. Cambridge, MA: MIT Press
    • Klampfl S, Legenstein R, Maass W. Information bottleneck optimization and independent component extraction with spiking neurons. In: Scholkopf B, Platt J, Hoffman PC eds. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press; 2007:713-20.
    • (2007) Advances in Neural Information Processing Systems , pp. 713-720
    • Klampfl, S.1    Legenstein, R.2    Maass, W.3
  • 29
    • 84857032488 scopus 로고    scopus 로고
    • Emergence of conjunctive visual features by quadratic independent component analysis
    • Scholkopf B, Platt J, Hoffman PC eds. 19. Cambridge, MA: MIT Press
    • Lindgren JT, Hyvärinen A. Emergence of conjunctive visual features by quadratic independent component analysis. In: Scholkopf B, Platt J, Hoffman PC eds. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press; 2007:897-904.
    • (2007) Advances in Neural Information Processing Systems , pp. 897-904
    • Lindgren, J.T.1    Hyvärinen, A.2
  • 30
    • 84864031064 scopus 로고    scopus 로고
    • Towards a general independent subspace analysis
    • Scholkopf B, Platt J, Hoffman PC eds. 19. Cambridge, MA: MIT Press
    • Theis F. Towards a general independent subspace analysis. In: Scholkopf B, Platt J, Hoffman PC eds. Advances in Neural Information Processing Systems 19. Cambridge, MA: MIT Press; 2007:1361-8.
    • (2007) Advances in Neural Information Processing Systems , pp. 1361-1368
    • Theis, F.1
  • 31
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen DV, Rocke DM. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics. 2002;18(1):39-50.
    • (2002) Bioinformatics. , vol.18 , Issue.1 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 32
    • 84862272240 scopus 로고    scopus 로고
    • Denoising and Dimension Reduction in Feature Space
    • Scholkopf B, Platt J, Hoffman T, editors. 19. MIT Press
    • Braun M, Buhmann J, Müller K. Denoising and Dimension Reduction in Feature Space. In: Scholkopf B, Platt J, Hoffman T, editors. Advances in Neural Information Processing Systems 19. MIT Press; 2007:185-92.
    • (2007) Advances in Neural Information Processing Systems , pp. 185-192
    • Braun, M.1    Buhmann, J.2    Müller, K.3
  • 33
    • 41549168797 scopus 로고    scopus 로고
    • Spectral bounds for sparse PCA: Exact and greedy algorithms
    • Weiss Y, Schoch G, Platt J eds. 18. Cambridge, MA: MIT Press
    • Moghaddam B, Weiss Y, Avidan S. Spectral bounds for sparse PCA: exact and greedy algorithms. In: Weiss Y, Schoch G, Platt J eds. Advances in Neural Information Processing Systems 18. Cambridge, MA: MIT Press; 2005:915-22.
    • (2005) Advances in Neural Information Processing Systems , pp. 915-922
    • Moghaddam, B.1    Weiss, Y.2    Avidan, S.3
  • 34
    • 84864052445 scopus 로고    scopus 로고
    • An approximate inference approach for the PCA reconstruction error
    • Weiss Y, Schoch G, Platt J eds. 18. Cambridge, MA: MIT Press
    • Opper M. An approximate inference approach for the PCA reconstruction error. In: Weiss Y, Schoch G, Platt J eds. Advances in Neural Information Processing Systems 18. Cambridge, MA: MIT Press; 2005:1035-42.
    • (2005) Advances in Neural Information Processing Systems , pp. 1035-1042
    • Opper, M.1
  • 36
    • 84864041215 scopus 로고    scopus 로고
    • On the convergence of eigenspaces in kernel principal components analysis
    • Weiss Y, Schoch G, Platt J eds. 18. Cambridge, MA: MIT Press
    • Zwald L, Blanchard G. On the convergence of eigenspaces in kernel principal components analysis. In: Weiss Y, Schoch G, Platt J eds. Advances in Neural Information Processing Systems 18. Cambridge, MA: MIT Press; 2005:1649-56.
    • (2005) Advances in Neural Information Processing Systems , pp. 1649-1656
    • Zwald, L.1    Blanchard, G.2
  • 37
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • Li K. Sliced inverse regression for dimension reduction. J Am Stat Assoc. 1991;86:316-42.
    • (1991) J Am Stat Assoc. , vol.86 , pp. 316-342
    • Li, K.1
  • 38
    • 3142592326 scopus 로고    scopus 로고
    • Extreme value distribution based gene selection criteria for discriminant microarray data analysis using logistic regression
    • Li W, Sun F, Grosse I. Extreme value distribution based gene selection criteria for discriminant microarray data analysis using logistic regression. J Comput Biol. 2006;11(2-3):215-26.
    • (2006) J Comput Biol. , vol.11 , Issue.2-3 , pp. 215-226
    • Li, W.1    Sun, F.2    Grosse, I.3
  • 40
    • 34848915427 scopus 로고    scopus 로고
    • Novel DOCK clique driven 3D similarity database search tools for molecule shape matching and beyond: Adding flexibility to the search for ligand kin
    • Good AC. Novel DOCK clique driven 3D similarity database search tools for molecule shape matching and beyond: adding flexibility to the search for ligand kin. J Mol Graph Model. 2007;26:656-66.
    • (2007) J Mol Graph Model. , vol.26 , pp. 656-666
    • Good, A.C.1
  • 41
    • 24144463821 scopus 로고    scopus 로고
    • Prediction of MHC class II binders using the ant colony search strategy
    • Karpenko O, Shi J, Dai Y. Prediction of MHC class II binders using the ant colony search strategy. Artif Intell Med. 2005;35(1-2):147-56.
    • (2005) Artif Intell Med. , vol.35 , Issue.1-2 , pp. 147-156
    • Karpenko, O.1    Shi, J.2    Dai, Y.3
  • 42
    • 33750491232 scopus 로고    scopus 로고
    • A tunable algorithm for collective decision-making
    • Pratt SC, Sumpter DJ. A tunable algorithm for collective decision-making. Proc Natl Acad Sci U S A. 2006;103(43):15906-10.
    • (2006) Proc Natl Acad Sci U S A. , vol.103 , Issue.43 , pp. 15906-15910
    • Pratt, S.C.1    Sumpter, D.J.2
  • 43
    • 84899021239 scopus 로고    scopus 로고
    • Genetic algorithms and explicit search statistics
    • Mozer MC, Jordan M, Petsche T eds. 9. Cambridge, MA: MIT Press
    • Baluja S. Genetic algorithms and explicit search statistics. In: Mozer MC, Jordan M, Petsche T eds. Advances in Neural Information Processing Systems 9. Cambridge, MA: MIT Press; 1997:319-25.
    • (1997) Advances in Neural Information Processing Systems , pp. 319-325
    • Baluja, S.1
  • 44
    • 0001722513 scopus 로고    scopus 로고
    • Stochastic hill climbing as a baseline method for evaluating generic algorithms
    • Touretzky DS, Mozer MC, Hasselmo ME eds. 8. Cambridge, MA: MIT Press
    • Juels A, Wattenberg M. Stochastic hill climbing as a baseline method for evaluating generic algorithms. In: Touretzky DS, Mozer MC, Hasselmo ME eds. Advances in Neural Information Processing Systems 8. Cambridge, MA: MIT Press; 1996:430-6.
    • (1996) Advances in Neural Information Processing Systems , pp. 430-436
    • Juels, A.1    Wattenberg, M.2
  • 45
    • 0026459753 scopus 로고
    • Preliminary ordering of multiple linked loci using pairwise linkage data
    • Falk CT. Preliminary ordering of multiple linked loci using pairwise linkage data. Genet Epidemiol. 1992;9(5):367-75.
    • (1992) Genet Epidemiol. , vol.9 , Issue.5 , pp. 367-375
    • Falk, C.T.1
  • 46
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671-80.
    • (1983) Science. , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 47
    • 34547861255 scopus 로고    scopus 로고
    • Genetdes: Automatic design of transcriptional networks
    • Rodrigo G, Carrera J, Jaramillo A. Genetdes: automatic design of transcriptional networks. Bioinformatics. 2007;23(14):1857-8.
    • (2007) Bioinformatics. , vol.23 , Issue.14 , pp. 1857-1858
    • Rodrigo, G.1    Carrera, J.2    Jaramillo, A.3
  • 49
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98(9):5116-21.
    • (2001) Proc Natl Acad Sci USA. , vol.98 , Issue.9 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 51
    • 0043203327 scopus 로고    scopus 로고
    • Multiple hypothesis testing in microarray experiments
    • Dudoit S, Shafer JP, Boldrick JC. Multiple hypothesis testing in microarray experiments. Stat Sci. 2003;18(1):71-103.
    • (2003) Stat Sci. , vol.18 , Issue.1 , pp. 71-103
    • Dudoit, S.1    Shafer, J.P.2    Boldrick, J.C.3
  • 52
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling M, Buhlmann P. Boosting for tumor classification with gene expression data. Bioinformatics. 2003;19(9):1061-9.
    • (2003) Bioinformatics. , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Buhlmann, P.2
  • 53
    • 0036376993 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments
    • Dudoit S, Yang Y, Callow MJ, Speed TP. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Stat Sin. 2002;12:111-39.
    • (2002) Stat Sin. , vol.12 , pp. 111-139
    • Dudoit, S.1    Yang, Y.2    Callow, M.J.3    Speed, T.P.4
  • 54
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance for gene expression microarray data
    • Kerr MK, Martin M, Churchill GA. Analysis of variance for gene expression microarray data. J Comput Biol. 2000;7(6):819-37.
    • (2000) J Comput Biol. , vol.7 , Issue.6 , pp. 819-837
    • Kerr, M.K.1    Martin, M.2    Churchill, G.A.3
  • 55
    • 0035687554 scopus 로고    scopus 로고
    • Assessing gene significance from cDNA microarray expression data via mixed models
    • Wolfinger RD, Gibson G, Wolfinger ED, et al. Assessing gene significance from cDNA microarray expression data via mixed models. J Comput Biol. 2001;8(6):625-37.
    • (2001) J Comput Biol. , vol.8 , Issue.6 , pp. 625-637
    • Wolfinger, R.D.1    Gibson, G.2    Wolfinger, E.D.3
  • 56
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc B Methodol. 1996;58(1):267-88.
    • (1996) J R Stat Soc B Methodol. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 57
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc B Stat Methodol. 2005;67:301-20.
    • (2005) J R Stat Soc B Stat Methodol. , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 58
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • Zou H, Zhang HH. On the adaptive elastic-net with a diverging number of parameters. Ann Stat. 2009;37(4):1733-51.
    • (2009) Ann Stat. , vol.37 , Issue.4 , pp. 1733-1751
    • Zou, H.1    Zhang, H.H.2
  • 59
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li C, Li H. Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics. 2008;24(9):1175-82.
    • (2008) Bioinformatics. , vol.24 , Issue.9 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 60
    • 84886812970 scopus 로고    scopus 로고
    • Molecular pathway identification using biological network-regularized logistic models
    • Zhang W, Wan YW, Allen GI, Pang K, Anderson ML, Liu Z. Molecular pathway identification using biological network-regularized logistic models. BMC Genomics. 2013;14(suppl 8):S7.
    • (2013) BMC Genomics. , vol.14 , pp. S7
    • Zhang, W.1    Wan, Y.W.2    Allen, G.I.3    Pang, K.4    Anderson, M.L.5    Liu, Z.6
  • 61
    • 34248352185 scopus 로고    scopus 로고
    • Markers for early detection of cancer: Statistical guidelines for nested case-control studies
    • Baker SG, Kramer BS, Srivastava S. Markers for early detection of cancer: statistical guidelines for nested case-control studies. BMC Med Res Methodol. 2002;2:4.
    • (2002) BMC Med Res Methodol. , vol.2 , pp. 4
    • Baker, S.G.1    Kramer, B.S.2    Srivastava, S.3
  • 62
    • 0032583152 scopus 로고    scopus 로고
    • Analysis of repeated markers used to predict progression of cancer
    • Emir B, Wieand S, Su JQ, Cha S. Analysis of repeated markers used to predict progression of cancer. Stat Med. 1998;17(22):2563-78.
    • (1998) Stat Med. , vol.17 , Issue.22 , pp. 2563-2578
    • Emir, B.1    Wieand, S.2    Su, J.Q.3    Cha, S.4
  • 63
    • 2342571696 scopus 로고    scopus 로고
    • Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker
    • Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004;159(9):882-90.
    • (2004) Am J Epidemiol. , vol.159 , Issue.9 , pp. 882-890
    • Pepe, M.S.1    Janes, H.2    Longton, G.3    Leisenring, W.4    Newcomb, P.5
  • 65
    • 33646884801 scopus 로고    scopus 로고
    • Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes
    • Franke L, van BH, Fokkens L, de Jong ED, Egmont-Petersen M, Wijmenga C. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet. 2006;78(6):1011-25.
    • (2006) Am J Hum Genet. , vol.78 , Issue.6 , pp. 1011-1025
    • Franke, L.1    van, B.H.2    Fokkens, L.3    de Jong, E.D.4    Egmont-Petersen, M.5    Wijmenga, C.6
  • 66
    • 33747035889 scopus 로고    scopus 로고
    • Predicting disease genes using protein-protein interactions
    • Oti M, Snel B, Huynen MA, Brunner HG. Predicting disease genes using protein-protein interactions. J Med Genet. 2006;43(8):691-8.
    • (2006) J Med Genet. , vol.43 , Issue.8 , pp. 691-698
    • Oti, M.1    Snel, B.2    Huynen, M.A.3    Brunner, H.G.4
  • 67
    • 39149143293 scopus 로고    scopus 로고
    • A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas
    • Mani KM, Lefebvre C, Wang K, et al. A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol. 2008;4:169.
    • (2008) Mol Syst Biol. , vol.4 , pp. 169
    • Mani, K.M.1    Lefebvre, C.2    Wang, K.3
  • 68
    • 41949118715 scopus 로고    scopus 로고
    • Network properties of genes harboring inherited disease mutations
    • Feldman I, Rzhetsky A, Vitkup D. Network properties of genes harboring inherited disease mutations. Proc Natl Acad Sci U S A. 2008;105(11):4323-8.
    • (2008) Proc Natl Acad Sci U S A. , vol.105 , Issue.11 , pp. 4323-4328
    • Feldman, I.1    Rzhetsky, A.2    Vitkup, D.3
  • 69
    • 59649111554 scopus 로고    scopus 로고
    • Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: Case study of primary immunodeficiencies
    • Ortutay C, Vihinen M. Identification of candidate disease genes by integrating gene ontologies and protein-interaction networks: case study of primary immunodeficiencies. Nucleic Acids Res. 2009;37(2):622-8.
    • (2009) Nucleic Acids Res. , vol.37 , Issue.2 , pp. 622-628
    • Ortutay, C.1    Vihinen, M.2
  • 70
    • 43249114206 scopus 로고    scopus 로고
    • Network-based global inference of human disease genes
    • Wu X, Jiang R, Zhang MQ, Li S. Network-based global inference of human disease genes. Mol Syst Biol. 2008;4:189.
    • (2008) Mol Syst Biol. , vol.4 , pp. 189
    • Wu, X.1    Jiang, R.2    Zhang, M.Q.3    Li, S.4
  • 71
    • 27144509163 scopus 로고    scopus 로고
    • A network-based analysis of systemic inflammation in humans
    • Calvano SE, Xiao W, Richards DR, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032-7.
    • (2005) Nature. , vol.437 , Issue.7061 , pp. 1032-1037
    • Calvano, S.E.1    Xiao, W.2    Richards, D.R.3
  • 72
    • 33748040439 scopus 로고    scopus 로고
    • Integrating genetic and network analysis to characterize genes related to mouse weight
    • Ghazalpour A, Doss S, Zhang B, et al. Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet. 2006;2(8):e130.
    • (2006) PLoS Genet. , vol.2 , Issue.8
    • Ghazalpour, A.1    Doss, S.2    Zhang, B.3
  • 73
    • 4644231870 scopus 로고    scopus 로고
    • A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease
    • Goehler H, Lalowski M, Stelzl U, et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington's disease. Mol Cell. 2004;15(6):853-65.
    • (2004) Mol Cell. , vol.15 , Issue.6 , pp. 853-865
    • Goehler, H.1    Lalowski, M.2    Stelzl, U.3
  • 74
    • 33646687963 scopus 로고    scopus 로고
    • A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration
    • Lim J, Hao T, Shaw C, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006;125(4):801-14.
    • (2006) Cell. , vol.125 , Issue.4 , pp. 801-814
    • Lim, J.1    Hao, T.2    Shaw, C.3
  • 75
    • 35349024501 scopus 로고    scopus 로고
    • Network modeling links breast cancer susceptibility and centrosome dysfunction
    • Pujana MA, Han JD, Starita LM, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. 2007;39(11):1338-49.
    • (2007) Nat Genet. , vol.39 , Issue.11 , pp. 1338-1349
    • Pujana, M.A.1    Han, J.D.2    Starita, L.M.3
  • 76
    • 0037461730 scopus 로고    scopus 로고
    • Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders
    • Sanchez I, Mahlke C, Yuan J. Pivotal role of oligomerization in expanded polyglutamine neurodegenerative disorders. Nature. 2003;421(6921):373-9.
    • (2003) Nature. , vol.421 , Issue.6921 , pp. 373-379
    • Sanchez, I.1    Mahlke, C.2    Yuan, J.3
  • 77
    • 34548567227 scopus 로고    scopus 로고
    • The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs)
    • Limviphuvadh V, Tanaka S, Goto S, Ueda K, Kanehisa M. The commonality of protein interaction networks determined in neurodegenerative disorders (NDDs). Bioinformatics. 2007;23(16):2129-38.
    • (2007) Bioinformatics. , vol.23 , Issue.16 , pp. 2129-2138
    • Limviphuvadh, V.1    Tanaka, S.2    Goto, S.3    Ueda, K.4    Kanehisa, M.5
  • 78
    • 38949164506 scopus 로고    scopus 로고
    • Genes and (common) pathways underlying drug addiction
    • Li CY, Mao X, Wei L. Genes and (common) pathways underlying drug addiction. PLoS Comput Biol. 2008;4(1):e2.
    • (2008) PLoS Comput Biol. , vol.4 , Issue.1
    • Li, C.Y.1    Mao, X.2    Wei, L.3
  • 79
    • 34548583420 scopus 로고    scopus 로고
    • Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network
    • Guo Z, Li Y, Gong X, et al. Edge-based scoring and searching method for identifying condition-responsive protein-protein interaction sub-network. Bioinformatics. 2007;23(16):2121-8.
    • (2007) Bioinformatics. , vol.23 , Issue.16 , pp. 2121-2128
    • Guo, Z.1    Li, Y.2    Gong, X.3
  • 80
    • 34250851115 scopus 로고    scopus 로고
    • A microRNA component of the p53 tumour suppressor network
    • He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130-4.
    • (2007) Nature. , vol.447 , Issue.7148 , pp. 1130-1134
    • He, L.1    He, X.2    Lim, L.P.3
  • 81
    • 34548805282 scopus 로고    scopus 로고
    • A genome-wide association study of global gene expression
    • Dixon AL, Liang L, Moffatt MF, et al. A genome-wide association study of global gene expression. Nat Genet. 2007;39(10):1202-7.
    • (2007) Nat Genet. , vol.39 , Issue.10 , pp. 1202-1207
    • Dixon, A.L.1    Liang, L.2    Moffatt, M.F.3
  • 82
    • 34548719076 scopus 로고    scopus 로고
    • Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes
    • Goring HH, Curran JE, Johnson MP, et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet. 2007;39(10):1208-16.
    • (2007) Nat Genet. , vol.39 , Issue.10 , pp. 1208-1216
    • Goring, H.H.1    Curran, J.E.2    Johnson, M.P.3
  • 83
    • 34548738566 scopus 로고    scopus 로고
    • Population genomics of human gene expression
    • Stranger BE, Nica AC, Forrest MS, et al. Population genomics of human gene expression. Nat Genet. 2007;39(10):1217-24.
    • (2007) Nat Genet. , vol.39 , Issue.10 , pp. 1217-1224
    • Stranger, B.E.1    Nica, A.C.2    Forrest, M.S.3
  • 86
    • 37849022459 scopus 로고    scopus 로고
    • Identification of key processes underlying cancer phenotypes using biologic pathway analysis
    • Efroni S, Schaefer CF, Buetow KH. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One. 2007;2(5):e425.
    • (2007) PLoS One. , vol.2 , Issue.5
    • Efroni, S.1    Schaefer, C.F.2    Buetow, K.H.3
  • 87
    • 0015609281 scopus 로고
    • The logical analysis of continuous, non-linear biochemical control networks
    • Glass L, Kauffman SA. The logical analysis of continuous, non-linear biochemical control networks. J Theor Biol. 1973;39(1):103-29.
    • (1973) J Theor Biol. , vol.39 , Issue.1 , pp. 103-129
    • Glass, L.1    Kauffman, S.A.2
  • 88
    • 0015823097 scopus 로고
    • Boolean formalization of genetic control circuits
    • Thomas R. Boolean formalization of genetic control circuits. J Theor Biol. 1973;42(3):563-85.
    • (1973) J Theor Biol. , vol.42 , Issue.3 , pp. 563-585
    • Thomas, R.1
  • 89
    • 0036500609 scopus 로고    scopus 로고
    • A genomic regulatory network for development
    • Davidson EH, Rast JP, Oliveri P, et al. A genomic regulatory network for development. Science. 2002;295(5560):1669-78.
    • (2002) Science. , vol.295 , Issue.5560 , pp. 1669-1678
    • Davidson, E.H.1    Rast, J.P.2    Oliveri, P.3
  • 90
    • 38449100969 scopus 로고    scopus 로고
    • A gene regulatory network subcircuit drives a dynamic pattern of gene expression
    • Smith J, Theodoris C, Davidson EH. A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science. 2007;318(5851):794-7.
    • (2007) Science. , vol.318 , Issue.5851 , pp. 794-797
    • Smith, J.1    Theodoris, C.2    Davidson, E.H.3
  • 91
    • 33645463194 scopus 로고    scopus 로고
    • Multiplexed protein measurement: Technologies and applications of protein and antibody arrays
    • Kingsmore SF. Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov. 2006;5(4):310-21.
    • (2006) Nat Rev Drug Discov. , vol.5 , Issue.4 , pp. 310-321
    • Kingsmore, S.F.1
  • 92
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung MK, Tegner J, Collins JJ. Reverse engineering gene networks using singular value decomposition and robust regression. Proc Natl Acad Sci U S A. 2002;99(9):6163-8.
    • (2002) Proc Natl Acad Sci U S A. , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.K.1    Tegner, J.2    Collins, J.J.3
  • 94
    • 35348892535 scopus 로고    scopus 로고
    • Innovation and robustness in complex regulatory gene networks
    • Ciliberti S, Martin OC, Wagner A. Innovation and robustness in complex regulatory gene networks. Proc Natl Acad Sci U S A. 2007;104(34):13591-6.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , Issue.34 , pp. 13591-13596
    • Ciliberti, S.1    Martin, O.C.2    Wagner, A.3
  • 95
    • 34547840228 scopus 로고    scopus 로고
    • Continuous hidden process model for time series expression experiments
    • Shi Y, Klustein M, Simon I, Mitchell T, Bar-Joseph Z. Continuous hidden process model for time series expression experiments. Bioinformatics. 2007;23(13):i459-67.
    • (2007) Bioinformatics. , vol.23 , Issue.13 , pp. i459-i467
    • Shi, Y.1    Klustein, M.2    Simon, I.3    Mitchell, T.4    Bar-Joseph, Z.5
  • 96
    • 43549125989 scopus 로고    scopus 로고
    • Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability
    • Cao Y, Liang J. Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability. BMC Syst Biol. 2008;2:30.
    • (2008) BMC Syst Biol. , vol.2 , pp. 30
    • Cao, Y.1    Liang, J.2
  • 98
    • 2342648924 scopus 로고    scopus 로고
    • Integrating high-throughput and computational data elucidates bacterial networks
    • Covert MW, Knight EM, Reed JL, Herrgard MJ, Palsson BO. Integrating high-throughput and computational data elucidates bacterial networks. Nature. 2004;429(6987):92-6.
    • (2004) Nature. , vol.429 , Issue.6987 , pp. 92-96
    • Covert, M.W.1    Knight, E.M.2    Reed, J.L.3    Herrgard, M.J.4    Palsson, B.O.5
  • 99
    • 33745178476 scopus 로고    scopus 로고
    • Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
    • Herrgard MJ, Lee BS, Portnoy V, Palsson BO. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 2006;16(5):627-35.
    • (2006) Genome Res. , vol.16 , Issue.5 , pp. 627-635
    • Herrgard, M.J.1    Lee, B.S.2    Portnoy, V.3    Palsson, B.O.4
  • 100
    • 34247183123 scopus 로고    scopus 로고
    • A genome-scale computational study of the interplay between transcriptional regulation and metabolism
    • Shlomi T, Eisenberg Y, Sharan R, Ruppin E. A genome-scale computational study of the interplay between transcriptional regulation and metabolism. Mol Syst Biol. 2007;3:101.
    • (2007) Mol Syst Biol. , vol.3 , pp. 101
    • Shlomi, T.1    Eisenberg, Y.2    Sharan, R.3    Ruppin, E.4
  • 101
    • 55749116150 scopus 로고    scopus 로고
    • Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network
    • Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D. Activity motifs reveal principles of timing in transcriptional control of the yeast metabolic network. Nat Biotechnol. 2008;26(11):1251-9.
    • (2008) Nat Biotechnol. , vol.26 , Issue.11 , pp. 1251-1259
    • Chechik, G.1    Oh, E.2    Rando, O.3    Weissman, J.4    Regev, A.5    Koller, D.6
  • 102
    • 56749102636 scopus 로고    scopus 로고
    • Regulatory activity revealed by dynamic correlations in gene expression noise
    • Dunlop MJ, Cox RS III, Levine JH, Murray RM, Elowitz MB. Regulatory activity revealed by dynamic correlations in gene expression noise. Nat Genet. 2008;40(12):1493-8.
    • (2008) Nat Genet. , vol.40 , Issue.12 , pp. 1493-1498
    • Dunlop, M.J.1    Cox, R.S.2    Levine, J.H.3    Murray, R.M.4    Elowitz, M.B.5
  • 103
    • 0001144902 scopus 로고    scopus 로고
    • Efficient exact stochastic simulation of chemical systems with many species and many channels
    • Gibson M, Bruck J. Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem. 1999;104:1876-89.
    • (1999) J Phys Chem. , vol.104 , pp. 1876-1889
    • Gibson, M.1    Bruck, J.2
  • 104
    • 0017030517 scopus 로고
    • A general method for numerically simulating the stochastic time evolution of coupled chemical reactions
    • Gillespie D. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comp Phys. 1976;22:403-34.
    • (1976) J Comp Phys. , vol.22 , pp. 403-434
    • Gillespie, D.1
  • 105
    • 33645429016 scopus 로고
    • Exact stochastic simulation of coupled chemical reactions
    • Gillespie D. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81:2340-61.
    • (1977) J Phys Chem. , vol.81 , pp. 2340-2361
    • Gillespie, D.1
  • 106
    • 0031879114 scopus 로고    scopus 로고
    • Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells
    • Arkin A, Ross J, McAdams HH. Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics. 1998;149(4):1633-48.
    • (1998) Genetics. , vol.149 , Issue.4 , pp. 1633-1648
    • Arkin, A.1    Ross, J.2    McAdams, H.H.3
  • 107
    • 33745725676 scopus 로고    scopus 로고
    • Circadian rhythms and molecular noise
    • Gonze D, Goldbeter A. Circadian rhythms and molecular noise. Chaos. 2006;16(2):026110.
    • (2006) Chaos , vol.16 , Issue.2
    • Gonze, D.1    Goldbeter, A.2
  • 108
    • 25644440059 scopus 로고    scopus 로고
    • Modelling of translation of human protein disulfide isomerase in Escherichia coli-A case study of gene optimisation
    • Niemitalo O, Neubauer A, Liebal U, Myllyharju J, Juffer AH, Neubauer P. Modelling of translation of human protein disulfide isomerase in Escherichia coli-A case study of gene optimisation. J Biotechnol. 2005;120(1):11-24.
    • (2005) J Biotechnol. , vol.120 , Issue.1 , pp. 11-24
    • Niemitalo, O.1    Neubauer, A.2    Liebal, U.3    Myllyharju, J.4    Juffer, A.H.5    Neubauer, P.6
  • 109
    • 36749100036 scopus 로고    scopus 로고
    • Molecular level stochastic model for competence cycles in Bacillus subtilis
    • Schultz D, Ben JE, Onuchic JN, Wolynes PG. Molecular level stochastic model for competence cycles in Bacillus subtilis. Proc Natl Acad Sci U S A. 2007;104(45):17582-7.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , Issue.45 , pp. 17582-17587
    • Schultz, D.1    Ben, J.E.2    Onuchic, J.N.3    Wolynes, P.G.4
  • 110
    • 22744441386 scopus 로고    scopus 로고
    • Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity
    • Weinberger LS, Burnett JC, Toettcher JE, Arkin AP, Schaffer DV. Stochastic gene expression in a lentiviral positive-feedback loop: HIV-1 Tat fluctuations drive phenotypic diversity. Cell. 2005;122(2):169-82.
    • (2005) Cell. , vol.122 , Issue.2 , pp. 169-182
    • Weinberger, L.S.1    Burnett, J.C.2    Toettcher, J.E.3    Arkin, A.P.4    Schaffer, D.V.5
  • 111
  • 113
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • PMID 10380182
    • Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput. 1999:17-28. PMID 10380182.
    • (1999) Pac Symp Biocomput. , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 114
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the Boolean network model
    • Lähdesmäki H, Shmulevich I, Yli-Harja O. On learning gene regulatory networks under the Boolean network model. Mach Learn. 2003;52:147-67.
    • (2003) Mach Learn. , vol.52 , pp. 147-167
    • Lähdesmäki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 115
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman PT, Sherlock G, Zhang MQ, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell. 1998;9(12):3273-97.
    • (1998) Mol Biol Cell. , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3
  • 116
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
    • Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol. 2003;223(1):1-18.
    • (2003) J Theor Biol. , vol.223 , Issue.1 , pp. 1-18
    • Albert, R.1    Othmer, H.G.2
  • 117
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics. 2002;18(2):261-74.
    • (2002) Bioinformatics. , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 118
    • 0346505356 scopus 로고    scopus 로고
    • Steady-state analysis of genetic regulatory networks modelled by probabilistic boolean networks
    • Shmulevich I, Gluhovsky I, Hashimoto RF, Dougherty ER, Zhang W. Steady-state analysis of genetic regulatory networks modelled by probabilistic boolean networks. Comp Funct Genomics. 2003;4(6):601-8.
    • (2003) Comp Funct Genomics. , vol.4 , Issue.6 , pp. 601-608
    • Shmulevich, I.1    Gluhovsky, I.2    Hashimoto, R.F.3    Dougherty, E.R.4    Zhang, W.5
  • 119
    • 33847304166 scopus 로고    scopus 로고
    • Qualitatively modelling and analysing genetic regulatory networks: A Petri net approach
    • Steggles LJ, Banks R, Shaw O, Wipat A. Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach. Bioinformatics. 2007;23(3):336-43.
    • (2007) Bioinformatics. , vol.23 , Issue.3 , pp. 336-343
    • Steggles, L.J.1    Banks, R.2    Shaw, O.3    Wipat, A.4
  • 121
    • 22144460567 scopus 로고    scopus 로고
    • STEPP - search tool for exploration of Petri net paths: A new tool for Petri net-based path analysis in biochemical networks
    • Koch I, Schueler M, Heiner M. STEPP - search tool for exploration of Petri net paths: a new tool for Petri net-based path analysis in biochemical networks. In Silico Biol. 2005;5(2):129-37.
    • (2005) In Silico Biol. , vol.5 , Issue.2 , pp. 129-137
    • Koch, I.1    Schueler, M.2    Heiner, M.3
  • 122
    • 0033670135 scopus 로고    scopus 로고
    • Pathway analysis in metabolic databases via differential metabolic display (DMD)
    • Kuffner R, Zimmer R, Lengauer T. Pathway analysis in metabolic databases via differential metabolic display (DMD). Bioinformatics. 2000;16(9):825-36.
    • (2000) Bioinformatics. , vol.16 , Issue.9 , pp. 825-836
    • Kuffner, R.1    Zimmer, R.2    Lengauer, T.3
  • 124
    • 27544501653 scopus 로고    scopus 로고
    • Qualitative modelling of regulated metabolic pathways: Application to the tryptophan biosynthesis in E. Coli
    • Simao E, Remy E, Thieffry D, Chaouiya C. Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli. Bioinformatics. 2005;21(suppl 2):ii190-6.
    • (2005) Bioinformatics. , vol.21 , pp. ii190-ii196
    • Simao, E.1    Remy, E.2    Thieffry, D.3    Chaouiya, C.4
  • 126
    • 0037941585 scopus 로고    scopus 로고
    • Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data
    • Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003;34(2):166-76.
    • (2003) Nat Genet. , vol.34 , Issue.2 , pp. 166-176
    • Segal, E.1    Shapira, M.2    Regev, A.3
  • 127
    • 57249116912 scopus 로고    scopus 로고
    • Boolean implication networks derived from large scale, whole genome microarray datasets
    • Sahoo D, Dill DL, Gentles AJ, Tibshirani R, Plevritis SK. Boolean implication networks derived from large scale, whole genome microarray datasets. Genome Biol. 2008;9(10):R157.
    • (2008) Genome Biol. , vol.9 , Issue.10 , pp. R157
    • Sahoo, D.1    Dill, D.L.2    Gentles, A.J.3    Tibshirani, R.4    Plevritis, S.K.5
  • 128
    • 77950544622 scopus 로고    scopus 로고
    • MiDReG: A method of mining developmentally regulated genes using Boolean implications
    • Sahoo D, Seita J, Bhattacharya D, et al. MiDReG: a method of mining developmentally regulated genes using Boolean implications. Proc Natl Acad Sci U S A. 2010;107(13):5732-7.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.13 , pp. 5732-5737
    • Sahoo, D.1    Seita, J.2    Bhattacharya, D.3
  • 130
    • 15944399178 scopus 로고    scopus 로고
    • Sparse graphical models for exploring gene expression data
    • Dobra A, Jones B, Hans C, Nevis J, West M. Sparse graphical models for exploring gene expression data. J Multivar Anal. 2004;90:196-212.
    • (2004) J Multivar Anal. , vol.90 , pp. 196-212
    • Dobra, A.1    Jones, B.2    Hans, C.3    Nevis, J.4    West, M.5
  • 131
    • 22044448669 scopus 로고    scopus 로고
    • Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
    • Wille A, Zimmermann P, Vranova E, et al. Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol. 2004;5(11):R92.
    • (2004) Genome Biol. , vol.5 , Issue.11 , pp. R92
    • Wille, A.1    Zimmermann, P.2    Vranova, E.3
  • 132
    • 0036678784 scopus 로고    scopus 로고
    • MArray: Analysing single, replicated or reversed microarray experiments
    • Wang J, Nygaard V, Smith-Sorensen B, Hovig E, Myklebost O. MArray: analysing single, replicated or reversed microarray experiments. Bioinformatics. 2002;18(8):1139-40.
    • (2002) Bioinformatics. , vol.18 , Issue.8 , pp. 1139-1140
    • Wang, J.1    Nygaard, V.2    Smith-Sorensen, B.3    Hovig, E.4    Myklebost, O.5
  • 133
    • 0034575477 scopus 로고    scopus 로고
    • Cluster inference methods and graphical models evaluated on NCI60 microarray gene expression data
    • Waddell PJ, Kishino H. Cluster inference methods and graphical models evaluated on NCI60 microarray gene expression data. Genome Inform Ser Workshop Genome Inform. 2000;11:129-40.
    • (2000) Genome Inform Ser Workshop Genome Inform. , vol.11 , pp. 129-140
    • Waddell, P.J.1    Kishino, H.2
  • 134
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • Li H, Gui J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics. 2006;7(2):302-17.
    • (2006) Biostatistics. , vol.7 , Issue.2 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 135
    • 50649089207 scopus 로고    scopus 로고
    • RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays
    • Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18(9):1509-17.
    • (2008) Genome Res. , vol.18 , Issue.9 , pp. 1509-1517
    • Marioni, J.C.1    Mason, C.E.2    Mane, S.M.3    Stephens, M.4    Gilad, Y.5
  • 136
    • 77949481052 scopus 로고    scopus 로고
    • Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments
    • Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010;11:94.
    • (2010) BMC Bioinformatics. , vol.11 , pp. 94
    • Bullard, J.H.1    Purdom, E.2    Hansen, K.D.3    Dudoit, S.4
  • 137
    • 84863562292 scopus 로고    scopus 로고
    • Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    • Li J, Witten DM, Johnstone IM, Tibshirani R. Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics. 2012;13(3):523-38.
    • (2012) Biostatistics. , vol.13 , Issue.3 , pp. 523-538
    • Li, J.1    Witten, D.M.2    Johnstone, I.M.3    Tibshirani, R.4
  • 138
    • 0037238291 scopus 로고    scopus 로고
    • An EM algorithm for multivariate Poisson distribution and related models
    • Karlis D. An EM algorithm for multivariate Poisson distribution and related models. J Appl Stat. 2003;30(1):63-77.
    • (2003) J Appl Stat. , vol.30 , Issue.1 , pp. 63-77
    • Karlis, D.1
  • 140
    • 84872548765 scopus 로고    scopus 로고
    • A Log-Linear Graphical Model for Inferring Genetic Networks from High-Throughput Sequencing Data
    • Philadelphia, USA
    • Allen GI, Liu Z. A Log-Linear Graphical Model for Inferring Genetic Networks from High-Throughput Sequencing Data. IEEE International Conference on Bioinformatics and Biomedicine. 2012. Philadelphia, USA.
    • (2012) IEEE International Conference on Bioinformatics and Biomedicine.
    • Allen, G.I.1    Liu, Z.2
  • 141
  • 142
    • 77954195272 scopus 로고    scopus 로고
    • Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM
    • Vaske CJ, Benz SC, Sanborn JZ, et al. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26(12):i237-45.
    • (2010) Bioinformatics. , vol.26 , Issue.12 , pp. i237-i245
    • Vaske, C.J.1    Benz, S.C.2    Sanborn, J.Z.3
  • 143
    • 0033346610 scopus 로고    scopus 로고
    • A critique of software defect prediction models
    • Fenton NE, Neil M. A critique of software defect prediction models. IEEE Trans Software Eng. 1999;25(5):675-89.
    • (1999) IEEE Trans Software Eng. , vol.25 , Issue.5 , pp. 675-689
    • Fenton, N.E.1    Neil, M.2
  • 145
    • 0001247275 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • Minneapolis, MN, USA. Published By: AUAI Press, Corvallis, Oregon
    • Henrion M. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. Proceedings of Uncertainty in Artificial Intelligence, 4, 1988;149-63. Minneapolis, MN, USA. Published By: AUAI Press, Corvallis, Oregon.
    • (1988) Proceedings of Uncertainty in Artificial Intelligence , vol.4 , pp. 149-163
    • Henrion, M.1
  • 146
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their applications to expert systems
    • Lauritzen S, Spiegelhalter D. Local computations with probabilities on graphical structures and their applications to expert systems. J R Stat Soc B. 1988;50(157):224.
    • (1988) J R Stat Soc B. , vol.50 , Issue.157 , pp. 224
    • Lauritzen, S.1    Spiegelhalter, D.2
  • 148
    • 25144441907 scopus 로고    scopus 로고
    • Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels)
    • Rodin AS, Boerwinkle E. Mining genetic epidemiology data with Bayesian networks I: Bayesian networks and example application (plasma apoE levels). Bioinformatics. 2005;21(15):3273-8.
    • (2005) Bioinformatics. , vol.21 , Issue.15 , pp. 3273-3278
    • Rodin, A.S.1    Boerwinkle, E.2
  • 149
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman N. Inferring cellular networks using probabilistic graphical models. Science. 2004;303(5659):799-805.
    • (2004) Science. , vol.303 , Issue.5659 , pp. 799-805
    • Friedman, N.1
  • 150
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, Pe'er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7(3-4):601-20.
    • (2000) J Comput Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 151
    • 0142052944 scopus 로고    scopus 로고
    • Bayesian networks approach for predicting protein-protein interactions from genomic data
    • Jansen R, Yu H, Greenbaum D, et al. Bayesian networks approach for predicting protein-protein interactions from genomic data. Science. 2003;302(5644):449-53.
    • (2003) Science. , vol.302 , Issue.5644 , pp. 449-453
    • Jansen, R.1    Yu, H.2    Greenbaum, D.3
  • 153
    • 33748323125 scopus 로고    scopus 로고
    • A joint model of regulatory and metabolic networks
    • Yeang CH, Vingron M. A joint model of regulatory and metabolic networks. BMC Bioinformatics. 2006;7:332.
    • (2006) BMC Bioinformatics. , vol.7 , pp. 332
    • Yeang, C.H.1    Vingron, M.2
  • 154
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K, Perez O, Pe'er D, Lauffenburger DA, Nolan GP. Causal protein-signaling networks derived from multiparameter single-cell data. Science. 2005;308(5721):523-9.
    • (2005) Science. , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 155
    • 34247556038 scopus 로고    scopus 로고
    • Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations
    • Zhu J, Wiener MC, Zhang C, et al. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations. PLoS Comput Biol. 2007;3(4):e69.
    • (2007) PLoS Comput Biol. , vol.3 , Issue.4
    • Zhu, J.1    Wiener, M.C.2    Zhang, C.3
  • 156
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J, Zhang B, Smith EN, et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet. 2008;40(7):854-61.
    • (2008) Nat Genet. , vol.40 , Issue.7 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.N.3
  • 158
    • 1542287343 scopus 로고    scopus 로고
    • Superfamilies of evolved and designed networks
    • Milo R, Itzkovitz S, Kashtan N, et al. Superfamilies of evolved and designed networks. Science. 2004;303(5663):1538-42.
    • (2004) Science. , vol.303 , Issue.5663 , pp. 1538-1542
    • Milo, R.1    Itzkovitz, S.2    Kashtan, N.3
  • 159
    • 0141484611 scopus 로고    scopus 로고
    • Evolutionary conservation of motif constituents in the yeast protein interaction network
    • Wuchty S, Oltvai ZN, Barabasi AL. Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet. 2003;35(2):176-9.
    • (2003) Nat Genet. , vol.35 , Issue.2 , pp. 176-179
    • Wuchty, S.1    Oltvai, Z.N.2    Barabasi, A.L.3
  • 160
    • 0344844807 scopus 로고    scopus 로고
    • Modelling regulatory pathways in E. Coli from time series expression profiles
    • Ong IM, Glasner JD, Page D. Modelling regulatory pathways in E. coli from time series expression profiles. Bioinformatics. 2002;18(suppl 1):S241-8.
    • (2002) Bioinformatics. , vol.18 , pp. S241-S248
    • Ong, I.M.1    Glasner, J.D.2    Page, D.3
  • 161
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • Pe'er D, Regev A, Elidan G, Friedman N. Inferring subnetworks from perturbed expression profiles. Bioinformatics. 2001;17(suppl 1):S215-24.
    • (2001) Bioinformatics. , vol.17 , pp. S215-S224
    • Pe'er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 162
    • 12844254468 scopus 로고    scopus 로고
    • Modeling and analysis of heterogeneous regulation in biological networks
    • Gat-Viks I, Tanay A, Shamir R. Modeling and analysis of heterogeneous regulation in biological networks. J Comput Biol. 2004;11(6):1034-49.
    • (2004) J Comput Biol. , vol.11 , Issue.6 , pp. 1034-1049
    • Gat-Viks, I.1    Tanay, A.2    Shamir, R.3
  • 165
    • 33646012325 scopus 로고    scopus 로고
    • A probabilistic methodology for integrating knowledge and experiments on biological networks
    • Gat-Viks I, Tanay A, Raijman D, Shamir R. A probabilistic methodology for integrating knowledge and experiments on biological networks. J Comput Biol. 2006;13(2):165-81.
    • (2006) J Comput Biol. , vol.13 , Issue.2 , pp. 165-181
    • Gat-Viks, I.1    Tanay, A.2    Raijman, D.3    Shamir, R.4
  • 166
    • 33847708336 scopus 로고    scopus 로고
    • Refinement and expansion of signaling pathways: The osmotic response network in yeast
    • Gat-Viks I, Shamir R. Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res. 2007;17(3):358-67.
    • (2007) Genome Res. , vol.17 , Issue.3 , pp. 358-367
    • Gat-Viks, I.1    Shamir, R.2
  • 167
    • 0029332409 scopus 로고    scopus 로고
    • User-expertise modeling with empirically derived probabilistic implication networks
    • Desmarais MC, Maluf A, Liu J. User-expertise modeling with empirically derived probabilistic implication networks. User Model User Adapted Interact. 1996;5(3-4):283-315.
    • (1996) User Model User Adapted Interact. , vol.5 , Issue.3-4 , pp. 283-315
    • Desmarais, M.C.1    Maluf, A.2    Liu, J.3
  • 169
    • 0031273002 scopus 로고    scopus 로고
    • Method of learning implication networks from empirical data: Algorithm and Monte-Carlo simulation-based validation
    • Liu J, Desmarais MCA. Method of learning implication networks from empirical data: algorithm and Monte-Carlo simulation-based validation. IEEE Trans Knowl Data Eng. 1997;9(6):990-1004.
    • (1997) IEEE Trans Knowl Data Eng. , vol.9 , Issue.6 , pp. 990-1004
    • Liu, J.1    Desmarais, M.C.A.2
  • 170
    • 0035330328 scopus 로고    scopus 로고
    • A new uncertainty measure for belief networks with applications to optimal evidential inferencing
    • Liu J, Maluf D, Desmarais MC. A new uncertainty measure for belief networks with applications to optimal evidential inferencing. IEEE Trans Knowl Data Eng. 2001;13(3):416-25.
    • (2001) IEEE Trans Knowl Data Eng. , vol.13 , Issue.3 , pp. 416-425
    • Liu, J.1    Maluf, D.2    Desmarais, M.C.3
  • 172
    • 0142192759 scopus 로고    scopus 로고
    • Neural network analysis of lymphoma microarray data: Prognosis and diagnosis near-perfect
    • O'Neill MC, Song L. Neural network analysis of lymphoma microarray data: prognosis and diagnosis near-perfect. BMC Bioinformatics. 2003;4:13.
    • (2003) BMC Bioinformatics. , vol.4 , pp. 13
    • O'Neill, M.C.1    Song, L.2
  • 174
    • 10344230919 scopus 로고    scopus 로고
    • Automatic domain decomposition of proteins by a Gaussian network model
    • Kundu S, Sorensen DC, Phillips GN Jr. Automatic domain decomposition of proteins by a Gaussian network model. Proteins. 2004;57(4):725-33.
    • (2004) Proteins. , vol.57 , Issue.4 , pp. 725-733
    • Kundu, S.1    Sorensen, D.C.2    Phillips, G.N.3
  • 175
    • 0030087609 scopus 로고    scopus 로고
    • On the interpretation of certainty factors in expert systems
    • Cruz GP, Beliakov G. On the interpretation of certainty factors in expert systems. Artif Intell Med. 1996;8(1):1-14.
    • (1996) Artif Intell Med. , vol.8 , Issue.1 , pp. 1-14
    • Cruz, G.P.1    Beliakov, G.2
  • 176
    • 0019998697 scopus 로고
    • Recognition of a hidden mineral deposit by an artificial intelligence program
    • Campbell AN, Hollister VF, Duda RO, Hart PE. Recognition of a hidden mineral deposit by an artificial intelligence program. Science. 1982;217(4563):927-9.
    • (1982) Science. , vol.217 , Issue.4563 , pp. 927-929
    • Campbell, A.N.1    Hollister, V.F.2    Duda, R.O.3    Hart, P.E.4
  • 180
    • 84858008460 scopus 로고    scopus 로고
    • Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma
    • Wan YW, Beer DG, Guo NL. Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma. Lung Cancer. 2012;76(1):98-105.
    • (2012) Lung Cancer. , vol.76 , Issue.1 , pp. 98-105
    • Wan, Y.W.1    Beer, D.G.2    Guo, N.L.3
  • 182
    • 84858008460 scopus 로고    scopus 로고
    • Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma
    • Wan YW, Beer DG, Guo NL. Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma. Lung Cancer. 2011;76(1):98-105.
    • (2011) Lung Cancer. , vol.76 , Issue.1 , pp. 98-105
    • Wan, Y.W.1    Beer, D.G.2    Guo, N.L.3
  • 183
    • 84866501738 scopus 로고    scopus 로고
    • A smoking-associated 7-gene signature for lung cancer diagnosis and prognosis
    • Wan YW, Raese RA, Fortney JE, et al. A smoking-associated 7-gene signature for lung cancer diagnosis and prognosis. Int J Oncol. 2012;41(4):1387-96.
    • (2012) Int J Oncol. , vol.41 , Issue.4 , pp. 1387-1396
    • Wan, Y.W.1    Raese, R.A.2    Fortney, J.E.3
  • 184
    • 84861526048 scopus 로고    scopus 로고
    • Pathway-based identification of a smoking associated 6-gene signature predictive of lung cancer risk and survival
    • Guo NL, Wan YW. Pathway-based identification of a smoking associated 6-gene signature predictive of lung cancer risk and survival. Artif Intell Med. 2012;55(2):97-105.
    • (2012) Artif Intell Med. , vol.55 , Issue.2 , pp. 97-105
    • Guo, N.L.1    Wan, Y.W.2
  • 185
    • 49149129916 scopus 로고    scopus 로고
    • Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study
    • Shedden K, Taylor JM, Enkemann SA, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14(8):822-7.
    • (2008) Nat Med. , vol.14 , Issue.8 , pp. 822-827
    • Shedden, K.1    Taylor, J.M.2    Enkemann, S.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.