메뉴 건너뛰기




Volumn 11, Issue 2-3, 2004, Pages 215-226

Extreme value distribution based gene selection criteria for discriminant microarray data analysis using logistic regression

Author keywords

Extreme value distribution; Gene selection; Logistic regression; Microarray

Indexed keywords

CALCULATION; CLASSIFICATION; CONFERENCE PAPER; DATA ANALYSIS; DERIVATIZATION; DNA MICROARRAY; GENETIC SELECTION; LOGISTIC REGRESSION ANALYSIS; PRIORITY JOURNAL; RANDOMIZATION; SIMULATION; STATISTICAL MODEL; VARIANCE;

EID: 3142592326     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/1066527041410445     Document Type: Conference Paper
Times cited : (15)

References (52)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., and Levine, A.J. 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. 96(12), 6745-6750.
    • (1999) Proc. Natl. Acad. Sci. , vol.96 , Issue.12 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3    Gish, K.4    Ybarra, S.5    Mack, D.6    Levine, A.J.7
  • 2
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • Antoniadis, A., Lambert-Lacroix, S., and Leblanc, F. 2003. Effective dimension reduction methods for tumor classification using gene expression data. Bioinformatics 19, 563-570.
    • (2003) Bioinformatics , vol.19 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 3
    • 0034948896 scopus 로고    scopus 로고
    • A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inference of gene changes
    • Baldi, P., and Long, A.D. 2001. A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inference of gene changes. Bioinformatics 17(6), 509-519.
    • (2001) Bioinformatics , vol.17 , Issue.6 , pp. 509-519
    • Baldi, P.1    Long, A.D.2
  • 4
    • 0038238080 scopus 로고    scopus 로고
    • Statistical methods for ranking differentially expressed genes
    • Broberg, P. 2003. Statistical methods for ranking differentially expressed genes. Genome Biol. 4, R41.
    • (2003) Genome Biol. , vol.4
    • Broberg, P.1
  • 6
    • 0031246430 scopus 로고    scopus 로고
    • Ratio-based decisions and the quantitative analysis of cDNA microarray images
    • Chen, Y., Dougherty, E., and Bittner, M.L. 1997. Ratio-based decisions and the quantitative analysis of cDNA microarray images. J. Biomed. Optics 2, 364-374.
    • (1997) J. Biomed. Optics , vol.2 , pp. 364-374
    • Chen, Y.1    Dougherty, E.2    Bittner, M.L.3
  • 7
    • 0036128489 scopus 로고    scopus 로고
    • Dimension reduction strategies for analyzing global gene expression data with a response
    • Chiaromonte, F., and Martinelli, J. 2002. Dimension reduction strategies for analyzing global gene expression data with a response. Math. Biosci. 176(1), 123-144.
    • (2002) Math. Biosci. , vol.176 , Issue.1 , pp. 123-144
    • Chiaromonte, F.1    Martinelli, J.2
  • 8
    • 0032837252 scopus 로고    scopus 로고
    • Computational methods for the identification of differential and coordinated gene expression
    • Claverie, J.M. 1999. Computational methods for the identification of differential and coordinated gene expression. Human Mol. Genet. 8, 1821-1832.
    • (1999) Human Mol. Genet. , vol.8 , pp. 1821-1832
    • Claverie, J.M.1
  • 11
    • 0038494599 scopus 로고    scopus 로고
    • Unsupervised feature selection via two-way ordering in gene expression analysis
    • Ding, C.H.Q. 2003. Unsupervised feature selection via two-way ordering in gene expression analysis. Bioinformatics 19, 1259-1266.
    • (2003) Bioinformatics , vol.19 , pp. 1259-1266
    • Ding, C.H.Q.1
  • 12
    • 0036606753 scopus 로고    scopus 로고
    • Statistical intelligence: Effective analysis of high-density microarray data
    • Draghici, S. 2002. Statistical intelligence: Effective analysis of high-density microarray data. Drug Discovery Today 7(11), S55-S63.
    • (2002) Drug Discovery Today , vol.7 , Issue.11
    • Draghici, S.1
  • 13
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., and Speed, T.P. 2002, Comparison of discrimination methods for the classification of tumors using gene expression data. J. American Statist. Assoc. 97(457), 77-87.
    • (2002) J. American Statist. Assoc. , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 15
    • 2242436409 scopus 로고    scopus 로고
    • Geometric understanding of likelihood ratio statistics
    • Fan, J., Hung, H.N., and Wong, W.H. 2000. Geometric understanding of likelihood ratio statistics. J. Am. Statist. Assoc. 95, 836-841.
    • (2000) J. Am. Statist. Assoc. , vol.95 , pp. 836-841
    • Fan, J.1    Hung, H.N.2    Wong, W.H.3
  • 18
    • 0002718763 scopus 로고    scopus 로고
    • Using non-parametric methods in the context of multiple testing to determine differentially expressed genes
    • Kluwer Academic, NY
    • Grant, G., Manduchi, E., and Stoeckert Jr., C. 2002. Using non-parametric methods in the context of multiple testing to determine differentially expressed genes. In Methods of Microarray Data Analysis: Papers from CAMDA'00, 37-55, Kluwer Academic, NY
    • (2002) Methods of Microarray Data Analysis: Papers from CAMDA'00 , pp. 37-55
    • Grant, G.1    Manduchi, E.2    Stoeckert Jr., C.3
  • 19
    • 0003397430 scopus 로고
    • Statistical Theory of Extreme Values and Some Practical Applications
    • US Government Printing Office
    • Gumbel, E.J. 1954. Statistical Theory of Extreme Values and Some Practical Applications, National Bureau of Standards Applied Mathematics Series 33, US Government Printing Office.
    • (1954) National Bureau of Standards Applied Mathematics Series 33
    • Gumbel, E.J.1
  • 21
    • 3142653304 scopus 로고
    • Some applications of extreme-value methods
    • Gumbel, E.J., and Lieblein, J. 1954. Some applications of extreme-value methods. American Statistician 8(5), 14-17.
    • (1954) American Statistician , vol.8 , Issue.5 , pp. 14-17
    • Gumbel, E.J.1    Lieblein, J.2
  • 22
    • 84944979679 scopus 로고
    • Order statistics from the gamma distribution
    • Gupta, S.S. 1960. Order statistics from the gamma distribution. Technometrics 2, 243-262.
    • (1960) Technometrics , vol.2 , pp. 243-262
    • Gupta, S.S.1
  • 24
    • 0034921979 scopus 로고    scopus 로고
    • Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data
    • Ideker, T., Thorsson, V., Siegel, A.F., and Hood, L.E. 2000. Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. J. Comp. Biol. 7(6), 805-817.
    • (2000) J. Comp. Biol. , vol.7 , Issue.6 , pp. 805-817
    • Ideker, T.1    Thorsson, V.2    Siegel, A.F.3    Hood, L.E.4
  • 25
    • 0037976550 scopus 로고    scopus 로고
    • Improved gene selection for classification of microarrays
    • Jaeger, J., Sengupta, R., and Ruzzo, W.L. 2003. Improved gene selection for classification of microarrays. Pac. Symp. Biocomput. 8, 53-64.
    • (2003) Pac. Symp. Biocomput. , vol.8 , pp. 53-64
    • Jaeger, J.1    Sengupta, R.2    Ruzzo, W.L.3
  • 27
    • 18144444239 scopus 로고    scopus 로고
    • Cluster-Rasch models for microarray gene expression data
    • research 0031
    • Li, H., and Hong, F. 2001. Cluster-Rasch models for microarray gene expression data. Genome Biol. 2(8), research 0031.
    • (2001) Genome Biol. , vol.2 , Issue.8
    • Li, H.1    Hong, F.2
  • 28
    • 0037245821 scopus 로고    scopus 로고
    • Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients
    • Li, J., Liu, H., Downing, J.R., Yeoh, A.E.J., and Wong, L. 2003. Simple rules underlying gene expression profiles of more than six subtypes of acute lymphoblastic leukemia (ALL) patients. Bioinformatics 19, 71-78.
    • (2003) Bioinformatics , vol.19 , pp. 71-78
    • Li, J.1    Liu, H.2    Downing, J.R.3    Yeoh, A.E.J.4    Wong, L.5
  • 30
    • 0000984930 scopus 로고    scopus 로고
    • How many genes are needed for a discriminant microarray data analysis?
    • Kluwer Academic, NY
    • Li, W., and Yang, Y. 2002a. How many genes are needed for a discriminant microarray data analysis? In Methods of Microarray Data Analysis: Papers from CAMDA'00, 137-150, Kluwer Academic, NY.
    • (2002) Methods of Microarray Data Analysis: Papers from CAMDA'00 , pp. 137-150
    • Li, W.1    Yang, Y.2
  • 31
    • 0036434526 scopus 로고    scopus 로고
    • Zipf's law in importance of genes for cancer classification using microarray data
    • Li, W., and Yang, Y. 2002b. Zipf's law in importance of genes for cancer classification using microarray data. J. Theoret. Biol. 219, 539-551.
    • (2002) J. Theoret. Biol. , vol.219 , pp. 539-551
    • Li, W.1    Yang, Y.2
  • 34
    • 0035224384 scopus 로고    scopus 로고
    • Feature selection for DNA methylation based cancer classification
    • Model, F., Adorjan, P., Olek, A., and Piepenbrock, C. 2001. Feature selection for DNA methylation based cancer classification. Bioinformatics 17(Suppl. 1), S157-S164.
    • (2001) Bioinformatics , vol.17 , Issue.1 SUPPL.
    • Model, F.1    Adorjan, P.2    Olek, A.3    Piepenbrock, C.4
  • 35
    • 0037590376 scopus 로고    scopus 로고
    • The limit fold change model: A practical approach for selecting differentially expressed genes from microarray data
    • Mutch, D.M., Berger, A., Mansourian, R., Rytz, A., and Roberts, M.A. 2002. The limit fold change model: A practical approach for selecting differentially expressed genes from microarray data. BMC Bioinformatics 3, 17.
    • (2002) BMC Bioinformatics , vol.3 , pp. 17
    • Mutch, D.M.1    Berger, A.2    Mansourian, R.3    Rytz, A.4    Roberts, M.A.5
  • 36
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial squares using microarray gene expression data
    • Nguyen, D.V., and Rocke, D.M. 2002. Tumor classification by partial squares using microarray gene expression data. Bioinformatics 18, 39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 37
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan, W. 2002. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18(4), 546-554.
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 546-554
    • Pan, W.1
  • 38
    • 0041592555 scopus 로고    scopus 로고
    • On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression
    • Pan, W. 2003. On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression. Bioinformatics 19(11), 1333-1340.
    • (2003) Bioinformatics , vol.19 , Issue.11 , pp. 1333-1340
    • Pan, W.1
  • 39
    • 2142854576 scopus 로고    scopus 로고
    • A mixture model approach to detecting differentially expressed genes with microarray data
    • Pan, W., Lin, J., and Le, C. 2003. A mixture model approach to detecting differentially expressed genes with microarray data. Functional and Integrative Genomics 3, 117-124.
    • (2003) Functional and Integrative Genomics , vol.3 , pp. 117-124
    • Pan, W.1    Lin, J.2    Le, C.3
  • 42
    • 0038219199 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • Control Division, Department of Mechanical Engineering, National University of Singapore
    • Shevade, S.K., and Keerth, S.S. 2002. A simple and efficient algorithm for gene selection using sparse logistic regression. Technical Report CD-02-22, Control Division, Department of Mechanical Engineering, National University of Singapore.
    • (2002) Technical Report CD-02-22
    • Shevade, S.K.1    Keerth, S.S.2
  • 43
    • 0035116995 scopus 로고    scopus 로고
    • Making sense of microarrays. (meeting report)
    • reports 4003
    • Siedow, J.N. 2001. Making sense of microarrays. (meeting report), Genome Biol. 2(2), reports 4003.
    • (2001) Genome Biol. , vol.2 , Issue.2
    • Siedow, J.N.1
  • 47
    • 0034911875 scopus 로고    scopus 로고
    • An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles
    • Thomas, J.G., Olson, J.M., Tapscott, S.J., and Zhao, L.P. 2001. An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles. Genome Res. 11, 1227-1236.
    • (2001) Genome Res. , vol.11 , pp. 1227-1236
    • Thomas, J.G.1    Olson, J.M.2    Tapscott, S.J.3    Zhao, L.P.4
  • 48
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with applications to DNA microarrays
    • Tibshitani, R., Hastie, T., Narasimhan, B., and Chu, G. 2003. Class prediction by nearest shrunken centroids, with applications to DNA microarrays. Statist. Sci. 18, 104-117.
    • (2003) Statist. Sci. , vol.18 , pp. 104-117
    • Tibshitani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 49
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • Van't Veer, L.J., Dai, H., et al. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536.
    • (2002) Nature , vol.415 , pp. 530-536
    • Van't Veer, L.J.1    Dai, H.2
  • 50
    • 0001972601 scopus 로고
    • The large sample distribution of the likelihood ratio for testing composite hypothesis
    • Wilks, S.S. 1938. The large sample distribution of the likelihood ratio for testing composite hypothesis. Ann. Math. Statist. 9, 60-62.
    • (1938) Ann. Math. Statist. , vol.9 , pp. 60-62
    • Wilks, S.S.1
  • 52
    • 0034894874 scopus 로고    scopus 로고
    • Feature (gene) selection in gene expression-based tumor classification
    • Xiong, M., Li, W.J., Zhao, J., Jin, L., and Boerwinkle, E. 2001. Feature (gene) selection in gene expression-based tumor classification. Mol. Genet. Metabolism 73(3), 239-247.
    • (2001) Mol. Genet. Metabolism , vol.73 , Issue.3 , pp. 239-247
    • Xiong, M.1    Li, W.J.2    Zhao, J.3    Jin, L.4    Boerwinkle, E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.