메뉴 건너뛰기




Volumn 26, Issue 12, 2010, Pages

Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BREAST TUMOR; COMPUTER PROGRAM; COPY NUMBER VARIATION; FEMALE; GENE EXPRESSION PROFILING; GENETICS; GENOMICS; GLIOBLASTOMA; HUMAN; METHODOLOGY; NEOPLASM;

EID: 77954195272     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq182     Document Type: Article
Times cited : (601)

References (46)
  • 1
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh, A.A. et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403, 503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1
  • 2
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: from disarray to consolidation and consensus
    • Allison, D.B. et al. (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet., 7, 55-65.
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 55-65
    • Allison, D.B.1
  • 3
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology. the gene ontology consortium
    • Ashburner, M. et al. (2000) Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet., 25, 25-29.
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 4
    • 1942453302 scopus 로고    scopus 로고
    • Predicting gene expression from sequence
    • Beer, M.A. and Tavazoie, S. (2004) Predicting gene expression from sequence. Cell, 117, 185-198.
    • (2004) Cell , vol.117 , pp. 185-198
    • Beer, M.A.1    Tavazoie, S.2
  • 6
    • 39749108733 scopus 로고    scopus 로고
    • High-resolutionACGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer
    • Chin, S. et al. (2007) High-resolutionACGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol., 8, R215.
    • (2007) Genome Biol. , vol.8
    • Chin, S.1
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster, A.P. et al. (1977) Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Series B (Methodol.), 39, 1-38.
    • (1977) J. Roy. Stat. Soc. Series B (Methodol.) , vol.39 , pp. 1-38
    • Dempster, A.P.1
  • 8
    • 0037172724 scopus 로고    scopus 로고
    • Aprediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit, S. and Fridlyand, J. (2002)Aprediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol., 3, RESEARCH0036.
    • (2002) Genome Biol. , vol.3
    • Dudoit, S.1    Fridlyand, J.2
  • 9
    • 37849022459 scopus 로고    scopus 로고
    • Identification of key processes underlying cancer phenotypes using biological pathway analysis
    • Efroni, S. et al. (2007) Identification of key processes underlying cancer phenotypes using biological pathway analysis. PLoS ONE, 2.
    • (2007) PLoS ONE , pp. 2
    • Efroni, S.1
  • 10
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M.B. et al. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA, 95, 14863-14868.
    • (1998) Proc. Natl Acad. Sci. USA , vol.95 , pp. 14863-14868
    • Eisen, M.B.1
  • 12
    • 0842288337 scopus 로고    scopus 로고
    • Inferring cellular networks using probabilistic graphical models
    • Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 303, 799-805.
    • (2004) Science , vol.303 , pp. 799-805
    • Friedman, N.1
  • 13
    • 33847708336 scopus 로고    scopus 로고
    • Refinement and expansion of signaling pathways: the osmotic response network in yeast
    • Gat-Viks, I. and Shamir, R. (2007) Refinement and expansion of signaling pathways: the osmotic response network in yeast. Genome Res., 17, 358-367.
    • (2007) Genome Res. , vol.17 , pp. 358-367
    • Gat-Viks, I.1    Shamir, R.2
  • 14
    • 26444437862 scopus 로고    scopus 로고
    • The factor graph network model for biological systems
    • Springer, Berlin/Heidelberg
    • Gat-Viks, I. et al. (2005) The factor graph network model for biological systems. RECOMB, Springer, Berlin/Heidelberg, pp. 31-47.
    • (2005) RECOMB , pp. 31-47
    • Gat-Viks, I.1
  • 15
    • 33646012325 scopus 로고    scopus 로고
    • A probabilistic methodology for integrating knowledge and experiments on biological networks
    • Gat-Viks, I. et al. (2006) A probabilistic methodology for integrating knowledge and experiments on biological networks. J. Computat. Biol., 13, 165-181.
    • (2006) J. Computat. Biol. , vol.13 , pp. 165-181
    • Gat-Viks, I.1
  • 16
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub, T.R. et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 17
    • 13444259844 scopus 로고    scopus 로고
    • Reactome: a knowledgebase of biological pathways
    • Joshi-Tope, G. et al. (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res., 33, D428-32.
    • (2005) Nucleic Acids Res. , vol.33
    • Joshi-Tope, G.1
  • 18
    • 34249301918 scopus 로고    scopus 로고
    • Akt1 governs breast cancer progression in vivo
    • Ju, X. et al. (2007) Akt1 governs breast cancer progression in vivo. Proc. Natl Acad. Sci. USA, 104, 7438-7443.
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 7438-7443
    • Ju, X.1
  • 19
    • 0034927555 scopus 로고    scopus 로고
    • Analysis of variance for gene expression microarray data
    • Kerr, M.K. et al. (2000) Analysis of variance for gene expression microarray data. J. Comput. Biol., 7, 819-837.
    • (2000) J. Comput. Biol. , vol.7 , pp. 819-837
    • Kerr, M.K.1
  • 20
    • 0035246564 scopus 로고    scopus 로고
    • Factor graphs and the sum-product algorithm
    • Kschischang, F.R. et al. (2001) Factor graphs and the sum-product algorithm. IEEETIT: IEEE Trans. Inf. Theory, 47, 498-519.
    • (2001) IEEETIT: IEEE Trans. Inf. Theory , vol.47 , pp. 498-519
    • Kschischang, F.R.1
  • 21
    • 0034947649 scopus 로고    scopus 로고
    • EGF mutant receptorVIII asa molecular target incancer therapy
    • Kuan, C.T. et al. (2001) EGF mutant receptorVIII asa molecular target incancer therapy. Endocr. Relat. Cancer, 8, 83-96.
    • (2001) Endocr. Relat. Cancer , vol.8 , pp. 83-96
    • Kuan, C.T.1
  • 22
    • 33749037129 scopus 로고    scopus 로고
    • Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification
    • Lee, S.-I., (2006) Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc. Nati Acad. Sci. USA, 103, 14062-14067.
    • (2006) Proc. Nati Acad. Sci. USA , vol.103 , pp. 14062-14067
    • Lee, S.-I.1
  • 23
    • 33645734725 scopus 로고    scopus 로고
    • FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells
    • Liu, M., et al. (2006) FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res., 66, 3593-3602.
    • (2006) Cancer Res. , vol.66 , pp. 3593-3602
    • Liu, M.1
  • 26
    • 33847348449 scopus 로고    scopus 로고
    • A gene-expression signature to predict survival in breast cancer across independent data sets
    • Naderi, A. et al. (2007) A gene-expression signature to predict survival in breast cancer across independent data sets. Oncogene, 26, 1507-1516.
    • (2007) Oncogene , vol.26 , pp. 1507-1516
    • Naderi, A.1
  • 27
    • 0032919364 scopus 로고    scopus 로고
    • Kegg: Kyoto encyclopedia of genes and genomes
    • Ogata, H. et al. (1999) Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 27, 29-34.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 29-34
    • Ogata, H.1
  • 28
    • 3543105225 scopus 로고    scopus 로고
    • Circular binary segmentation for the analysis of array-based DNA copy number data
    • Olshen, A.B. et al. (2004) Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics, 5, 557-572.
    • (2004) Biostatistics , vol.5 , pp. 557-572
    • Olshen, A.B.1
  • 29
    • 20144387067 scopus 로고    scopus 로고
    • The MIPS mammalian protein-protein interaction database
    • Pagel, P. et al. (2005) The MIPS mammalian protein-protein interaction database. Bioinformatics, 21, 832-834.
    • (2005) Bioinformatics , vol.21 , pp. 832-834
    • Pagel, P.1
  • 30
    • 58149232649 scopus 로고    scopus 로고
    • Unraveling the biologic and clinical complexities of HER2
    • Park, J.W. et al. (2008) Unraveling the biologic and clinical complexities of HER2. Clin. Breast Cancer, 8, 392-401.
    • (2008) Clin. Breast Cancer , vol.8 , pp. 392-401
    • Park, J.W.1
  • 31
    • 52949127312 scopus 로고    scopus 로고
    • An integrated genomic analysis of human glioblastoma multiforme
    • Parsons, D.W. et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807-1812.
    • (2008) Science , vol.321 , pp. 1807-1812
    • Parsons, D.W.1
  • 32
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs, K. et al. (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308, 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1
  • 33
    • 58149186477 scopus 로고    scopus 로고
    • PID: the pathway interaction database
    • Schaefer, C.F. et al. (2009) PID: the pathway interaction database. Nucleic Acids Res, 37, D674-D679.
    • (2009) Nucleic Acids Res , vol.37
    • Schaefer, C.F.1
  • 34
    • 20044388557 scopus 로고    scopus 로고
    • From signatures to models: understanding cancer using microarrays
    • Segal, E. et al. (2005) From signatures to models: understanding cancer using microarrays. Nat. Genet, 37(Suppl 6) S38-S45.
    • (2005) Nat. Genet , vol.37 , Issue.SUPPL 6
    • Segal, E.1
  • 35
    • 0034663989 scopus 로고    scopus 로고
    • HIF-1 and human disease: one highly involved factor
    • Semenza, G.L. (2000) HIF-1 and human disease: one highly involved factor. Genes Dev, 14, 1983-1991.
    • (2000) Genes Dev , vol.14 , pp. 1983-1991
    • Semenza, G.L.1
  • 36
    • 0242287052 scopus 로고    scopus 로고
    • Statistical methods for identifying differentially expressed genes in DNA microarrays
    • Storey, J.D. and Tibshirani, R. (2003) Statistical methods for identifying differentially expressed genes in DNA microarrays. Methods Mol. Biol., 224, 149-157.
    • (2003) Methods Mol. Biol. , vol.224 , pp. 149-157
    • Storey, J.D.1    Tibshirani, R.2
  • 37
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian, A. et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA, 102, 15545-15550.
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 38
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation
    • Tamayo, P. et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA, 96, 2907-2912.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 2907-2912
    • Tamayo, P.1
  • 39
    • 58049215467 scopus 로고    scopus 로고
    • Anovel signaling pathway impact analysis
    • Tarca, A.L. et al. (2009)Anovel signaling pathway impact analysis. Bioinformatics, 25, 75-82.
    • (2009) Bioinformatics , vol.25 , pp. 75-82
    • Tarca, A.L.1
  • 40
    • 54549108740 scopus 로고    scopus 로고
    • Comprehensive genomic characterization defines human glioblastoma genes and core pathways
    • TCGA
    • TCGA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061-1068.
    • (2008) Nature , vol.455 , pp. 1061-1068
  • 41
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • Troyanskaya, O.G. et al. (2002) Nonparametric methods for identifying differentially expressed genes in microarray data. Bioinformatics, 18, 1454-1461.
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, O.G.1
  • 42
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionizing radiation response
    • Tusher, V.G. et al. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl Acad. Sci. USA, 98, 5116-5121.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1
  • 43
    • 0037137519 scopus 로고    scopus 로고
    • A gene-expression signature as a predictor of survival in breast cancer
    • van de Vijver, M.J. et al. (2002) A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med., 347, 1999-2009.
    • (2002) N. Engl. J. Med. , vol.347 , pp. 1999-2009
    • Van de Vijver, M.J.1
  • 44
    • 0035129498 scopus 로고    scopus 로고
    • First-line, single-agent herceptin(r) (trastuzumab) in metastatic breast cancer. a preliminary report
    • Vogel, C. et al. (2001) First-line, single-agent herceptin(r) (trastuzumab) in metastatic breast cancer. a preliminary report. Eur. J. Cancer, 37 (Suppl. 1), 25-29.
    • (2001) Eur. J. Cancer , vol.37 , Issue.SUPPL. 1 , pp. 25-29
    • Vogel, C.1
  • 45
    • 58149330982 scopus 로고    scopus 로고
    • Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures
    • Wirapati, P. et al. (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res., 10, R65.
    • (2008) Breast Cancer Res. , vol.10
    • Wirapati, P.1
  • 46
    • 63849301203 scopus 로고    scopus 로고
    • The UCSC cancer genomics browser
    • Zhu, J. et al. (2009)The UCSC cancer genomics browser. Nat. Methods, 6, 239-240.
    • (2009) Nat. Methods , vol.6 , pp. 239-240
    • Zhu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.