메뉴 건너뛰기




Volumn 22, Issue 1, 2000, Pages 4-37

Statistical pattern recognition: A review

Author keywords

[No Author keywords available]

Indexed keywords

ERROR ANALYSIS; FEATURE EXTRACTION; LEARNING SYSTEMS; NEURAL NETWORKS; STATISTICAL METHODS;

EID: 0033640646     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/34.824819     Document Type: Article
Times cited : (5113)

References (176)
  • 1
    • 0028400882 scopus 로고
    • Neural Networks for Maximum Likelihood Clustering
    • H.M. Abbiis and tvf.M. Fahmy, Neural Networks for Maximum Likelihood Clustering, Signal Processing, vol. 36, no. 1, pp. 111-126, 1994.
    • (1994) Signal Processing , vol.36 , Issue.1 , pp. 111-126
    • Abbiis, H.M.1    Fahmy, T.M.2
  • 2
    • 0016355478 scopus 로고
    • A New I ,ook at Statistical Model Identification
    • H. Akaike, A New I ,ook at Statistical Model Identification, IEEE 'inns, Automatic Control, vol. 19, pp 716-723, 1974.
    • (1974) IEEE 'Inns, Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0031277419 scopus 로고    scopus 로고
    • Stability Analysis of Learning Algorithms for Blind Source Separation
    • S. Arnari, T,P. Chcn, and A. Cichocki, Stability Analysis of Learning Algorithms for Blind Source Separation, Neural Networks, vol, 10, no. 8, pp. 1,345-1,35-1, 1997.
    • (1997) Neural Networks , vol.10 , Issue.8
    • Arnari, S.1    Cichocki, A.2
  • 4
    • 70350335356 scopus 로고
    • Logistic Discrimination
    • P. R. Krtshnaiah and L.N. Kanal, eds., Amsterdam; North I lolltind
    • J.A. Andcrson, Logistic Discrimination, Handbook of Statistics. P. R. Krtshnaiah and L.N. Kanal, eds., vol. 2, pp. 169-191, Amsterdam; North I lolltind,1982.
    • (1982) Handbook of Statistics , vol.2 , pp. 169-191
    • Andcrson, J.A.1
  • 7
    • 0029771210 scopus 로고    scopus 로고
    • Arbitrarily Tight Upper and Lower Bounds on the Baycsian Probability of Error
    • Jan
    • H. Avi-ltnlwk and T. Dicp, Arbitrarily Tight Upper and Lower Bounds on the Baycsian Probability of Error, IEEE Tfans. Pattern Analysis nnd Madmie Intelligence, vol. 18, nr. 1, pp. 89-91, Jan. 1996.
    • (1996) IEEE Tfans. Pattern Analysis Nnd Madmie Intelligence , vol.18 , Issue.1 , pp. 89-91
    • Avi-ltnlwk, H.1    Dicp, T.2
  • 10
    • 0032183995 scopus 로고    scopus 로고
    • The Minimum Description Length Principle in Coding and Modeling
    • Oct. IWH
    • A. BaiTon, J. Kissanen, and B. Yu, The Minimum Description Length Principle in Coding and Modeling, IEEE Trans. Information Theory, vol. 44, no, 6, pp, 2,743-2,760, Oct. IWH.
    • IEEE Trans. Information Theory , vol.44 , Issue.6
    • Baiton, A.1    Kissanen, J.2    Yu, B.3
  • 11
    • 0000164689 scopus 로고
    • An Information-Maximization Approach to Blind Separation
    • A. I Jell and T. Scjnowski, An Information-Maximization Approach to Blind Separation, Neural Cumpiitalion, vol. 7, pp. 1,0041,034, 1995.
    • (1995) Neural Cumpiitalion , vol.7
    • Jell, A.I.1    Scjnowski, T.2
  • 12
    • 0000802938 scopus 로고    scopus 로고
    • Markovian Models for Sequential Data
    • Y. Bengio, Markovian Models for Sequential Data, Neural Computing Surveys, vol. 2, pp. 129-162, 1999. http://www.irai. berkcley.edu/-jagota/NCS.
    • (1999) Neural Computing Surveys , vol.2 , pp. 129-162
    • Bengio, Y.1
  • 21
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • L. Breiman, Bagging Predictors, Machine Learning, vol. 24, no. 2, pp. 123-140,1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 23
    • 27144489164 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Machines for Pattern Recognition
    • C.j.C. Ikirgcs, A Tutorial on Support Vector Machines for Pattern Recognition, Datn Mining and Knowledge Discovery, vol. 2, no, 2, pp. 121-167, 1998.
    • (1998) Datn Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Ikirgcs, C.J.C.1
  • 24
    • 0032187518 scopus 로고    scopus 로고
    • Blind Signal Separation: Statistical Principles
    • J. Cardoso, Blind Signal Separation: Statistical Principles, I'roc. IEEE, vol. 86, pp. 2,009-2,025, 1998
    • (1998) I'roc. IEEE , vol.86
    • Cardoso, J.1
  • 25
    • 0030215881 scopus 로고    scopus 로고
    • A Lattice Conceptual Clustering System and its Application to Browsing Retrieval
    • C. Ceirpineto and G, Koma no, A Lattice Conceptual Clustering System and its Application to Browsing Retrieval, Mnchine Learning, vol. 24, no. 2, pp. 95-122, 1996.
    • (1996) Mnchine Learning , vol.24 , Issue.2 , pp. 95-122
    • Ceirpineto, C.1    Koma No, G.2
  • 26
    • 0031142667 scopus 로고    scopus 로고
    • An Iterative Pruning Algorithm for feedforward Neural Networks
    • G, Cfistelliino, A.M. Kartelli, and M. Pollllo, An Iterative Pruning Algorithm for feedforward Neural Networks, IEEE, Trans. Neural Networks, vol. 8, no. 3, pp 519-531, 1997.
    • (1997) IEEE, Trans. Neural Networks , vol.8 , Issue.3 , pp. 519-531
    • Cfistelliino, G.1    Kartelli, A.M.2    Pollllo, M.3
  • 27
    • 0031139248 scopus 로고    scopus 로고
    • On Self-Organizing Algorithms find Networks for Class-Separability Features
    • C. Chalterjee and V.P. Koychawdhury, On Self-Organizing Algorithms find Networks for Class-Separability Features, IEEE. Trims. Neural Networks, vol 5, no. 3, pp. 663-678, 1997.
    • (1997) IEEE. Trims. Neural Networks , vol.5 , Issue.3 , pp. 663-678
    • Chalterjee, C.1    Koychawdhury, V.P.2
  • 28
    • 84972539015 scopus 로고
    • Neural Networks: A Review from Statistical Perspective
    • B. Cheng and P.M. Titterington, Neural Networks: A Review from Statistical Perspective, Statistical Science, vol. 9, no. 1, pp. 2-54, 1994.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, P.M.2
  • 29
    • 84949331034 scopus 로고
    • The Use of Faces to Represent Points in k-Pimunsionai Space Graphically
    • June
    • H. Chernoff, The Use of Faces to Represent Points in k-Pimunsionai Space Graphically, J. Am, Statistical Assoc., vol.68, pp. 301-368, June 1973.
    • (1973) J. Am, Statistical Assoc. , vol.68 , pp. 301-368
    • Chernoff, H.1
  • 30
    • 0026135919 scopus 로고    scopus 로고
    • Optimal Partitioning for Classification and Kcgrossion Trees
    • Apr, TOI
    • P.A. Chou, Optimal Partitioning for Classification and Kcgrossion Trees, IEEE Trails. Pattern Analysis find Machine Intelligence, vol. 13, no. 4, pp. 340-354, Apr, TOI.
    • IEEE Trails. Pattern Analysis Find Machine Intelligence , vol.13 , Issue.4 , pp. 340-354
    • Chou, P.A.1
  • 31
    • 0028416938 scopus 로고
    • Independent Component Analysis, a Now Concept?
    • P. Comon, Independent Component Analysis, a Now Concept?, Signal Processing, vol. 36, no. 3, pp. 287-314, 1994.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 32
    • 0027664012 scopus 로고
    • Using Veclor Quantization fur linage Processing
    • Sept
    • P.C Cosman, K.L. Ochlcr, E.A. Riskin, and R.M. Gray, Using Veclor Quantization fur linage Processing, P roc. IEEE, vol. 51, pp. 1,326-1,341, Sept. 1993
    • (1993) P Roc. IEEE , vol.51
    • Cosman, P.C.1    Ochlcr, K.L.2    Riskin, E.A.3    Gray, R.M.4
  • 33
    • 84918441630 scopus 로고
    • CcometriefiL mit Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Re-cognition
    • June
    • T.M, Cover, CcometriefiL (mit Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Re-cognition, IEEE Trans. Electronic Computers, vol. 14, pp. 326-334, June 1965.
    • (1965) IEEE Trans. Electronic Computers , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 34
    • 84942213019 scopus 로고
    • The Best Two Independent Measurements arc not the Two Best
    • T.M. Cover, The Best Two Independent Measurements arc not the Two Best, lt Trans. Systems, Man, tintt Cybernetics, vol. 4, pp. 116-117,1974.
    • (1974) Trans. Systems, Man, Tintt Cybernetics , vol.4 , pp. 116-117
    • Cover, T.M.1
  • 35
  • 36
    • 0002629270 scopus 로고
    • Maximum I .ikolihood from Incomplete Data via the (EM) Algorithm
    • A. Pompster, N. Laird, and J. Kubiu, Maximum I .ikolihood from Incomplete Data via the (EM) Algorithm, J. Royal Statistical Soc., vol. 39, pp. 1-38, 1977.
    • (1977) J. Royal Statistical Soc. , vol.39 , pp. 1-38
    • Pompster, A.1    Laird, N.2    Kubiu, J.3
  • 38
    • 0031270961 scopus 로고    scopus 로고
    • Sammon's Mapping Using Neural Networks: Comparison
    • D. De Ridder and R.P.W. Duin, Sammon's Mapping Using Neural Networks: Comparison, Pattern Recognition letters, vol. 18, no. 1143, pp. 1,307-1,310, 1997.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.1143
    • De Ridder, D.1    Duin, R.P.W.2
  • 40
    • 0024053797 scopus 로고
    • Automatic Pal tern Recognltlrm: A Study of the Probability of Error
    • L. Devroye, Automatic Pal tern Recognltlrm: A Study of the Probability of Error, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 10, no, 4, pp. 530-543, 1988.
    • (1988) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.10 , Issue.4 , pp. 530-543
    • Devroye, L.1
  • 46
    • 0030145401 scopus 로고    scopus 로고
    • A Note on Comparing Classifiers
    • R.P.W. Duin, A Note on Comparing Classifiers, Pattern Recngnition Letters, vol. 17, no. 5, pp. 529-536, 1996.
    • (1996) Pattern Recngnition Letters , vol.17 , Issue.5 , pp. 529-536
    • Duin, R.P.W.1
  • 47
    • 0031276929 scopus 로고    scopus 로고
    • Experiments with a Featureless Approach to Pattern Recognition
    • R.P.W. Duin, D. De Ridder. and D.M.J. Tax, Experiments with a Featureless Approach to Pattern Recognition, Pattern Recognition tetters, vol. 18, nos. 11-13, pp. l,159-1,166, 1997.
    • (1997) Pattern Recognition Tetters , vol.18 , Issue.11-13
    • Duin, R.P.W.1    De Ridder, D.2    Tax, D.M.J.3
  • 50
    • 33747887908 scopus 로고
    • Comparative Slndy of Techniques for Large Scale I'ealurc Selection
    • W. E. Gelsema and L. Kanal, eds
    • F. Fcrri, P. Pudil, M. I latcf, and J. Kitfler, Comparative Slndy of Techniques for Large Scale I'ealurc Selection, Pattern Recognition in Practice W. E. Gelsema and L. Kanal, eds., pp. 403-413, 1894.
    • (1894) Pattern Recognition in Practice , pp. 403-413
    • Fcrri, F.1    Pudil, P.2    Latcf, M.I.3    Kitfler, J.4
  • 53
    • 84950754164 scopus 로고
    • Exploratory Projection Pursuit
    • J.F.I. Friedman, Exploratory Projection Pursuit, J. Am. Statistical Assoc., vol. 82, pp, 249-266, 1987.
    • (1987) J. Am. Statistical Assoc. , vol.82 , pp. 249-266
    • Friedman, J.F.I.1
  • 54
    • 84887916087 scopus 로고
    • Regularized Discrimina n t Analysis
    • J.I L L'riedman, Regularized Discrimina n t Analysis, J. Am Statistical Assitc., vol. 84, pp. 165-175, 1989
    • (1989) J. Am Statistical Assitc , vol.84 , pp. 165-175
    • L'Riedman, J.I.L.1
  • 55
    • 0032650370 scopus 로고    scopus 로고
    • A Robust Competitive Clustering Algorithm with Applications in Computer Vision
    • H. Frigiii and R. Krishnapurnm, A Robust Competitive Clustering Algorithm with Applications in Computer Vision, IEEF. Turns. Pattern Analysts ami Machine Itstdligatf.f, vol. 21, no. 5, pp. 450-465, 1999
    • (1999) IEEF. Turns. Pattern Analysts Ami Machine Itstdligatf.f , vol.21 , Issue.5 , pp. 450-465
    • Frigiii, H.1    Krishnapurnm, R.2
  • 57
    • 0020720605 scopus 로고
    • A Stop towards Unifiration of Syntactic and Stiitistical Pattern Recognition
    • Mar
    • K-S. Fn, A Stop Towards Unifiration of Syntactic and Stiitistical Pattern Recognition, IEEE TI'IIHS. Patlcrn Analysis mid Machine Intelligence, vol. 5, no. 2, pp. 200-205, Mar. 1983
    • (1983) IEEE TI'IIHS. Patlcrn Analysis Mid Machine Intelligence , vol.5 , Issue.2 , pp. 200-205
    • Fn, K.-S.1
  • 62
    • 0020970740 scopus 로고
    • Neocognitmn: A Neural Network Model for a Mechanism of Visunl I'atlocn Recugnitiou
    • K. h'ukushima, S. Miyako, nnd T. I to, Neocognitmn: A Neural Network Model for a Mechanism of Visunl I'atlocn Recugnitiou, IEEE Trans. Systems, Man, mid Cybernetics, vol. 13, pp. 826-834, 1983.
    • (1983) IEEE Trans. Systems, Man, Mid Cybernetics , vol.13 , pp. 826-834
    • H'Ukushima, K.1    Miyako, S.2    To, T.I.3
  • 64
    • 33747873275 scopus 로고
    • Neural Networks Lind the liUis/Variance Dilumuin
    • S. Geinan, I:. iJicnenstock, and K. Dnursat, Neural Networks Lind the liUis/Variance Dilumuin, Neural Compnitalion, vol. 4, no. 1, pp. 1-5H, 1992
    • (1992) Neural Compnitalion , vol.4 , Issue.1
    • Geinan, S.1    Jicnenstock, I.2    Dnursat, K.3
  • 67
    • 0021412027 scopus 로고
    • Vector Quanlizalion
    • Apr
    • K.M. Gray, Vector Quanlizalion, IF.F.K ASSP, vol. 1, pp. 4-29, Apr. 1984.
    • (1984) IF.F.K ASSP , vol.1 , pp. 4-29
    • Gray, K.M.1
  • 70
    • 33747892250 scopus 로고
    • Rucent Advances in Error Kute l-Jstimalioii
    • D.J. Hand, Rucent Advances in Error Kute l-Jstimalioii, Puttern Recongition Leilas, vol. 4, no. 5, pp. 333-346, 1986.
    • (1986) Puttern Recongition Leilas , vol.4 , Issue.5 , pp. 333-346
    • Hand, D.J.1
  • 71
    • 0010239028 scopus 로고    scopus 로고
    • Model Selection and Ihe Principle of Minimum Desriplkin Length
    • Lucent Bell Lab, Murray Hill, N.J
    • M.H. Hansen ami . Yu, Model Selection and Ihe Principle of Minimum Desriplkin Length, technical report, Lucent Bell Lab, Murray Hill, N.J., 1998.
    • (1998) Technical Report
    • Hansen, M.H.1    Ami, Y.2
  • 72
    • 0003074296 scopus 로고    scopus 로고
    • Support Vector Machines
    • July/Aug
    • M.A. I learnt, Support Vector Machines, IEEE Intellifrnt Systrm pp, 18-28, July/Aug. 1998.
    • (1998) IEEE Intellifrnt Systrm , pp. 18-28
    • Learnt, M.A.I.1
  • 75
    • 0032139235 scopus 로고    scopus 로고
    • The Random Subspace Method for ConstLiicting Decision Iwcsts
    • Aug
    • T.K. llo, The Random Subspace Method for ConstLiicting Decision Iwcsts, IEEE Trans. I'ntlern Analysis and Mnciiinc liitcHigaKe, vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. I'ntlern Analysis and Mnciiinc LiitcHigaKe , vol.20 , Issue.8 , pp. 832-844
    • Llo, T.K.1
  • 76
    • 33747890925 scopus 로고    scopus 로고
    • Coviiriancc Matrix Estimntioii and Classificauon with Limited Training llatn
    • July
    • J.P. Hof (beck nnd U.A. Latidgrcbc, Coviiriancc Matrix Estimntioii and Classificauon with Limited Training llatn, l LEE Trans paltern Analysis nuit Machine InttfligeHcc, vol. 18, no, 7, pp. 763-767,July I999
    • (1999) L LEE Trans Paltern Analysis Nuit Machine InttfligeHcc , vol.18 , Issue.7 , pp. 763-767
    • Hof, J.P.1    Latidgrcbc, U.A.2
  • 77
    • 0000466122 scopus 로고    scopus 로고
    • Survey un Independent Component Analysis
    • A. Hyvnrinen, Survey un Independent Component Analysis, Neural Cvinpnling Silmys, vol. 2, pp. 94-128, 1999. htlp:// wivw.icsi.bLrkcloy.cdLi/jagota/NC'S.
    • (1999) Neural Cvinpnling Silmys , vol.2 , pp. 94-128
    • Hyvnrinen, A.1
  • 78
    • 0346307721 scopus 로고    scopus 로고
    • A Pasl Fixed-Point Algorithm for Independent t.oinponetil Analysis
    • Oct
    • A. Hyvarineii and H. Oja, A Pasl Fixed-Point Algorithm for Independent t.oinponetil Analysis, Nairnl Computation, vol, 9, no. 7, pp. 1,483-1,492, Oct. 1997.
    • (1997) Nairnl Computation , vol.9 , Issue.7
    • Hyvarineii, A.1    Oja, H.2
  • 80
    • 63249112814 scopus 로고
    • Dimensionality and Sample Sixe Considerations in Pattern Recognition Practice
    • I'.R. Krishiiaiah and I..N. Kami, eds., Amsterdam: North-Holland
    • A.K. Jain ,and B, Cliandrasek.iran, Dimensionality and Sample Sixe Considerations in Pattern Recognition Practice, Handbook of Statistics. I'.R. Krishiiaiah and I..N. Kami, eds., vol. 2, pp. 835-855, Amsterdam: North-Holland, 1982.
    • (1982) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Cliandrasek.iran, B.2
  • 83
    • 0030104449 scopus 로고    scopus 로고
    • Artificial Neural Nclworks: A Tutorial
    • Mm
    • A.K. jain, J. Mao, and K.M. Mohiuddin, Artificial Neural Nclworks: A Tutorial, Computer, pp. 3144, Mm. 1996
    • (1996) Computer , pp. 31-44
    • Jain, A.K.1    Mao, J.2    Mohiuddin, K.M.3
  • 85
    • 0031078007 scopus 로고    scopus 로고
    • Feature Selection: Evaluation, Application, and Small Sample Performance
    • Fcb
    • A.K. Jain anil IJ. Zongker, Feature Selection: Evaluation, Application, and Small Sample Performance, JWCL' Trans. Pattern Analysis and Machine Intelligence, vol. 19, no, 2, pp. 153-158, Fcb, 1997.
    • (1997) JWCL' Trans. Pattern Analysis and Machine Intelligence , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.K.1    Zongker, I.J.2
  • 87
    • 0000262562 scopus 로고
    • Eliernrchic.il Mixlurca of Kxports and H-iu RM Algorithm
    • M.I. Jordan and R.A. Jacobs, Eliernrchic.il Mixlurca of Kxports and H-iu RM Algorithm, Ncunil Computation, vol. 91, pp. 181-214, 1994.
    • (1994) Ncunil Computation , vol.91 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 89
    • 0016125209 scopus 로고
    • Patterns in Pattern Rcrngmlinn: 1968-1974
    • L.N. Kanal, Patterns in Pattern Rcrngmlinn: 1968-1974, IEEE Trans. Information Theony, vol. 211, nu. 6, pp. 697-722,1074.
    • (1074) IEEE Trans. Information Theony , vol.211 , Issue.6 , pp. 697-722
    • Kanal, L.N.1
  • 92
    • 33747884112 scopus 로고
    • Springer Scries in JoformaLion Sciences, veil. 30, Berlin
    • T. Kohnnen, Self-Orgftttizillg Maps, Springer Scries in JoformaLion Sciences, veil. 30, Berlin, 1995.
    • (1995) Self-Orgftttizillg Maps
    • Kohnnen, T.1
  • 93
    • 0000749354 scopus 로고
    • Miural Network Enbumbkis, Cross Validation, and Active Learning'
    • G. Tesauro, D. Touvetsky, ond T. Leen, cds, Cambridge, Mass.: MIT Press
    • A. Krogh and J. Veek'lbby, Miural Network Enbumbkis, Cross Validation, and Active Learning', Adviaces in Neural Infarmation Practising Systems, G. Tesauro, D. Touvetsky, ond T. Leen, cds., vol. 7, Cambridge, Mass.: MIT Press, 1995
    • (1995) Adviaces in Neural Infarmation Practising Systems , vol.7
    • Krogh, A.1    Veek'Lbby, J.2
  • 94
    • 0029373189 scopus 로고
    • Optimal Comhinaiions of Pattern Classifiers
    • L. Lam and C.Y. Siieni, Optimal Comhinaiions of Pattern Classifiers, Pnttem Recognition Letters, vol. 16, no, 9, pp. 945-954, 1995.
    • (1995) Pnttem Recognition Letters , vol.16 , Issue.9 , pp. 945-954
    • Lam, L.1    Siieni, C.Y.2
  • 98
    • 0032822143 scopus 로고    scopus 로고
    • A Comparative Study of Neural Nclwork Based Feature Uxtraction Paradigms
    • li, Lnrner, H. Gutormiin, M. Aladjem, and I. Dinstein, A Comparative Study of Neural Nclwork Based Feature Uxtraction Paradigms, I'altcrn Recogition tellers vol. 20, no. 1, pp. 7-14, 1998
    • (1998) I'altcrn Recogition Tellers , vol.20 , Issue.1 , pp. 7-14
    • Li Lnrner, J.1    Gutormiin, H.2    Aladjem, M.3    Dinstein, I.4
  • 100
    • 0026140690 scopus 로고
    • Optimized Feature Extraction and the Bayes Decision in t-'cud-l'orward Classifier Networks
    • Apr
    • D Lowe and A.R. Webb, Optimized Feature Extraction and the Bayes Decision in t-'cud-l'orward Classifier Networks, IEEE Trans, Pattern Analysis und Machine Intelligence, vol. 13, no. 4, pp. 355-264, Apr. 1991
    • (1991) IEEE Trans, Pattern Analysis Und Machine Intelligence , vol.13 , Issue.4 , pp. 355-1264
    • Lowe, D.1    Webb, A.R.2
  • 101
    • 0000234257 scopus 로고
    • The Evidunte Hranwwork Applied to Classification Networks
    • D.J.C MarKay, The Evidunte Hranwwork Applied to Classification Networks, Neural Computation, vol. 4, no. 5, pp, 720-736, 1992.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • Markay, D.J.C.1
  • 102
    • 0029270805 scopus 로고
    • Artificial Neural Networks tor Feature Extractionn and Multivariatc Uala Prajeclion
    • J.C. Man and A.K, Jain, Artificial Neural Networks tor Feature Extractionn and Multivariatc Uala Prajeclion, IEEE Tmiis. Neural Nchvurks, vol. 6, no. 2, pp. 296-317, 1995.
    • (1995) IEEE Tmiis. Neural Nchvurks , vol.6 , Issue.2 , pp. 296-317
    • Man, J.C.1    Jain, A.K.2
  • 104
    • 0031273531 scopus 로고    scopus 로고
    • Improving OCR Vecforniiincc Using Chiirnctcr Degradation Models and Uooslinf; Algorithm
    • J.C. Ma a and K.M. Moliiuddin, Improving OCR Vecforniiincc Using Chiirnctcr Degradation Models and Uooslinf; Algorithm, Pattern Recagnilton Letters, vol. 18, no. 11-13, pp, 1,415-1,419, 1997.
    • (1997) Pattern Recagnilton Letters , vol.18 , Issue.11-13
    • Ma A, J.C.1    Moliiuddin, K.M.2
  • 107
    • 0018079655 scopus 로고
    • Basic Principles of ROC Analysis
    • CE. Metz, Basic Principles of ROC Analysis, Seminars in Nuclear Medicine, vol. VIII, no. 4, pp. 283-298, 1978,
    • (1978) Seminars in Nuclear Medicine , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 108
    • 0020783239 scopus 로고
    • Automated Construction of Classificalions: Conceptual Clustering versus Numerical Tnxonomy
    • U.S. Michalski and R.E. Stepp, Automated Construction of Classificalions: Conceptual Clustering versus Numerical Tnxonomy, IEEE, Trans, Pattern Analysis and Machine Intelligence, vol,5, pp. 396-410, 1983.
    • (1983) IEEE, Trans, Pattern Analysis and Machine Intelligence , vol.5 , pp. 396-410
    • Michalski, U.S.1    Stepp, R.E.2
  • 110
    • 33747878440 scopus 로고
    • An Kmpirlc.il Study of the Performance of Heuristic Methods for Clustering
    • E.S. Gelsema and L.N. Kanal, eds., NorthHolland
    • S.K. Mishra and V.V. Kfighfivan, An Kmpirlc.il Study of the Performance of Heuristic Methods for Clustering, Pattern Recognition in Practice. E.S. Gelsema and L.N. Kanal, eds., NorthHolland, pp. 423-436, 1934.
    • (1934) Pattern Recognition in Practice , pp. 423-436
    • Mishra, S.K.1    Kfighfivan, V.V.2
  • 111
    • 0000743235 scopus 로고
    • State of the Art in Pattern Kccognition
    • G. Nagy, State of the Art in Pattern Kccognition, Proc. IEEE, vol. 56, pp. 836-862, 1968.
    • (1968) Proc. IEEE , vol.56 , pp. 836-862
    • Nagy, G.1
  • 112
    • 0020719921 scopus 로고
    • Gindide's Practical Principles of Experimental Pattern RecogniLion
    • C. Nagy, Gindide's Practical Principles of Experimental Pattern RecogniLion, IEEE Trntis. Pattern Analysis find Machine Intelligente, vol. 5, no. 2, pp. 199-200, 1983.
    • (1983) IEEE Trntis. Pattern Analysis Find Machine Intelligente , vol.5 , Issue.2 , pp. 199-200
    • Nagy, C.1
  • 114
    • 0018910530 scopus 로고
    • Linear and Nonlinear Mappings of Patterns
    • H. Niemann, Linear and Nonlinear Mappings of Patterns, Pattern Recognition, vol. 12, pp, 83-87, 1980,
    • (1980) Pattern Recognition , vol.12 , pp. 83-87
    • Niemann, H.1
  • 115
  • 116
    • 33747879506 scopus 로고
    • Letch wo r Ih, Hertfordshire, England: Research Studies Press
    • E. Oja, Siibspscc Metlicds of Pattern Recognition, Letch wo r Ih, Hertfordshire, England: Research Studies Press, 1983.
    • (1983) Siibspscc Metlicds of Pattern Recognition
    • Oja, E.1
  • 117
    • 0026954958 scopus 로고
    • Principal Components, Minor Components, and Linear Neural Networks
    • K Oja, Principal Components, Minor Components, and Linear Neural Networks, Neural Networks, vol. 5, no. fi, pp. 927-936. 1992.
    • (1992) Neural Networks , vol.5 , pp. 927-936
    • Oja, K.1
  • 118
    • 0343416807 scopus 로고    scopus 로고
    • The Nonlinear PC a Learning Rule in Independent Component Analysis
    • li. Ojn, The Nonlinear PC A Learning Rule in Independent Component Analysis, Neiiroeoiputing, vol. 1.7, nu.'l, pp. 25-45, 1997.
    • (1997) Neiiroeoiputing , vol.17 , Issue.50 , pp. 25-45
    • Ojn, L.1
  • 119
    • 0031334889 scopus 로고    scopus 로고
    • An Improved ''raining Algorithm for Support Vector Machines
    • J. Principe, L, Gile, N, Morgan, and K. Wilson, eds., New York: 1KKK CS Press
    • E. OsiiLia, R, Freund, and H. Girosi, An Improved '['raining Algorithm for Support Vector Machines, Prof. IEEL Wttrksliap Neural Networks fur Signal Processing. J. Principe, L, Gile, N, Morgan, and K. Wilson, eds., New York: 1KKK CS Press, 1997.
    • (1997) Prof. IEEL Wttrksliap Neural Networks Fur Signal Processing
    • Osiilia, E.1    Freund, R.2    Girosi, H.3
  • 120
    • 0025631508 scopus 로고
    • Automated Design of Linear Trou Classifiers
    • Y, Park and J. Sklanski, Automated Design of Linear Trou Classifiers, Pattern Recognition, vol. 23, no. 12, pp, 1,393-1,412, 1990.
    • (1990) Pattern Recognition , vol.23 , Issue.12
    • Park, Y.1    Sklanski, J.2
  • 123
    • 0000926506 scopus 로고
    • When Networks Disagree: Ensemble Methods for Hybrid Neural Networks
    • K.J. Mammotio, ed., Chapnuin-1 lall
    • M,P. Perronc and L.N. Cooper, When Networks Disagree: Ensemble Methods for Hybrid Neural Networks, Neural Networks far Speech find linage. Processing. K.J. Mammotio, ed., Chapnuin-1 lall, 1993.
    • (1993) Neural Networks Far Speech Find Linage. Processing
    • Cooper, L.N.1
  • 124
    • 0003120218 scopus 로고    scopus 로고
    • Fast Training of Support Vector Machines Using Sequential Minimal Optimization
    • B. Scholkopf, C.J. C, linrgos, und A.J, Smola, cds., Cambridge, Mass.: MIT Prcss
    • J. Platt, Fast Training of Support Vector Machines Using Sequential Minimal Optimization, Advances in Kernel McthotlaSupport Vector Learning. B. Scholkopf, C.J. C, linrgos, und A.J, Smola, cds., Cambridge, Mass.: MIT Prcss, 1999.
    • (1999) Advances in Kernel McthotlaSupport Vector Learning
    • Platt, J.1
  • 127
    • 0037965523 scopus 로고
    • Feature Selection liased on the Approximation of Class Densities by Kinite Mixtures of the Special Type
    • P. Pudil, J. Novovicova, and J. Kittler, Feature Selection liased on the Approximation of Class Densities by Kinite Mixtures of the Special Type, Paltern Recognition, vol. 2S, no. 9, pp. 1389-1398, 1935.
    • (1935) Paltern Recognition , Issue.9 , pp. 1389-1398
    • Pudil, P.1    Novovicova, J.2    Kittler, J.3
  • 128
  • 130
    • 0024610919 scopus 로고
    • A Tutorial on Hidden Markov Models und Selected Applications in Speech Recognition
    • Feb
    • L.R. Kabiner, A Tutorial on Hidden Markov Models und Selected Applications in Speech Recognition, Proe. IEEE, vol. 77, pp. 257-286, Feb. 1989.
    • (1989) Proe. IEEE , vol.77 , pp. 257-286
    • Kabiner, L.R.1
  • 131
    • 33747878563 scopus 로고    scopus 로고
    • On Dimcnsionalily, Sample Size, Classification Krror, dnd Complexity of Class ilka t ion Algortims in Paltern Recognition
    • 1980
    • S.J. Raudys and V, Pikelis, On Dimcnsionalily, Sample Size, Classification Krror, dnd Complexity of Class ilka t ion Algortims in Paltern Recognition, IEEE Trans. Pattern Atiahlyis and Machine Intelligence, vol. 2, pp. 2-13-251.,1980,
    • IEEE Trans. Pattern Atiahlyis and Machine Intelligence , vol.2
    • Raudys, S.J.1    Pikelis, V.2
  • 132
    • 0026120032 scopus 로고
    • Small Sample Size Effects in StntifiHc.il Pattern Recognition: Keroni inundations for Practitioners
    • S.J, Raudys und A.K. Juin, Small Sample Size Effects in StntifiHc.il Pattern Recognition: Keroni inundations for Practitioners, IEEE Trans. Pattern Analysis and Machine. Intelligence, vol. 13, no, 3, pp, 252-264, 1991.
    • (1991) IEEE Trans. Pattern Analysis and Machine. Intelligence , vol.13 , Issue.3 , pp. 252-264
    • Raudys, S.J.1    Juin, A.K.2
  • 133
    • 0032029282 scopus 로고    scopus 로고
    • Hvohition find Generalisation of a Single Neuron; Single-Layer Perccptron as Seven Statistical Classifiers
    • S. Kauclys, Hvohition find Generalisation of a Single Neuron; Single-Layer Perccptron as Seven Statistical Classifiers, Neural Networks, vol. 11, no. 2, pp. 283-296, 1998
    • (1998) Neural Networks , vol.11 , Issue.2 , pp. 283-296
    • Kauclys, S.1
  • 134
    • 0032042805 scopus 로고    scopus 로고
    • Expected Classification Error of the Fislior I.inutir Classifier with Psenriuinverse Qwariance Matrix
    • S. Raudys and R.P.W. Duin, Expected Classification Error of the Fislior I.inutir Classifier with Psenriuinverse Qwariance Matrix, Pattern Recognition I filers, vol. 19, nos. 5-6, pp. 385-392, 1998.
    • (1998) Pattern Recognition I Filers , vol.19 , Issue.5-6 , pp. 385-392
    • Raudys, S.1    Duin, R.P.W.2
  • 135
    • 33747872050 scopus 로고    scopus 로고
    • On linycsian Analysis of Mixtures with Unknown Number of Components
    • S. Kidiardson and I'. Green, On linycsian Analysis of Mixtures with Unknown Number of Components, j. Koyal Statistical Sac, (B), vol. 39, pp. 731-792, 1997.
    • (1997) J. Koyal Statistical Sac, (B) , vol.39 , pp. 731-792
    • Kidiardson, S.1    Green, I.2
  • 136
    • 0002983776 scopus 로고
    • Statistical Aspects of Neural Networks
    • U. Bomndorff-Niclsen., J. Jniscn, and W. Kendal, ads., Chapman ami Hall
    • B. Rip ley, Statistical Aspects of Neural Networks, Networks an Omos: Statistical and Probabilistic Aspects. U. Bomndorff-Niclsen., J. Jniscn, and W. Kendal, ads., Chapman ami Hall, 1993.
    • (1993) Networks an Omos: Statistical and Probabilistic Aspects
    • Rip Ley, B.1
  • 139
    • 0032202775 scopus 로고    scopus 로고
    • Deterministic Annealing for Clustering, Compression, Classification, Regression and Kein ted Optimization Problems
    • K. Rose, Deterministic Annealing for Clustering, Compression, Classification, Regression and Kein ted Optimization Problems, Pror. IEEE, vol. 86, pp. 2,210-2,239, 1998.
    • (1998) Pror. IEEE , vol.86
    • Rose, K.1
  • 140
    • 10844239412 scopus 로고    scopus 로고
    • Flash of Genius
    • Nov
    • T.E. Ross, Flash of Genius, Forbcs, pp. 98-104, Nov. 1998.
    • (1998) Forbcs , pp. 98-104
    • Ross, T.E.1
  • 141
    • 84887006810 scopus 로고
    • A Nonlinear Mapping for Data Structure Analysis
    • J.W. Sainmon Jr., A Nonlinear Mapping for Data Structure Analysis, IEEE Trans. Computer, vol. 18, pp. 401-409, 1969.
    • (1969) IEEE Trans. Computer , vol.18 , pp. 401-409
    • Sainmon Jr., J.W.1
  • 143
    • 0002595663 scopus 로고    scopus 로고
    • Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods
    • R.L, Schapire, Y. Ground, I', bartlcll, and W.S. Loo, Boosting the Margin: A New Explanation for the Effectiveness of Voting Methods, Annals of Statistic, 1999
    • (1999) Annals of Statistic
    • Schapire, R.L.1    Ground, Y.2    Bartlcll, I.3    Loo, W.S.4
  • 144
    • 33747892845 scopus 로고    scopus 로고
    • Ph.D. thesis, Technische Universität, Berlin
    • J. Scholkopf, Support Vector UM ruing, Ph.D. thesis, Technische Universität, Berlin, 1997.
    • (1997) Support Vector UM Ruing
    • Scholkopf, J.1
  • 145
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Scholkopf, A. Smola, and K.K, Muller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Compiitntiun, vol. 10, no. 5, pp. 1,299-1,319, 1998.
    • (1998) Neural Compiitntiun , vol.10 , Issue.5
    • Scholkopf, B.1    Smola, A.2    Muller, K.K.3
  • 148
    • 0020781664 scopus 로고
    • Application of tile. Conditional Population Mixture Model to Image Segmentation
    • S. Sciovo, Application of tile. Conditional Population Mixture Model to Image Segmentation, IEEE Trails. Pattern Recognition and Machine Intelligence, vol. 5, pp 428-4.11, 1983.
    • (1983) IEEE Trails. Pattern Recognition and Machine Intelligence , vol.5 , pp. 428-411
    • Sciovo, S.1
  • 150
    • 0031140388 scopus 로고    scopus 로고
    • Neural-Network Feature Selector
    • R. Sclkmo and H, Lia, Neural-Network Feature Selector, IEEE Traits. Neural Networks, vol. 8, no. 3, pp. 65-1-662, 1997.
    • (1997) IEEE Traits. Neural Networks , vol.8 , Issue.3
    • Sclkmo, R.1    Lia, H.2
  • 151
    • 0024895461 scopus 로고
    • A Note on Genetic Algorithms for Large-Scale Feature Selection
    • VV, Siedlecki and J. Sklansky, A Note on Genetic Algorithms for Large-Scale Feature Selection, fat tern Recognition Letters, vol. 10, pp. 335-347, 1989.
    • (1989) Fat Tern Recognition Letters , vol.10 , pp. 335-347
    • Siedlecki, V.V.1    Sklansky, J.2
  • 152
    • 0003137923 scopus 로고
    • Efficient Pattern Recognition Using a New Transformation Distance
    • S.J. Hanson, J.D. Cowan, and C.I.. Giles, eds., Cnlifcirnia: Morgan Kaufmann
    • P. Simard, Y. LcCvm, and J. Denker, Efficient Pattern Recognition Using a New Transformation Distance, Advances in Neural Information Processing Systems, 5, S.J. Hanson, J.D. Cowan, and C.I.. Giles, eds., Cnlifcirnia: Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems , vol.5
    • Simard, P.1    Lccvm, Y.2    Denker, J.3
  • 153
    • 0001440803 scopus 로고
    • Tangent IVop-A Formnlism for Specifying Selected Invariances in flti Adaptive Network
    • J.E. Moody, S.J. I Innson, and U.P. I.ippmtmn, eds., California: Morgan Knufrnnnn
    • I'. Simard, B. Vicforri, Y. I.cCun, and J. Denker, Tangent IVop-A Formnlism for Specifying Selected Invariances in flti Adaptive Network, Arlivinccs in Neural Information Processing SYsteins, 4, J.E. Moody, S.J. I Innson, and U.P. I.ippmtmn, eds., pp. 651-655, California: Morgan Knufrnnnn, 1992.
    • (1992) Arlivinccs in Neural Information Processing SYsteins , vol.4 , pp. 651-655
    • Simard, I.1    Vicforri, B.2    I.ccun, Y.3    Denker, J.4
  • 154
    • 0033220764 scopus 로고    scopus 로고
    • Adaptive Floating Search Methods in TcaLiirc SPlection
    • P. Somol, P. Pudil, J. Novovicova, and P, F'ntlik, Adaptive Floating Search Methods in TcaLiirc SPlection, Pattern Recognition Utters, vol, 20, nos. Il, 12, 13, pp. 1,157-1,163, 1999.
    • (1999) Pattern Recognition Utters , vol.20 , Issue.12-13
    • Somol, P.1    Pudil, P.2    Novovicova, J.3    F'Ntlik, P.4
  • 156
    • 0000442861 scopus 로고
    • Combining Estimators Using NonConstant Weighting Functions
    • G. Tcsaum, U.S. Touretuky, and T.K. Leen, eds., Cambridge, Mass.: MIT Press
    • V. Tresp and M, Tanignchi, Combining Estimators Using NonConstant Weighting Functions, AdwtKCS in Neural Information Troceaiiiig Siysfems, G. Tcsaum, U.S. Touretuky, and T.K. Leen, eds., vol. 7, Cambridge, Mass.: MIT Press, 1995,
    • (1995) AdwtKCS in Neural Information Troceaiiiig Siysfems , vol.7
    • Tresp, V.1    Tanignchi, M.2
  • 158
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of Decision Boundfirica in Linearly Combined Neural Classifiers
    • K. 'limier and J. Ghosh, Analysis of Decision Boundfirica in Linearly Combined Neural Classifiers, Puffern Recognition, vol. 29, pp. 341-348, 1996.
    • (1996) Puffern Recognition , vol.29 , pp. 341-348
    • Limier, K.1    Ghosh, J.2
  • 159
    • 0001940412 scopus 로고    scopus 로고
    • Model Selection in Unsupervised I .earning with Applications to Document Clustering
    • June
    • S, Vnithyanathan and FX Dom, Model Selection in Unsupervised I .earning with Applications to Document Clustering, I'roc. Sixth Int'l Conf. Machinc learning, pp. 433-443, June 1999.
    • (1999) I'roc. Sixth Int'l Conf. Machinc Learning , pp. 433-443
    • Vnithyanathan, S.1    Dom, F.X.2
  • 160
    • 0003852679 scopus 로고    scopus 로고
    • Handwritten Digit Recognition by Combined Classifiers
    • M. van Brcukclcn, K.P.W. Dnin, D.M.J. Tax, and J.E. den Hartog, Handwritten Digit Recognition by Combined Classifiers, Kybernetika, vol. 34, no. 4, pp. 381-380, 1998
    • (1998) Kybernetika , vol.34 , Issue.4 , pp. 381-1380
    • Van Brcukclcn, M.1    Dnin, K.P.W.2    Tax, D.M.J.3    Den Hartog, J.E.4
  • 164
    • 33747875261 scopus 로고
    • S. Watnnnbe, cd, New York: Academic Press
    • Fiant if fs of Pattern Recognition. S. Watnnnbe, cd, New York: Academic Press, 1972.
    • (1972) Fiant if Fs of Pattern Recognition
  • 165
    • 0029305517 scopus 로고
    • Multidimensional Scaling by Iterative Majorization Using Radial fiasis H'unclions
    • A.U, Webb, Multidimensional Scaling by Iterative Majorization Using Radial fiasis H'unclions, Pattern Recognition, vol. 28, no. 5, pp. 753-759, 1995.
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 753-759
    • Webb, A.U.1
  • 167
    • 84950442225 scopus 로고
    • Information Ratios for Validating Mixture Analysis
    • M, Wliindliam and A. Cutler, Information Ratios for Validating Mixture Analysis, J. Am. Statistical Assoc., vol. 87, pp. 1,188-1,192, 1992.
    • (1992) J. Am. Statistical Assoc , vol.87
    • Wliindliam, M.1    Cutler, A.2
  • 168
    • 0026692226 scopus 로고
    • Stacked Generalization
    • J, Wolpcrt, Stacked Generalization, Neural Nettvortcs, vol. 5, pp. 241-259,1992.
    • (1992) Neural Nettvortcs , vol.5 , pp. 241-259
    • Wolpcrt, J.1
  • 172
    • 0026860706 scopus 로고
    • Methods for Combining Multiple Classifiers and Thoir Applications in Handwritten Character Recognition
    • L. Xu, A. Krzyj.iik, and C.Y. Siien, Methods for Combining Multiple Classifiers and Thoir Applications in Handwritten Character Recognition, IEEF, Trans. Systems, Man, nniJ Cybernetics, vol. 22, pp. 418-435, 1992.
    • (1992) IEEF, Trans. Systems, Man, NniJ Cybernetics , vol.22 , pp. 418-435
    • Xu, L.1    Krzyj.iik, A.2    Siien, C.Y.3
  • 173
    • 0018179124 scopus 로고    scopus 로고
    • The Use of Context in Pattern Recognition
    • G.T. Toussaint, The Use of Context in Pattern Recognition, Pattern Recognition, vol, 10, no. 3, pp. 189-204, 197S.
    • Pattern Recognition , vol.10 , Issue.3 , pp. 189-204
    • Toussaint, G.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.