-
1
-
-
0027480960
-
The Huntington's Disease Collaborative Research Group.
-
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 1993;72:971-983.
-
(1993)
Cell
, vol.72
, pp. 971-983
-
-
-
2
-
-
0021028244
-
A polymorphic DNA marker genetically linked to Huntington's disease
-
Gusella JF, Wexler NS, Conneally PM, et al. A polymorphic DNA marker genetically linked to Huntington's disease. Nature 1983;306:234-238.
-
(1983)
Nature
, vol.306
, pp. 234-238
-
-
Gusella, J.F.1
Wexler, N.S.2
Conneally, P.M.3
-
3
-
-
0037069280
-
Weight loss in early stage of Huntington's disease
-
Djousse L, Knowlton B, Cupples LA, et al. Weight loss in early stage of Huntington's disease. Neurology 2002;59:1325-1330.
-
(2002)
Neurology
, vol.59
, pp. 1325-1330
-
-
Djousse, L.1
Knowlton, B.2
Cupples, L.A.3
-
4
-
-
0022876328
-
Huntington's disease: pathogenesis and management
-
Martin JB, Gusella JF. Huntington's disease: pathogenesis and management. N Engl J Med 1986;315:1267-1276.
-
(1986)
N Engl J Med
, vol.315
, pp. 1267-1276
-
-
Martin, J.B.1
Gusella, J.F.2
-
6
-
-
77954426618
-
Mitochondrial bioenergetics and dynamics in Huntington's disease: tripartite synapses and selective striatal degeneration
-
Oliveira JM. Mitochondrial bioenergetics and dynamics in Huntington's disease: tripartite synapses and selective striatal degeneration. Journal of Bioenergetics and Biomembranes 2010;42:227-234.
-
(2010)
Journal of Bioenergetics and Biomembranes
, vol.42
, pp. 227-234
-
-
Oliveira, J.M.1
-
7
-
-
77953302472
-
Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum
-
Oliveira JM. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. J Neurochem 2010;114:1-12.
-
(2010)
J Neurochem
, vol.114
, pp. 1-12
-
-
Oliveira, J.M.1
-
8
-
-
33847043933
-
Mitochondria and neuronal activity
-
Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007;292:C641-C657.
-
(2007)
Am J Physiol Cell Physiol
, vol.292
, pp. C641-C657
-
-
Kann, O.1
Kovacs, R.2
-
9
-
-
77951096150
-
Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases
-
Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009;18:R169-R176.
-
(2009)
Hum Mol Genet
, vol.18
, pp. R169-R176
-
-
Chen, H.1
Chan, D.C.2
-
10
-
-
49349102894
-
Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view
-
Twig G, Hyde B, Shirihai OS. Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view. Biochim Biophys Acta 2008;1777:1092-1097.
-
(2008)
Biochim Biophys Acta
, vol.1777
, pp. 1092-1097
-
-
Twig, G.1
Hyde, B.2
Shirihai, O.S.3
-
11
-
-
0035209380
-
Metabolic network abnormalities in early Huntington's disease: an [(18)F]FDG PET study
-
Feigin A, Leenders KL, Moeller JR, et al. Metabolic network abnormalities in early Huntington's disease: an [(18)F]FDG PET study. J Nucl Med 2001;42:1591-1595.
-
(2001)
J Nucl Med
, vol.42
, pp. 1591-1595
-
-
Feigin, A.1
Leenders, K.L.2
Moeller, J.R.3
-
12
-
-
33747777842
-
Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington's disease
-
Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, Squitieri F. Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington's disease. J Nucl Med 2006;47:215-222.
-
(2006)
J Nucl Med
, vol.47
, pp. 215-222
-
-
Ciarmiello, A.1
Cannella, M.2
Lastoria, S.3
Simonelli, M.4
Frati, L.5
Rubinsztein, D.C.6
Squitieri, F.7
-
13
-
-
33847319698
-
Selective defect of in vivo glycolysis in early Huntington's disease striatum
-
Powers WJ, Videen TO, Markham J, McGee-Minnich L, Antenor-Dorsey JV, Hershey T, Perlmutter JS. Selective defect of in vivo glycolysis in early Huntington's disease striatum. Proc Natl Acad Sci U S A 2007;104:2945-2949.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 2945-2949
-
-
Powers, W.J.1
Videen, T.O.2
Markham, J.3
McGee-Minnich, L.4
Antenor-Dorsey, J.V.5
Hershey, T.6
Perlmutter, J.S.7
-
14
-
-
0022553413
-
PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline
-
Young AB, Penney JB, Starosta-Rubinstein S, et al. PET scan investigations of Huntington's disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 1986;20:296-303.
-
(1986)
Ann Neurol
, vol.20
, pp. 296-303
-
-
Young, A.B.1
Penney, J.B.2
Starosta-Rubinstein, S.3
-
15
-
-
0027741301
-
Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy
-
Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR. Evidence for impairment of energy metabolism in vivo in Huntington's disease using localized 1H NMR spectroscopy. Neurology 1993;43:2689-2695.
-
(1993)
Neurology
, vol.43
, pp. 2689-2695
-
-
Jenkins, B.G.1
Koroshetz, W.J.2
Beal, M.F.3
Rosen, B.R.4
-
16
-
-
0342368660
-
Proton magnetic resonance spectroscopy of cerebrospinal fluid in neurodegenerative disease: indication of glial energy impairment in Huntington chorea, but not Parkinson disease
-
Garseth M, Sonnewald U, White LR, Rød M, Zwart JA, Nygaard O, Aasly J. Proton magnetic resonance spectroscopy of cerebrospinal fluid in neurodegenerative disease: indication of glial energy impairment in Huntington chorea, but not Parkinson disease. J Neurosci Res 2000;60:779-782.
-
(2000)
J Neurosci Res
, vol.60
, pp. 779-782
-
-
Garseth, M.1
Sonnewald, U.2
White, L.R.3
Rød, M.4
Zwart, J.A.5
Nygaard, O.6
Aasly, J.7
-
17
-
-
41949126549
-
Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease
-
Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E. Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 2008;283:5780-5789.
-
(2008)
J Biol Chem
, vol.283
, pp. 5780-5789
-
-
Lim, D.1
Fedrizzi, L.2
Tartari, M.3
Zuccato, C.4
Cattaneo, E.5
Brini, M.6
Carafoli, E.7
-
18
-
-
3543141113
-
Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release
-
Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M. Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 2004;13:1407-1420.
-
(2004)
Hum Mol Genet
, vol.13
, pp. 1407-1420
-
-
Choo, Y.S.1
Johnson, G.V.2
MacDonald, M.3
Detloff, P.J.4
Lesort, M.5
-
19
-
-
0032900574
-
Biochemical abnormalities and excitotoxicity in Huntington's disease brain
-
Tabrizi SJ, Cleeter MW, Xuereb J, Taanman JW, Cooper JM, Schapira AH. Biochemical abnormalities and excitotoxicity in Huntington's disease brain. Ann Neurol 1999;45:25-32.
-
(1999)
Ann Neurol
, vol.45
, pp. 25-32
-
-
Tabrizi, S.J.1
Cleeter, M.W.2
Xuereb, J.3
Taanman, J.W.4
Cooper, J.M.5
Schapira, A.H.6
-
20
-
-
0036327065
-
Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines
-
Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT. Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat Neurosci 2002;5:731-736.
-
(2002)
Nat Neurosci
, vol.5
, pp. 731-736
-
-
Panov, A.V.1
Gutekunst, C.A.2
Leavitt, B.R.3
Hayden, M.R.4
Burke, J.R.5
Strittmatter, W.J.6
Greenamyre, J.T.7
-
21
-
-
33847317865
-
Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease
-
Petrasch-Parwez E, Nguyen HP, Löbbecke-Schumacher M, et al. Cellular and subcellular localization of Huntingtin [corrected] aggregates in the brain of a rat transgenic for Huntington disease. J Comp Neurol 2007;501:716-730.
-
(2007)
J Comp Neurol
, vol.501
, pp. 716-730
-
-
Petrasch-Parwez, E.1
Nguyen, H.P.2
Löbbecke-Schumacher, M.3
-
22
-
-
40849147435
-
N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking
-
Orr AL, Li S, Wang CE, et al. N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking. J Neurosci 2008;28:2783-2792.
-
(2008)
J Neurosci
, vol.28
, pp. 2783-2792
-
-
Orr, A.L.1
Li, S.2
Wang, C.E.3
-
23
-
-
4444316194
-
Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro
-
Trushina E, Dyer RB, Badger JD 2nd, et al. Mutant huntingtin impairs axonal trafficking in mammalian neurons in vivo and in vitro. Mol Cell Biol 2004;24:8195-8209.
-
(2004)
Mol Cell Biol
, vol.24
, pp. 8195-8209
-
-
Trushina, E.1
Dyer, R.B.2
Badger, J.D.3
-
24
-
-
71849091297
-
Impaired mitochondrial trafficking in Huntington's disease
-
Li XJ, Orr AL, Li S. Impaired mitochondrial trafficking in Huntington's disease. Biochim Biophys Acta 2010;1802:62-65.
-
(2010)
Biochim Biophys Acta
, vol.1802
, pp. 62-65
-
-
Li, X.J.1
Orr, A.L.2
Li, S.3
-
25
-
-
33749042331
-
Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration
-
Cui L, Jeong H, Borovecki F, Parkhurst CN, Tanese N, Krainc D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006;127:59-69.
-
(2006)
Cell
, vol.127
, pp. 59-69
-
-
Cui, L.1
Jeong, H.2
Borovecki, F.3
Parkhurst, C.N.4
Tanese, N.5
Krainc, D.6
-
26
-
-
79961116788
-
Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease
-
Ju TC, Chen HM, Lin JT, et al. Nuclear translocation of AMPK-alpha1 potentiates striatal neurodegeneration in Huntington's disease. J Cell Biol 2011;194:209-227.
-
(2011)
J Cell Biol
, vol.194
, pp. 209-227
-
-
Ju, T.C.1
Chen, H.M.2
Lin, J.T.3
-
27
-
-
0035981218
-
Creatine kinase B is a target molecule of reactive oxygen species in cervical cancer
-
Choi H, Park CS, Kim BG, Cho JW, Park JB, Bae YS, Bae DS. Creatine kinase B is a target molecule of reactive oxygen species in cervical cancer. Molecules and Cells 2001;12:412-417.
-
(2001)
Molecules and Cells
, vol.12
, pp. 412-417
-
-
Choi, H.1
Park, C.S.2
Kim, B.G.3
Cho, J.W.4
Park, J.B.5
Bae, Y.S.6
Bae, D.S.7
-
28
-
-
0016259560
-
Biochemical abnormalities in Huntington's chorea brains
-
Stahl WL, Swanson PD. Biochemical abnormalities in Huntington's chorea brains. Neurology 1974;24:813-819.
-
(1974)
Neurology
, vol.24
, pp. 813-819
-
-
Stahl, W.L.1
Swanson, P.D.2
-
29
-
-
0029875381
-
Mitochondrial defect in Huntington's disease caudate nucleus
-
Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AH. Mitochondrial defect in Huntington's disease caudate nucleus. Ann Neurol 1996;39:385-389.
-
(1996)
Ann Neurol
, vol.39
, pp. 385-389
-
-
Gu, M.1
Gash, M.T.2
Mann, V.M.3
Javoy-Agid, F.4
Cooper, J.M.5
Schapira, A.H.6
-
30
-
-
0030919567
-
Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia
-
Browne SE, Bowling AC, MacGarvey U, et al. Oxidative damage and metabolic dysfunction in Huntington's disease: selective vulnerability of the basal ganglia. Ann Neurol 1997;41:646-653.
-
(1997)
Ann Neurol
, vol.41
, pp. 646-653
-
-
Browne, S.E.1
Bowling, A.C.2
MacGarvey, U.3
-
31
-
-
33745392939
-
Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin
-
Benchoua A, Trioulier Y, Zala D, et al. Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 2006;17:1652-1663.
-
(2006)
Mol Biol Cell
, vol.17
, pp. 1652-1663
-
-
Benchoua, A.1
Trioulier, Y.2
Zala, D.3
-
32
-
-
33845933438
-
Mutant huntingtin expression induces mitochondrial calcium handling defects in clonal striatal cells: functional consequences
-
Milakovic T, Quintanilla RA, Johnson GV. Mutant huntingtin expression induces mitochondrial calcium handling defects in clonal striatal cells: functional consequences. J Biol Chem 2006;281:34785-34795.
-
(2006)
J Biol Chem
, vol.281
, pp. 34785-34795
-
-
Milakovic, T.1
Quintanilla, R.A.2
Johnson, G.V.3
-
33
-
-
68649104009
-
Mitochondrial calcium function and dysfunction in the central nervous system
-
Nicholls DG. Mitochondrial calcium function and dysfunction in the central nervous system. Biochim Biophys Acta 2009;1787:1416-1424.
-
(2009)
Biochim Biophys Acta
, vol.1787
, pp. 1416-1424
-
-
Nicholls, D.G.1
-
34
-
-
26444441008
-
HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism
-
Seong IS, Ivanova E, Lee JM, et al. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Hum Mol Genet 2005;14:2871-2880.
-
(2005)
Hum Mol Genet
, vol.14
, pp. 2871-2880
-
-
Seong, I.S.1
Ivanova, E.2
Lee, J.M.3
-
35
-
-
0037741021
-
Increased susceptibility of striatal mitochondria to calcium-induced permeability transition
-
Brustovetsky N, Brustovetsky T, Purl KJ, Capano M, Crompton M, Dubinsky JM. Increased susceptibility of striatal mitochondria to calcium-induced permeability transition. J Neurosci 2003;23:4858-4867.
-
(2003)
J Neurosci
, vol.23
, pp. 4858-4867
-
-
Brustovetsky, N.1
Brustovetsky, T.2
Purl, K.J.3
Capano, M.4
Crompton, M.5
Dubinsky, J.M.6
-
36
-
-
0033982887
-
Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse
-
Tabrizi SJ, Workman J, Hart PE, et al. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 2000;47:80-86.
-
(2000)
Ann Neurol
, vol.47
, pp. 80-86
-
-
Tabrizi, S.J.1
Workman, J.2
Hart, P.E.3
-
37
-
-
0035668684
-
Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease
-
Bogdanov MB, Andreassen OA, Dedeoglu A, Ferrante RJ, Beal MF. Increased oxidative damage to DNA in a transgenic mouse model of Huntington's disease. J Neurochem 2001;79:1246-1249.
-
(2001)
J Neurochem
, vol.79
, pp. 1246-1249
-
-
Bogdanov, M.B.1
Andreassen, O.A.2
Dedeoglu, A.3
Ferrante, R.J.4
Beal, M.F.5
-
38
-
-
34249930833
-
Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington's disease patients
-
Chen CM, Wu YR, Cheng ML, et al. Increased oxidative damage and mitochondrial abnormalities in the peripheral blood of Huntington's disease patients. Biochem Biophys Res Commun 2007;359:335-340.
-
(2007)
Biochem Biophys Res Commun
, vol.359
, pp. 335-340
-
-
Chen, C.M.1
Wu, Y.R.2
Cheng, M.L.3
-
39
-
-
33644927838
-
Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG
-
Hersch SM, Gevorkian S, Marder K, et al. Creatine in Huntington disease is safe, tolerable, bioavailable in brain and reduces serum 8OH2'dG. Neurology 2006;66:250-252.
-
(2006)
Neurology
, vol.66
, pp. 250-252
-
-
Hersch, S.M.1
Gevorkian, S.2
Marder, K.3
-
40
-
-
48449091060
-
Proteomic and oxidative stress analysis in human brain samples of Huntington disease
-
Sorolla MA, Reverter-Branchat G, Tamarit J, Ferrer I, Ros J, Cabiscol E. Proteomic and oxidative stress analysis in human brain samples of Huntington disease. Free Radic Biol Med 2008;45:667-678.
-
(2008)
Free Radic Biol Med
, vol.45
, pp. 667-678
-
-
Sorolla, M.A.1
Reverter-Branchat, G.2
Tamarit, J.3
Ferrer, I.4
Ros, J.5
Cabiscol, E.6
-
41
-
-
0034915234
-
Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington's disease
-
Santamaria A, Pérez-Severiano F, Rodríguez-Martínez E, Maldonado PD, Pedraza-Chaverri J, Ríos C, Segovia J. Comparative analysis of superoxide dismutase activity between acute pharmacological models and a transgenic mouse model of Huntington's disease. Neurochem Res 2001;26:419-424.
-
(2001)
Neurochem Res
, vol.26
, pp. 419-424
-
-
Santamaria, A.1
Pérez-Severiano, F.2
Rodríguez-Martínez, E.3
Maldonado, P.D.4
Pedraza-Chaverri, J.5
Ríos, C.6
Segovia, J.7
-
42
-
-
32644481227
-
Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction
-
Goswami A, Dikshit P, Mishra A, Mulherkar S, Nukina N, Jana NR. Oxidative stress promotes mutant huntingtin aggregation and mutant huntingtin-dependent cell death by mimicking proteasomal malfunction. Biochem Biophys Res Commun 2006;342:184-190.
-
(2006)
Biochem Biophys Res Commun
, vol.342
, pp. 184-190
-
-
Goswami, A.1
Dikshit, P.2
Mishra, A.3
Mulherkar, S.4
Nukina, N.5
Jana, N.R.6
-
43
-
-
0037335074
-
Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice
-
Gines S, Seong IS, Fossale E, et al. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice. Hum Mol Genet 2003;12:497-508.
-
(2003)
Hum Mol Genet
, vol.12
, pp. 497-508
-
-
Gines, S.1
Seong, I.S.2
Fossale, E.3
-
44
-
-
84855481293
-
Early alterations of brain cellular energy homeostasis in Huntington disease models
-
Mochel F, Durant B, Meng X, et al. Early alterations of brain cellular energy homeostasis in Huntington disease models. J Biol Chem 2012;287:1361-1370.
-
(2012)
J Biol Chem
, vol.287
, pp. 1361-1370
-
-
Mochel, F.1
Durant, B.2
Meng, X.3
-
45
-
-
77954542302
-
Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism
-
Sorolla MA, Rodríguez-Colman MJ, Tamarit J, et al. Protein oxidation in Huntington disease affects energy production and vitamin B6 metabolism. Free Radic Biol Med 2010;49:612-621.
-
(2010)
Free Radic Biol Med
, vol.49
, pp. 612-621
-
-
Sorolla, M.A.1
Rodríguez-Colman, M.J.2
Tamarit, J.3
-
46
-
-
84866395321
-
Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease
-
Siddiqui A, Rivera-Sánchez S, Castro Mdel R, et al. Mitochondrial DNA damage is associated with reduced mitochondrial bioenergetics in Huntington's disease. Free Radic Biol Med 2012;53:1478-1488.
-
(2012)
Free Radic Biol Med
, vol.53
, pp. 1478-1488
-
-
Siddiqui, A.1
Rivera-Sánchez, S.2
Castro Mdel, R.3
-
47
-
-
77957742105
-
Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease
-
Kim J, Moody JP, Edgerly CK, et al. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease. Hum Mol Genet 2010;19:3919-3935.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3919-3935
-
-
Kim, J.1
Moody, J.P.2
Edgerly, C.K.3
-
48
-
-
79952443408
-
Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity
-
Song W, Chen J, Petrilli A, et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 2011;17:377-382.
-
(2011)
Nat Med
, vol.17
, pp. 377-382
-
-
Song, W.1
Chen, J.2
Petrilli, A.3
-
49
-
-
84855395163
-
Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease
-
Shirendeb UP, Calkins MJ, Manczak M, et al. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease. Hum Mol Genet 2012;21:406-420.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 406-420
-
-
Shirendeb, U.P.1
Calkins, M.J.2
Manczak, M.3
-
50
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metabol 2005;1:361-370.
-
(2005)
Cell Metabol
, vol.1
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
51
-
-
33645011201
-
Nuclear control of respiratory gene expression in mammalian cells
-
Scarpulla RC. Nuclear control of respiratory gene expression in mammalian cells. J Cell Biochem 2006;97:673-683.
-
(2006)
J Cell Biochem
, vol.97
, pp. 673-683
-
-
Scarpulla, R.C.1
-
52
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 2004;119:121-135.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
-
53
-
-
67650061723
-
Impaired PGC-1alpha function in muscle in Huntington's disease
-
Chaturvedi RK, Adhihetty P, Shukla S, et al. Impaired PGC-1alpha function in muscle in Huntington's disease. Hum Mol Genet 2009;18:3048-3065.
-
(2009)
Hum Mol Genet
, vol.18
, pp. 3048-3065
-
-
Chaturvedi, R.K.1
Adhihetty, P.2
Shukla, S.3
-
54
-
-
77955017449
-
Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation
-
Chaturvedi RK, Calingasan NY, Yang L, Hennessey T, Johri A, Beal MF. Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation. Hum Mol Genet 2010;19:3190-3205.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 3190-3205
-
-
Chaturvedi, R.K.1
Calingasan, N.Y.2
Yang, L.3
Hennessey, T.4
Johri, A.5
Beal, M.F.6
-
55
-
-
33750437278
-
Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration
-
Weydt P, Pineda VV, Torrence AE, et al. Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate PGC-1alpha in Huntington's disease neurodegeneration. Cell Metab 2006;4:349-362.
-
(2006)
Cell Metab
, vol.4
, pp. 349-362
-
-
Weydt, P.1
Pineda, V.V.2
Torrence, A.E.3
-
56
-
-
77957727491
-
Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma
-
Chiang MC, Chen CM, Lee MR, et al. Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma. Hum Mol Genet 2010;19:4043-4058.
-
(2010)
Hum Mol Genet
, vol.19
, pp. 4043-4058
-
-
Chiang, M.C.1
Chen, C.M.2
Lee, M.R.3
-
57
-
-
84864526960
-
A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset
-
Soyal SM, Felder TK, Auer S, et al. A greatly extended PPARGC1A genomic locus encodes several new brain-specific isoforms and influences Huntington disease age of onset. Hum Mol Genet 2012;21:3461-3473.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 3461-3473
-
-
Soyal, S.M.1
Felder, T.K.2
Auer, S.3
-
58
-
-
33745815985
-
AMP-activated protein kinase signaling in metabolic regulation
-
Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006;116:1776-1783.
-
(2006)
J Clin Invest
, vol.116
, pp. 1776-1783
-
-
Long, Y.C.1
Zierath, J.R.2
-
59
-
-
33745199458
-
Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain
-
Ramamurthy S, Ronnett GV. Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain. J Physiol 2006;574:85-93.
-
(2006)
J Physiol
, vol.574
, pp. 85-93
-
-
Ramamurthy, S.1
Ronnett, G.V.2
-
60
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis: nature reviews
-
Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis: nature reviews. Mol Cell Biol 2012;13:251-262.
-
(2012)
Mol Cell Biol
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
Ross, F.A.2
Hawley, S.A.3
-
61
-
-
67650914230
-
AMPK in health and disease
-
Steinberg GR, Kemp BE. AMPK in health and disease. Physiol Rev 2009;89:1025-1078.
-
(2009)
Physiol Rev
, vol.89
, pp. 1025-1078
-
-
Steinberg, G.R.1
Kemp, B.E.2
-
62
-
-
0032973130
-
Dealing with energy demand: the AMP-activated protein kinase
-
Kemp BE, et al. Dealing with energy demand: the AMP-activated protein kinase. Trends Biochem Sci 1999;24:22-25.
-
(1999)
Trends Biochem Sci
, vol.24
, pp. 22-25
-
-
Kemp, B.E.1
-
63
-
-
34548095002
-
Metformin therapy in a transgenic mouse model of Huntington's disease
-
Ma TC, Buescher JL, Oatis B, et al. Metformin therapy in a transgenic mouse model of Huntington's disease. Neurosci Lett 2007;411:98-103.
-
(2007)
Neurosci Lett
, vol.411
, pp. 98-103
-
-
Ma, T.C.1
Buescher, J.L.2
Oatis, B.3
-
64
-
-
20244362093
-
CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model
-
Chou SY, Lee YC, Chen HM, et al. CGS21680 attenuates symptoms of Huntington's disease in a transgenic mouse model. J Neurochem 2005;93:310-320.
-
(2005)
J Neurochem
, vol.93
, pp. 310-320
-
-
Chou, S.Y.1
Lee, Y.C.2
Chen, H.M.3
-
65
-
-
0033935979
-
Creatine and creatinine metabolism
-
Wyss M, Kaddurah-Daouk R. Creatine and creatinine metabolism. Physiol Rev 2000;80:1107-1213.
-
(2000)
Physiol Rev
, vol.80
, pp. 1107-1213
-
-
Wyss, M.1
Kaddurah-Daouk, R.2
-
66
-
-
79955832453
-
Impaired brain creatine kinase activity in Huntington's disease
-
Zhang SF, Hennessey T, Yang L, Starkova NN, Beal MF, Starkov AA. Impaired brain creatine kinase activity in Huntington's disease. Neurodegen Dis 2011;8:194-201.
-
(2011)
Neurodegen Dis
, vol.8
, pp. 194-201
-
-
Zhang, S.F.1
Hennessey, T.2
Yang, L.3
Starkova, N.N.4
Beal, M.F.5
Starkov, A.A.6
-
67
-
-
0037101835
-
Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain
-
Luthi-Carter R, Hanson SA, Strand AD, et al. Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Hum Mol Genet 2002;11:1911-1926.
-
(2002)
Hum Mol Genet
, vol.11
, pp. 1911-1926
-
-
Luthi-Carter, R.1
Hanson, S.A.2
Strand, A.D.3
-
68
-
-
37049035922
-
KCC2 interacts with the dendritic cytoskeleton to promote spine development
-
Li H, Khirug S, Cai C, et al. KCC2 interacts with the dendritic cytoskeleton to promote spine development. Neuron 2007;56:1019-1033.
-
(2007)
Neuron
, vol.56
, pp. 1019-1033
-
-
Li, H.1
Khirug, S.2
Cai, C.3
-
69
-
-
2942620844
-
Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice
-
Spires TL, Grote HE, Garry S, et al. Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington's disease transgenic mice. Eur J Neurosci 2004;19:2799-2807.
-
(2004)
Eur J Neurosci
, vol.19
, pp. 2799-2807
-
-
Spires, T.L.1
Grote, H.E.2
Garry, S.3
-
71
-
-
0029977161
-
Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils
-
Mekhfi H, Veksler V, Mateo P, Maupoil V, Rochette L, Ventura-Clapier R. Creatine kinase is the main target of reactive oxygen species in cardiac myofibrils. Circ Res 1996;78:1016-1027.
-
(1996)
Circ Res
, vol.78
, pp. 1016-1027
-
-
Mekhfi, H.1
Veksler, V.2
Mateo, P.3
Maupoil, V.4
Rochette, L.5
Ventura-Clapier, R.6
-
72
-
-
33751080354
-
Huntingtin inclusion bodies are iron-dependent centers of oxidative events
-
Firdaus WJ, Wyttenbach A, Giuliano P, Kretz-Remy C, Currie RW, Arrigo AP. Huntingtin inclusion bodies are iron-dependent centers of oxidative events. FEBS J 2006;273:5428-5441.
-
(2006)
FEBS J
, vol.273
, pp. 5428-5441
-
-
Firdaus, W.J.1
Wyttenbach, A.2
Giuliano, P.3
Kretz-Remy, C.4
Currie, R.W.5
Arrigo, A.P.6
-
73
-
-
0029203029
-
Dementia and cognitive changes in Huntington's disease
-
Morris M. Dementia and cognitive changes in Huntington's disease. Adv Neurol 1995;65:187-200.
-
(1995)
Adv Neurol
, vol.65
, pp. 187-200
-
-
Morris, M.1
-
74
-
-
0033975779
-
Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons
-
Petersen A, Castilho RF, Hansson O, Wieloch T, Brundin P. Oxidative stress, mitochondrial permeability transition and activation of caspases in calcium ionophore A23187-induced death of cultured striatal neurons. Brain Res 2000;857:20-29.
-
(2000)
Brain Res
, vol.857
, pp. 20-29
-
-
Petersen, A.1
Castilho, R.F.2
Hansson, O.3
Wieloch, T.4
Brundin, P.5
-
75
-
-
0034597411
-
Cyclosporin A protects striatal neurons in vitro and in vivo from 3-nitropropionic acid toxicity
-
Leventhal L, Sortwell CE, Hanbury R, Collier TJ, Kordower JH, Palfi S. Cyclosporin A protects striatal neurons in vitro and in vivo from 3-nitropropionic acid toxicity. J Comp Neurol 2000;425:471-478.
-
(2000)
J Comp Neurol
, vol.425
, pp. 471-478
-
-
Leventhal, L.1
Sortwell, C.E.2
Hanbury, R.3
Collier, T.J.4
Kordower, J.H.5
Palfi, S.6
-
76
-
-
42449109035
-
Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies
-
Merlini L, Angelin A, Tiepolo T, et al. Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc Natl Acad Sci U S A 2008;105:5225-5229.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 5225-5229
-
-
Merlini, L.1
Angelin, A.2
Tiepolo, T.3
-
77
-
-
37249083913
-
Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington's disease
-
Fernandes HB, Baimbridge KG, Church J, Hayden MR, Raymond LA. Mitochondrial sensitivity and altered calcium handling underlie enhanced NMDA-induced apoptosis in YAC128 model of Huntington's disease. J Neurosci 2007;27:13614-13623.
-
(2007)
J Neurosci
, vol.27
, pp. 13614-13623
-
-
Fernandes, H.B.1
Baimbridge, K.G.2
Church, J.3
Hayden, M.R.4
Raymond, L.A.5
-
78
-
-
84883524497
-
Sirtuins: from metabolic regulation to brain aging
-
Duan W. Sirtuins: from metabolic regulation to brain aging. Front Aging Neurosci 2013;5:36.
-
(2013)
Front Aging Neurosci
, vol.5
, pp. 36
-
-
Duan, W.1
-
79
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 2005;434:113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
80
-
-
84855544817
-
Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets
-
Jiang M, Wang J, Fu J, et al. Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets. Nat Med 2012;18:153-158.
-
(2012)
Nat Med
, vol.18
, pp. 153-158
-
-
Jiang, M.1
Wang, J.2
Fu, J.3
-
81
-
-
84855563516
-
Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway
-
Jeong H, Cohen DE, Cui L, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med 2012;18:159-165.
-
(2012)
Nat Med
, vol.18
, pp. 159-165
-
-
Jeong, H.1
Cohen, D.E.2
Cui, L.3
-
82
-
-
37349085288
-
Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells
-
Yang T, Chan NY, Sauve AA. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells. J Med Chem 2007;50:6458-6461.
-
(2007)
J Med Chem
, vol.50
, pp. 6458-6461
-
-
Yang, T.1
Chan, N.Y.2
Sauve, A.A.3
-
83
-
-
78349291479
-
Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease
-
Hathorn T, Snyder-Keller A, Messer A. Nicotinamide improves motor deficits and upregulates PGC-1alpha and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol Dis 2011;41:43-50.
-
(2011)
Neurobiol Dis
, vol.41
, pp. 43-50
-
-
Hathorn, T.1
Snyder-Keller, A.2
Messer, A.3
-
84
-
-
84863794891
-
Trans-(-)-epsilon-viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington disease
-
Fu J, Jin J, Cichewicz RH, et al. Trans-(-)-epsilon-viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington disease. J Biol Chem 2012;287:24460-24472.
-
(2012)
J Biol Chem
, vol.287
, pp. 24460-24472
-
-
Fu, J.1
Jin, J.2
Cichewicz, R.H.3
-
85
-
-
16844375290
-
Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons
-
Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 2005;37:349-350.
-
(2005)
Nat Genet
, vol.37
, pp. 349-350
-
-
Parker, J.A.1
Arango, M.2
Abderrahmane, S.3
Lambert, E.4
Tourette, C.5
Catoire, H.6
Néri, C.7
-
86
-
-
77955660387
-
Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease
-
Ho DJ, Calingasan NY, Wille E, Dumont M, Beal MF. Resveratrol protects against peripheral deficits in a mouse model of Huntington's disease. Exp Neurol 2010;225:74-84.
-
(2010)
Exp Neurol
, vol.225
, pp. 74-84
-
-
Ho, D.J.1
Calingasan, N.Y.2
Wille, E.3
Dumont, M.4
Beal, M.F.5
-
87
-
-
33845399894
-
Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha
-
Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006;127:1109-1122.
-
(2006)
Cell
, vol.127
, pp. 1109-1122
-
-
Lagouge, M.1
Argmann, C.2
Gerhart-Hines, Z.3
-
89
-
-
84874721105
-
Evidence for a common mechanism of SIRT1 regulation by allosteric activators
-
Hubbard BP, Gomes AP, Dai H, et al. Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 2013;339:1216-1219.
-
(2013)
Science
, vol.339
, pp. 1216-1219
-
-
Hubbard, B.P.1
Gomes, A.P.2
Dai, H.3
-
90
-
-
84899965665
-
A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease
-
Smith MR, Syed A, Lukacsovich T, et al. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease. Hum Mol Genet 2014;1:2995-3007.
-
(2014)
Hum Mol Genet
, vol.1
, pp. 2995-3007
-
-
Smith, M.R.1
Syed, A.2
Lukacsovich, T.3
-
91
-
-
78649738291
-
SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
-
Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci 2010;123:4251-4258.
-
(2010)
J Cell Sci
, vol.123
, pp. 4251-4258
-
-
Rothgiesser, K.M.1
Erener, S.2
Waibel, S.3
Luscher, B.4
Hottiger, M.O.5
-
92
-
-
84871706585
-
The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models
-
Chopra V, Quinti L, Kim J, et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models. Cell Rep 2012;2:1492-1497.
-
(2012)
Cell Rep
, vol.2
, pp. 1492-1497
-
-
Chopra, V.1
Quinti, L.2
Kim, J.3
-
93
-
-
84863011541
-
Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease
-
Johri A, Calingasan NY, Hennessey TM, et al. Pharmacologic activation of mitochondrial biogenesis exerts widespread beneficial effects in a transgenic mouse model of Huntington's disease. Hum Mol Genet 2012;21:1124-1137.
-
(2012)
Hum Mol Genet
, vol.21
, pp. 1124-1137
-
-
Johri, A.1
Calingasan, N.Y.2
Hennessey, T.M.3
-
94
-
-
33847698158
-
Rosiglitazone induces mitochondrial biogenesis in mouse brain
-
Strum JC, Shehee R, Virley D, et al. Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis 2007;11:45-51.
-
(2007)
J Alzheimers Dis
, vol.11
, pp. 45-51
-
-
Strum, J.C.1
Shehee, R.2
Virley, D.3
-
95
-
-
54449092109
-
Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease
-
Quintanilla RA, Jin YN, Fuenzalida K, Bronfman M, Johnson GV. Rosiglitazone treatment prevents mitochondrial dysfunction in mutant huntingtin-expressing cells: possible role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in the pathogenesis of Huntington disease. J Biol Chem 2008;283:25628-25637.
-
(2008)
J Biol Chem
, vol.283
, pp. 25628-25637
-
-
Quintanilla, R.A.1
Jin, Y.N.2
Fuenzalida, K.3
Bronfman, M.4
Johnson, G.V.5
-
96
-
-
84876665921
-
Neuroprotective effects of PPAR-gamma agonist rosiglitazone in N171-82Q mouse model of Huntington's disease
-
Jin J, Albertz J, Guo Z, et al. Neuroprotective effects of PPAR-gamma agonist rosiglitazone in N171-82Q mouse model of Huntington's disease. J Neurochem 2013;125:410-419.
-
(2013)
J Neurochem
, vol.125
, pp. 410-419
-
-
Jin, J.1
Albertz, J.2
Guo, Z.3
-
97
-
-
0347419379
-
Effects of coenzyme Q10 in Huntington's disease and early Parkinson's disease
-
Beal MF, Shults CW. Effects of coenzyme Q10 in Huntington's disease and early Parkinson's disease. BioFactors 2003;18:153-161.
-
(2003)
BioFactors
, vol.18
, pp. 153-161
-
-
Beal, M.F.1
Shults, C.W.2
-
98
-
-
83755174108
-
Evidence for behavioral benefits of early dietary supplementation with CoEnzymeQ10 in a slowly progressing mouse model of Huntington's disease
-
Hickey MA, Zhu C, Medvedeva V, Franich NR, Levine MS, Chesselet MF. Evidence for behavioral benefits of early dietary supplementation with CoEnzymeQ10 in a slowly progressing mouse model of Huntington's disease. Mol Cell Neurosci 2012;49:149-157.
-
(2012)
Mol Cell Neurosci
, vol.49
, pp. 149-157
-
-
Hickey, M.A.1
Zhu, C.2
Medvedeva, V.3
Franich, N.R.4
Levine, M.S.5
Chesselet, M.F.6
-
100
-
-
65549091910
-
Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases
-
Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF. Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson's and Huntington's diseases. J Neurochem 2009;109:1427-1439.
-
(2009)
J Neurochem
, vol.109
, pp. 1427-1439
-
-
Yang, L.1
Calingasan, N.Y.2
Wille, E.J.3
Cormier, K.4
Smith, K.5
Ferrante, R.J.6
Beal, M.F.7
-
101
-
-
0035960544
-
Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mouse model
-
Schilling G, Coonfield ML, Ross CA, Borchelt DR. Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mouse model. Neurosci Lett 2001;5:149-153.
-
(2001)
Neurosci Lett
, vol.5
, pp. 149-153
-
-
Schilling, G.1
Coonfield, M.L.2
Ross, C.A.3
Borchelt, D.R.4
-
102
-
-
78149474887
-
Comprehensive behavioral testing in the R6/2 mouse model of Huntington's disease shows no benefit from CoQ10 or minocycline
-
Menalled LB, Patry M, Ragland N, et al. Comprehensive behavioral testing in the R6/2 mouse model of Huntington's disease shows no benefit from CoQ10 or minocycline. PloS One 2010;5:e9793.
-
(2010)
PloS One
, vol.5
, pp. e9793
-
-
Menalled, L.B.1
Patry, M.2
Ragland, N.3
-
103
-
-
85009226418
-
Huntington Study G. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease
-
Huntington Study G. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology 2001;57:397-404.
-
(2001)
Neurology
, vol.57
, pp. 397-404
-
-
-
104
-
-
77956802394
-
Safety and tolerability of high-dosage coenzyme Q10 in Huntington's disease and healthy subjects
-
Huntington Study Group Pre CI
-
Huntington Study Group Pre CI, Hyson HC, Kieburtz K, et al. Safety and tolerability of high-dosage coenzyme Q10 in Huntington's disease and healthy subjects. Mov Disord 2010;25:1924-1928.
-
(2010)
Mov Disord
, vol.25
, pp. 1924-1928
-
-
Hyson, H.C.1
Kieburtz, K.2
-
105
-
-
79953322201
-
Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease
-
Lin YS, Chen CM, Soong BW, et al. Dysregulated brain creatine kinase is associated with hearing impairment in mouse models of Huntington disease. J Clin Invest 2011;121:1519-1523.
-
(2011)
J Clin Invest
, vol.121
, pp. 1519-1523
-
-
Lin, Y.S.1
Chen, C.M.2
Soong, B.W.3
-
106
-
-
0034660457
-
Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease
-
Ferrante RJ, Andreassen OA, Jenkins BG, et al. Neuroprotective effects of creatine in a transgenic mouse model of Huntington's disease. J Neurosci 2000;20:4389-4397.
-
(2000)
J Neurosci
, vol.20
, pp. 4389-4397
-
-
Ferrante, R.J.1
Andreassen, O.A.2
Jenkins, B.G.3
-
107
-
-
43849087699
-
Functions and effects of creatine in the central nervous system
-
Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR. Functions and effects of creatine in the central nervous system. Brain Res Bull 2008;76:329-343.
-
(2008)
Brain Res Bull
, vol.76
, pp. 329-343
-
-
Andres, R.H.1
Ducray, A.D.2
Schlattner, U.3
Wallimann, T.4
Widmer, H.R.5
-
108
-
-
0038665436
-
Kinetics of creatine in blood and brain after intraperitoneal injection in the rat
-
Perasso L, Cupello A, Lunardi GL, Principato C, Gandolfo C, Balestrino M. Kinetics of creatine in blood and brain after intraperitoneal injection in the rat. Brain Res 2003;974:37-42.
-
(2003)
Brain Res
, vol.974
, pp. 37-42
-
-
Perasso, L.1
Cupello, A.2
Lunardi, G.L.3
Principato, C.4
Gandolfo, C.5
Balestrino, M.6
-
109
-
-
84898712203
-
PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease
-
Rosas HD, Doros G, Gevorkian S, et al. PRECREST: a phase II prevention and biomarker trial of creatine in at-risk Huntington disease. Neurology 2014;82:850-857.
-
(2014)
Neurology
, vol.82
, pp. 850-857
-
-
Rosas, H.D.1
Doros, G.2
Gevorkian, S.3
|