메뉴 건너뛰기




Volumn 7, Issue 1, 2014, Pages

Zymomonas mobilis: A novel platform for future biorefineries

Author keywords

biofuel; biorefinery; building block chemical; platform; Zymomonas mobilis

Indexed keywords

BIOCHEMISTRY; BIOFUELS; BIOMASS; ESCHERICHIA COLI; METABOLIC ENGINEERING; YEAST;

EID: 84903421930     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/1754-6834-7-101     Document Type: Review
Times cited : (166)

References (167)
  • 1
    • 84861440312 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY, Nat Chem Biol 2012 8 536 546
    • (2012) Nat Chem Biol , vol.8 , pp. 536-546
    • Lee, J.W.1    Na, D.2    Park, J.M.3    Lee, J.4    Choi, S.5    Lee, S.Y.6
  • 3
    • 84887997172 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production
    • Metabolic engineering of Escherichia coli: a sustainable industrial platform for bio-based chemical production. Chen XZ, Zhou L, Kangming T, Kumar A, Singh S, Prior BA, Wang ZX, Biotechnol Adv 2013 31 1200 1223
    • (2013) Biotechnol Adv , vol.31 , pp. 1200-1223
    • Chen, X.Z.1    Zhou, L.2    Kangming, T.3    Kumar, A.4    Singh, S.5    Prior, B.A.6    Wang, Z.X.7
  • 4
    • 84878641167 scopus 로고    scopus 로고
    • Metabolic engineering of yeast for production of fuels and chemicals
    • Metabolic engineering of yeast for production of fuels and chemicals. Nielsen J, Larsson C, van Maris A, Pronk J, Curr Opin Biotechnol 2013 24 398 404
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 398-404
    • Nielsen, J.1    Larsson, C.2    Van Maris, A.3    Pronk, J.4
  • 5
    • 84864186953 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries
    • Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Hong K-K, Nielsen J, Cell Mol Life Sci 2012 69 2671 2690
    • (2012) Cell Mol Life Sci , vol.69 , pp. 2671-2690
    • Hong, K.-K.1    Nielsen, J.2
  • 6
    • 84862188808 scopus 로고    scopus 로고
    • Biomass for energy in the European Union-A review of bioenergy resource assessments
    • Biomass for energy in the European Union-a review of bioenergy resource assessments. Bentsen NS, Felby C, Biotechnol Biofuels 2012 5 1 10
    • (2012) Biotechnol Biofuels , vol.5 , pp. 1-10
    • Bentsen, N.S.1    Felby, C.2
  • 7
    • 78650546901 scopus 로고    scopus 로고
    • Assessment of sustainable biomass resource for energy use in China
    • Assessment of sustainable biomass resource for energy use in China. Zhou X, Wang F, Hu H, Yang L, Guo P, Xiao B, Biomass Bioenergy 2011 35 1 11
    • (2011) Biomass Bioenergy , vol.35 , pp. 1-11
    • Zhou, X.1    Wang, F.2    Hu, H.3    Yang, L.4    Guo, P.5    Xiao, B.6
  • 12
    • 31344479544 scopus 로고    scopus 로고
    • Ethanol fermentation from biomass resources: Current state and prospects
    • Ethanol fermentation from biomass resources: current state and prospects. Lin Y, Tanaka S, Appl Microbiol Biotechnol 2006 69 627 642
    • (2006) Appl Microbiol Biotechnol , vol.69 , pp. 627-642
    • Lin, Y.1    Tanaka, S.2
  • 14
    • 84864955882 scopus 로고    scopus 로고
    • Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches
    • Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Jang Y-S, Park JM, Choi S, Choi YJ, Seung DY, Cho JH, Lee SY, Biotechnol Adv 2012 30 989 1000
    • (2012) Biotechnol Adv , vol.30 , pp. 989-1000
    • Jang, Y.-S.1    Park, J.M.2    Choi, S.3    Choi, Y.J.4    Seung, D.Y.5    Cho, J.H.6    Lee, S.Y.7
  • 15
    • 12444261675 scopus 로고    scopus 로고
    • Zymomonas mobilis subspecies identification by amplified ribosomal DNA restriction analysis
    • Zymomonas mobilis subspecies identification by amplified ribosomal DNA restriction analysis. Coton M, Laplace JM, Coton E, Lett Appl Microbiol 2005 40 152 157
    • (2005) Lett Appl Microbiol , vol.40 , pp. 152-157
    • Coton, M.1    Laplace, J.M.2    Coton, E.3
  • 16
    • 33646475878 scopus 로고    scopus 로고
    • Framboisé spoilage in French ciders: Zymomonas mobilis implication and characterization
    • "Framboisé" spoilage in French ciders: Zymomonas mobilis implication and characterization. Coton M, Laplace JM, Auffray Y, Coton E, LWT-Food Sci Technol 2006 39 972 979
    • (2006) LWT-Food Sci Technol , vol.39 , pp. 972-979
    • Coton, M.1    Laplace, J.M.2    Auffray, Y.3    Coton, E.4
  • 17
    • 31144432673 scopus 로고    scopus 로고
    • Polyphasic study of Zymomonas mobilis strains revealing the existence of a novel subspecies Z. Mobilis subsp. Francensissubsp. Nov., Isolated from French cider
    • Polyphasic study of Zymomonas mobilis strains revealing the existence of a novel subspecies Z. mobilis subsp. francensissubsp. nov., isolated from French cider. Coton M, Laplace J-M, Auffray Y, Coton E, Int J Syst Evol Microbiol 2006 56 121 125
    • (2006) Int J Syst Evol Microbiol , vol.56 , pp. 121-125
    • Coton, M.1    Laplace, J.-M.2    Auffray, Y.3    Coton, E.4
  • 18
    • 31544481416 scopus 로고    scopus 로고
    • Duplex PCR method for rapid detection of Zymomonas mobilis in cider
    • Duplex PCR method for rapid detection of Zymomonas mobilis in cider. Coton M, Laplace J, Auffray Y, Coton E, J Inst Brew 2005 111 299 303
    • (2005) J Inst Brew , vol.111 , pp. 299-303
    • Coton, M.1    Laplace, J.2    Auffray, Y.3    Coton, E.4
  • 20
    • 1842453831 scopus 로고    scopus 로고
    • Disruption of the Zymomonas mobilis extracellular sucrase gene (SacC) improves levan production
    • Disruption of the Zymomonas mobilis extracellular sucrase gene (SacC) improves levan production. Senthilkumar V, Rameshkumar N, Busby S, Gunasekaran P, J Appl Microbiol 2004 96 671 676
    • (2004) J Appl Microbiol , vol.96 , pp. 671-676
    • Senthilkumar, V.1    Rameshkumar, N.2    Busby, S.3    Gunasekaran, P.4
  • 22
    • 84878443018 scopus 로고    scopus 로고
    • Construction and characterization of restriction-modification deficient mutants in Zymomonas mobilis ZM4
    • Construction and characterization of restriction-modification deficient mutants in Zymomonas mobilis ZM4. Wu B, He MX, Luo AJ, Zhang Y, Feng H, Hu QC, Zhang YZ, Chin J Appl Environ Biol 2013 19 2 189 197
    • (2013) Chin J Appl Environ Biol , vol.19 , Issue.2 , pp. 189-197
    • Wu, B.1    He, M.X.2    Luo, A.J.3    Zhang, Y.4    Feng, H.5    Hu, Q.C.6    Zhang, Y.Z.7
  • 26
    • 79953324322 scopus 로고    scopus 로고
    • Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions
    • Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. Hayashi T, Furuta Y, Furukawa K, J Biosci Bioeng 2011 111 414 419
    • (2011) J Biosci Bioeng , vol.111 , pp. 414-419
    • Hayashi, T.1    Furuta, Y.2    Furukawa, K.3
  • 27
  • 28
    • 85028122323 scopus 로고    scopus 로고
    • The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors
    • The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. Yang S, Pelletier DA, Lu TY, Brown SD, BMC Microbiol 2010 10 135
    • (2010) BMC Microbiol , vol.10 , pp. 135
    • Yang, S.1    Pelletier, D.A.2    Lu, T.Y.3    Brown, S.D.4
  • 30
    • 85027946740 scopus 로고    scopus 로고
    • Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations
    • Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations. Agrawal M, Wang Y, Chen RR, Biotechnol Lett 2012 34 1825 1832
    • (2012) Biotechnol Lett , vol.34 , pp. 1825-1832
    • Agrawal, M.1    Wang, Y.2    Chen, R.R.3
  • 31
    • 84872707044 scopus 로고    scopus 로고
    • Unmarked insertional inactivation in thegfogene improves growth and ethanol production by Zymomonas mobilis ZM4 in sucrose without formation of sorbitol as a by-product, but yields opposite effects in high glucose
    • Unmarked insertional inactivation in thegfogene improves growth and ethanol production by Zymomonas mobilis ZM4 in sucrose without formation of sorbitol as a by-product, but yields opposite effects in high glucose. Wang C, Liu C, Hong J, Zhang K, Ma Y, Zou S, Zhang M, Biochem Eng J 2013 72 61 69
    • (2013) Biochem Eng J , vol.72 , pp. 61-69
    • Wang, C.1    Liu, C.2    Hong, J.3    Zhang, K.4    Ma, Y.5    Zou, S.6    Zhang, M.7
  • 32
    • 84889007533 scopus 로고    scopus 로고
    • Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses
    • Sorbitol required for cell growth and ethanol production by Zymomonas mobilis under heat, ethanol, and osmotic stresses. Sootsuwan K, Thanonkeo P, Keeratirakha N, Thanonkeo S, Jaisil P, Yamada M, Biotechnol Biofuels 2013 6 180
    • (2013) Biotechnol Biofuels , vol.6 , pp. 180
    • Sootsuwan, K.1    Thanonkeo, P.2    Keeratirakha, N.3    Thanonkeo, S.4    Jaisil, P.5    Yamada, M.6
  • 35
    • 19644399884 scopus 로고    scopus 로고
    • Ethanol fermentation on the move
    • Ethanol fermentation on the move. Jeffries TW, Nat Biotechnol 2005 23 40 41
    • (2005) Nat Biotechnol , vol.23 , pp. 40-41
    • Jeffries, T.W.1
  • 40
    • 84870704302 scopus 로고    scopus 로고
    • Draft genome sequence of the flocculating Zymomonas mobilis Strain ZM401 (ATCC 31822)
    • Draft genome sequence of the flocculating Zymomonas mobilis Strain ZM401 (ATCC 31822). Zhao N, Bai Y, Zhao X-Q, Yang Z-Y, Bai F-W, J Bacteriol 2012 194 7008 7009
    • (2012) J Bacteriol , vol.194 , pp. 7008-7009
    • Zhao, N.1    Bai, Y.2    Zhao, X.-Q.3    Yang, Z.-Y.4    Bai, F.-W.5
  • 46
    • 84862291144 scopus 로고    scopus 로고
    • Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis
    • Genome-wide transcriptomic analysis of a flocculent strain of Zymomonas mobilis. Jeon YJ, Xun Z, Su P, Rogers PL, Appl Microbiol Biotechnol 2012 93 2513 2518
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 2513-2518
    • Jeon, Y.J.1    Xun, Z.2    Su, P.3    Rogers, P.L.4
  • 47
    • 0031909350 scopus 로고    scopus 로고
    • A mutant of Zymomonas mobilisZM4 capable of ethanol production from glucose in the presence of high acetate concentrations
    • A mutant of Zymomonas mobilisZM4 capable of ethanol production from glucose in the presence of high acetate concentrations. Joachimsthal E, Haggett KD, Jang J-H, Rogers PL, Biotechnol Lett 1998 20 137 142
    • (1998) Biotechnol Lett , vol.20 , pp. 137-142
    • Joachimsthal, E.1    Haggett, K.D.2    Jang, J.-H.3    Rogers, P.L.4
  • 48
    • 0036267414 scopus 로고    scopus 로고
    • Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis
    • Kinetic analysis of ethanol production by an acetate-resistant strain of recombinant Zymomonas mobilis. Jeon YJ, Svenson CJ, Joachimsthal EL, Rogers PL, Biotechnol Lett 2002 24 819 824
    • (2002) Biotechnol Lett , vol.24 , pp. 819-824
    • Jeon, Y.J.1    Svenson, C.J.2    Joachimsthal, E.L.3    Rogers, P.L.4
  • 49
    • 1442266742 scopus 로고    scopus 로고
    • Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate
    • Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Mohagheghi A, Dowe N, Schell D, Chou YC, Eddy C, Zhang M, Biotechnol Lett 2004 26 321 325
    • (2004) Biotechnol Lett , vol.26 , pp. 321-325
    • Mohagheghi, A.1    Dowe, N.2    Schell, D.3    Chou, Y.C.4    Eddy, C.5    Zhang, M.6
  • 50
    • 0036240364 scopus 로고    scopus 로고
    • Performance of immobilized Zymomonas mobilis31821 (pZB5) on actual hydrolysates produced by arkenol technology
    • Springer; Appl Biochem Biotechnol Finkelstein M, McMillan J, Davison B 899-907
    • Performance of immobilized Zymomonas mobilis31821 (pZB5) on actual hydrolysates produced by arkenol technology. Yamada T, Fatigati M, Zhang M, Biotechnology for Fuels and Chemicals Springer; Appl Biochem Biotechnol, Finkelstein M, McMillan J, Davison B, 2002 98 100 899-907
    • (2002) Biotechnology for Fuels and Chemicals , pp. 98-100
    • Yamada, T.1    Fatigati, M.2    Zhang, M.3
  • 51
    • 0020006193 scopus 로고
    • Genetic alteration of Zymomonas mobilis for ethanol production
    • New York: Plenum Press Hollaende A, DeMoss RD, Kaplan S, Konisky J, Savage D, Wolfe RS
    • Genetic alteration of Zymomonas mobilis for ethanol production. Skotnicki ML, Lee K, Tribe D, Rogers P, Genetic Engineering of Microorganisms for Chemicals New York: Plenum Press, Hollaende A, DeMoss RD, Kaplan S, Konisky J, Savage D, Wolfe RS, 1982 271 290
    • (1982) Genetic Engineering of Microorganisms for Chemicals , pp. 271-290
    • Skotnicki, M.L.1    Lee, K.2    Tribe, D.3    Rogers, P.4
  • 52
    • 0021032514 scopus 로고
    • Expression of a lactose transposon (Tn951) in Zymomonas mobilis
    • Expression of a lactose transposon (Tn951) in Zymomonas mobilis. Carey V, Walia S, Ingram L, Appl Environ Microbiol 1983 46 1163 1168
    • (1983) Appl Environ Microbiol , vol.46 , pp. 1163-1168
    • Carey, V.1    Walia, S.2    Ingram, L.3
  • 53
    • 0025640713 scopus 로고
    • Genetic modification of Zymomonas mobilis
    • Genetic modification of Zymomonas mobilis. Buchholz SE, Eveleigh DE, Biotechnol Adv 1990 8 547 581
    • (1990) Biotechnol Adv , vol.8 , pp. 547-581
    • Buchholz, S.E.1    Eveleigh, D.E.2
  • 54
    • 0030907584 scopus 로고    scopus 로고
    • Transposon mutagenesis and strain construction in Zymomonas mobilis
    • Transposon mutagenesis and strain construction in Zymomonas mobilis. Pappas KM, Galani I, Typas MA, J Appl Microbiol 1997 82 379 388
    • (1997) J Appl Microbiol , vol.82 , pp. 379-388
    • Pappas, K.M.1    Galani, I.2    Typas, M.A.3
  • 55
    • 80052940762 scopus 로고    scopus 로고
    • Mini-Mu Transposon Mutagenesis of Ethanologenic Zymomonas mobilis
    • Springer; Methods Mol Biol Williams JA 419-434
    • Mini-Mu Transposon Mutagenesis of Ethanologenic Zymomonas mobilis. Pappas KM, Strain Engineering Springer; Methods Mol Biol, Williams JA, 2011 765 419-434
    • (2011) Strain Engineering , pp. 765
    • Pappas, K.M.1
  • 56
    • 84876830819 scopus 로고    scopus 로고
    • Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses
    • Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Zhang X, Wang T, Zhou W, Jia X, Wang H, Microb Cell Fact 2013 12 41
    • (2013) Microb Cell Fact , vol.12 , pp. 41
    • Zhang, X.1    Wang, T.2    Zhou, W.3    Jia, X.4    Wang, H.5
  • 58
    • 29544433799 scopus 로고    scopus 로고
    • Directed evolution of metabolic pathways
    • Directed evolution of metabolic pathways. Chatterjee R, Yuan L, Trends Biotechnol 2006 24 28 38
    • (2006) Trends Biotechnol , vol.24 , pp. 28-38
    • Chatterjee, R.1    Yuan, L.2
  • 59
    • 28444475529 scopus 로고    scopus 로고
    • Adaptive evolution of bacterial metabolic networks by horizontal gene transfer
    • Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Pál C, Papp B, Lercher MJ, Nat Genet 2005 37 1372 1375
    • (2005) Nat Genet , vol.37 , pp. 1372-1375
    • Pál, C.1    Papp, B.2    Lercher, M.J.3
  • 60
    • 79960958091 scopus 로고    scopus 로고
    • Adaptive laboratory evolution - Harnessing the power of biology for metabolic engineering
    • Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Portnoy VA, Bezdan D, Zengler K, Curr Opin Biotechnol 2011 22 590 594
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 590-594
    • Portnoy, V.A.1    Bezdan, D.2    Zengler, K.3
  • 61
    • 79960104605 scopus 로고    scopus 로고
    • Microbial laboratory evolution in the era of genome-scale science
    • Microbial laboratory evolution in the era of genome-scale science. Conrad TM, Lewis NE, Palsson BØ Mol Syst Biol 2011 7 509
    • (2011) Mol Syst Biol , vol.7 , pp. 509
    • Conrad, T.M.1    Lewis, N.E.2    Palsson, BØ.3
  • 62
    • 84879489028 scopus 로고    scopus 로고
    • Adaptive laboratory evolution-principles and applications for biotechnology
    • Adaptive laboratory evolution-principles and applications for biotechnology. Dragosits M, Mattanovich D, Microb Cell Fact 2013 12 64
    • (2013) Microb Cell Fact , vol.12 , pp. 64
    • Dragosits, M.1    Mattanovich, D.2
  • 63
    • 34547162359 scopus 로고    scopus 로고
    • Metabolic characterization of Escherichia colistrains adapted to growth on lactate
    • Metabolic characterization of Escherichia colistrains adapted to growth on lactate. Hua Q, Joyce AR, Palsson BØ Fong SS, Appl Environ Microbiol 2007 73 4639 4647
    • (2007) Appl Environ Microbiol , vol.73 , pp. 4639-4647
    • Hua, Q.1    Joyce, A.R.2    Palsson, BØ.3    Fong, S.S.4
  • 64
    • 77954265373 scopus 로고    scopus 로고
    • Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1, 2-propanediol
    • Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1, 2-propanediol. Lee D-H, Palsson BØ Appl Environ Microbiol 2010 76 4158 4168
    • (2010) Appl Environ Microbiol , vol.76 , pp. 4158-4168
    • Lee, D.-H.1    Palsson, BØ.2
  • 65
    • 84885551317 scopus 로고    scopus 로고
    • Adaptive evolution of an industrial strain of Saccharomyces cerevisiaefor combined tolerance to inhibitors and temperature
    • Adaptive evolution of an industrial strain of Saccharomyces cerevisiaefor combined tolerance to inhibitors and temperature. Wallace-Salinas V, Gorwa-Grauslund MF, Biotechnol Biofuels 2013 6 151
    • (2013) Biotechnol Biofuels , vol.6 , pp. 151
    • Wallace-Salinas, V.1    Gorwa-Grauslund, M.F.2
  • 66
    • 84857056878 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiaefor improved industrially important properties
    • Evolutionary engineering of Saccharomyces cerevisiaefor improved industrially important properties. Cakar ZP, TuranliYildiz B, Alkim C, Yilmaz U, FEMS Yeast Res 2012 12 171 182
    • (2012) FEMS Yeast Res , vol.12 , pp. 171-182
    • Cakar, Z.P.1    Turanliyildiz, B.2    Alkim, C.3    Yilmaz, U.4
  • 67
    • 84879119602 scopus 로고    scopus 로고
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiaestrain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiaestrain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Demeke MM, Dietz H, Li Y, Foulquié-Moreno MR, Mutturi S, Deprez S, Den Abt T, Bonini BM, Liden G, Dumortier F, Biotechnol Biofuels 2013 6 89
    • (2013) Biotechnol Biofuels , vol.6 , pp. 89
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquié-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6    Den Abt, T.7    Bonini, B.M.8    Liden, G.9    Dumortier, F.10
  • 68
    • 79955027266 scopus 로고    scopus 로고
    • Adaptation of Saccharomyces cerevisiaeto saline stress through laboratory evolution
    • Adaptation of Saccharomyces cerevisiaeto saline stress through laboratory evolution. Dhar R, Sägesser R, Weikert C, Yuan J, Wagner A, J Evol Biol 2011 24 1135 1153
    • (2011) J Evol Biol , vol.24 , pp. 1135-1153
    • Dhar, R.1    Sägesser, R.2    Weikert, C.3    Yuan, J.4    Wagner, A.5
  • 69
  • 70
    • 79952601863 scopus 로고    scopus 로고
    • Adaptation yields a highly efficient xylosefermenting Zymomonas mobilis strain
    • Adaptation yields a highly efficient xylose fermenting Zymomonas mobilis strain. Agrawal M, Mao Z, Chen RR, Biotechnol Bioeng 2011 108 777 785
    • (2011) Biotechnol Bioeng , vol.108 , pp. 777-785
    • Agrawal, M.1    Mao, Z.2    Chen, R.R.3
  • 71
    • 85036204889 scopus 로고    scopus 로고
    • Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis
    • Direct production of ethanol from raw sweet potato starch using genetically engineered Zymomonas mobilis. He M-X, Feng H, Li Y, Bai F, Liu X, Zhang Y-Z, Afr J Microbiol Res 2009 3 721 726
    • (2009) Afr J Microbiol Res , vol.3 , pp. 721-726
    • He, M.-X.1    Feng, H.2    Li, Y.3    Bai, F.4    Liu, X.5    Zhang, Y.-Z.6
  • 72
    • 77951846028 scopus 로고    scopus 로고
    • Ethanol production by mixed-cultures of Paenibacillus sp and Zymomonas mobilis using the raw starchy material from sweet potato
    • Ethanol production by mixed-cultures of Paenibacillus sp and Zymomonas mobilis using the raw starchy material from sweet potato. He M-X, Li Y, Liu X, Bai F, Feng H, Zhang Y-Z, Ann Microbiol 2009 59 749 754
    • (2009) Ann Microbiol , vol.59 , pp. 749-754
    • He, M.-X.1    Li, Y.2    Liu, X.3    Bai, F.4    Feng, H.5    Zhang, Y.-Z.6
  • 74
    • 20944431823 scopus 로고    scopus 로고
    • Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower
    • Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Pimentel D, Patzek T, Nat Resour Res 2005 14 65 76
    • (2005) Nat Resour Res , vol.14 , pp. 65-76
    • Pimentel, D.1    Patzek, T.2
  • 75
    • 65949124493 scopus 로고    scopus 로고
    • Recent trends in global production and utilization of bio-ethanol fuel
    • Recent trends in global production and utilization of bio-ethanol fuel. Balat M, Balat H, Appl Energy 2009 86 2273 2282
    • (2009) Appl Energy , vol.86 , pp. 2273-2282
    • Balat, M.1    Balat, H.2
  • 76
    • 0028953195 scopus 로고
    • Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis
    • Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S, Science 1995 267 240 243
    • (1995) Science , vol.267 , pp. 240-243
    • Zhang, M.1    Eddy, C.2    Deanda, K.3    Finkelstein, M.4    Picataggio, S.5
  • 77
    • 0029910097 scopus 로고    scopus 로고
    • Development of an arabinose-fermenting Zymomonas mobilisstrain by metabolic pathway engineering
    • Development of an arabinose-fermenting Zymomonas mobilisstrain by metabolic pathway engineering. Deanda K, Zhang M, Eddy C, Picataggio S, Appl Env Microbiol 1996 62 4465 4470
    • (1996) Appl Env Microbiol , vol.62 , pp. 4465-4470
    • Deanda, K.1    Zhang, M.2    Eddy, C.3    Picataggio, S.4
  • 78
    • 0031858728 scopus 로고    scopus 로고
    • Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineered Zymomonas mobilis strains
    • Cofermentation of glucose, xylose, and arabinose by mixed cultures of two genetically engineered Zymomonas mobilis strains. Mohagheghi A, Evans K, Finkelstein M, Zhang M, Appl Biochem Biotechnol 1998 70-72 285 299
    • (1998) Appl Biochem Biotechnol , vol.7072 , pp. 285-299
    • Mohagheghi, A.1    Evans, K.2    Finkelstein, M.3    Zhang, M.4
  • 80
    • 0036233680 scopus 로고    scopus 로고
    • Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101
    • Cofermentation of glucose, xylose, and arabinose by genomic DNA-integrated xylose/arabinose fermenting strain of Zymomonas mobilis AX101. Mohagheghi A, Evans K, Chou Y-C, Zhang M, Appl Biochem Biotechnol 2002 98-100 885 898
    • (2002) Appl Biochem Biotechnol , pp. 885-898
    • Mohagheghi, A.1    Evans, K.2    Chou, Y.-C.3    Zhang, M.4
  • 81
    • 0001475266 scopus 로고    scopus 로고
    • Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4 (pZB5)
    • Nuclear magnetic resonance studies of acetic acid inhibition of rec Zymomonas mobilis ZM4 (pZB5). Kim IS, Barrow KD, Rogers PL, Appl Biochem Biotechnol 2000 84 357 370
    • (2000) Appl Biochem Biotechnol , vol.84 , pp. 357-370
    • Kim, I.S.1    Barrow, K.D.2    Rogers, P.L.3
  • 82
    • 0031828410 scopus 로고    scopus 로고
    • Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media
    • Improving fermentation performance of recombinant Zymomonas in acetic acid-containing media. Lawford HG, Rousseau JD, Appl Biochem Biotechnol 1998 70-72 161 172
    • (1998) Appl Biochem Biotechnol , vol.7072 , pp. 161-172
    • Lawford, H.G.1    Rousseau, J.D.2
  • 83
    • 13944280942 scopus 로고    scopus 로고
    • Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis
    • Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis. Jeon YJ, Svenson CJ, Rogers PL, FEMS Microbiol Lett 2005 244 85 92
    • (2005) FEMS Microbiol Lett , vol.244 , pp. 85-92
    • Jeon, Y.J.1    Svenson, C.J.2    Rogers, P.L.3
  • 84
    • 0033950482 scopus 로고    scopus 로고
    • Isolation and preliminary characterization of a Zymomonas mobilis mutant with an altered preference for xylose and glucose utilization
    • Isolation and preliminary characterization of a Zymomonas mobilis mutant with an altered preference for xylose and glucose utilization. Supple SG, Joachimsthal EL, Dunn NW, Rogers PL, Biotechnol Lett 2000 22 157 164
    • (2000) Biotechnol Lett , vol.22 , pp. 157-164
    • Supple, S.G.1    Joachimsthal, E.L.2    Dunn, N.W.3    Rogers, P.L.4
  • 85
    • 84893176388 scopus 로고    scopus 로고
    • Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose
    • Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Mohagheghi A, Linger J, Smith H, Yang S, Dowe N, Pienkos PT, Biotechnol Biofuels 2014 7 19
    • (2014) Biotechnol Biofuels , vol.7 , pp. 19
    • Mohagheghi, A.1    Linger, J.2    Smith, H.3    Yang, S.4    Dowe, N.5    Pienkos, P.T.6
  • 86
    • 80053188773 scopus 로고    scopus 로고
    • Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4
    • Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4. Agrawal M, Chen RR, Biotechnol Lett 2011 33 2127 2133
    • (2011) Biotechnol Lett , vol.33 , pp. 2127-2133
    • Agrawal, M.1    Chen, R.R.2
  • 87
    • 0343851705 scopus 로고    scopus 로고
    • Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5)
    • Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5). Kim IS, Barrow KD, Rogers PL, Appl Environ Microbiol 2000 66 186 193
    • (2000) Appl Environ Microbiol , vol.66 , pp. 186-193
    • Kim, I.S.1    Barrow, K.D.2    Rogers, P.L.3
  • 88
    • 77952683487 scopus 로고    scopus 로고
    • Comparing the fermentation performance ofEscherichia coliKO11, Saccharomyces cerevisiae424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production
    • Comparing the fermentation performance ofEscherichia coliKO11, Saccharomyces cerevisiae424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Lau MW, Gunawan C, Balan V, Dale BE, Biotechnol Biofuels 2010 3 11
    • (2010) Biotechnol Biofuels , vol.3 , pp. 11
    • Lau, M.W.1    Gunawan, C.2    Balan, V.3    Dale, B.E.4
  • 89
    • 54849409453 scopus 로고    scopus 로고
    • Construction of a novel cell-surface display system for heterologous gene expression in Escherichia coli by using an outer membrane protein of Zymomonas mobilis as anchor motif
    • Construction of a novel cell-surface display system for heterologous gene expression in Escherichia coli by using an outer membrane protein of Zymomonas mobilis as anchor motif. He MX, Feng H, Zhang YZ, Biotechnol Lett 2008 30 2111 2117
    • (2008) Biotechnol Lett , vol.30 , pp. 2111-2117
    • He, M.X.1    Feng, H.2    Zhang, Y.Z.3
  • 90
    • 33748808997 scopus 로고    scopus 로고
    • Evaluation of Thai agro-industrial wastes for bio-ethanol production by Zymomonas mobilis
    • Evaluation of Thai agro-industrial wastes for bio-ethanol production by Zymomonas mobilis. Ruanglek V, Maneewatthana D, Tripetchkul S, Process Biochem 2006 41 1432 1437
    • (2006) Process Biochem , vol.41 , pp. 1432-1437
    • Ruanglek, V.1    Maneewatthana, D.2    Tripetchkul, S.3
  • 91
    • 77952967218 scopus 로고    scopus 로고
    • Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process
    • Ethanol production from sugarcane bagasse by Zymomonas mobilis using simultaneous saccharification and fermentation (SSF) process. dos Santos DS, Camelo AC, Rodrigues KC, Carlos LC, Pereira N Jr, Appl Biochem Biotechnol 2010 161 93 105
    • (2010) Appl Biochem Biotechnol , vol.161 , pp. 93-105
    • Dos Santos, D.S.1    Camelo, A.C.2    Rodrigues, K.C.3    Carlos, L.C.4
  • 92
    • 0005195436 scopus 로고    scopus 로고
    • Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate
    • Comparative ethanol productivities of different Zymomonas recombinants fermenting oat hull hydrolysate. Lawford HG, Rousseau JD, Tolan JS, Appl Biochem Biotechnol 2001 91 133 146
    • (2001) Appl Biochem Biotechnol , vol.91 , pp. 133-146
    • Lawford, H.G.1    Rousseau, J.D.2    Tolan, J.S.3
  • 93
    • 84873720167 scopus 로고    scopus 로고
    • Ethanol production from high-solid SSCF of alkaline-pretreated corncob using recombinant Zymomonas mobilis CP4
    • Ethanol production from high-solid SSCF of alkaline-pretreated corncob using recombinant Zymomonas mobilis CP4. Su R, Ma Y, Qi W, Zhang M, Wang F, Du R, Yang J, Zhang M, He Z, Bioenergy Res 2013 6 292 299
    • (2013) Bioenergy Res , vol.6 , pp. 292-299
    • Su, R.1    Ma, Y.2    Qi, W.3    Zhang, M.4    Wang, F.5    Du, R.6    Yang, J.7    Zhang, M.8    He, Z.9
  • 94
    • 85019156199 scopus 로고    scopus 로고
    • Bio-ethanol production from bamboo residues with lignocellulose fractionation technology (LFT) and separate hydrolysis fermentation (SHF) by Zymomonas mobilis
    • Bio-ethanol production from bamboo residues with lignocellulose fractionation technology (LFT) and separate hydrolysis fermentation (SHF) by Zymomonas mobilis. He MX, Li Q, Liu XY, Hu QC, Hu GQ, Pan K, Zhu QL, Wu J, Am J Biomass Bioenergy 2013 1 1 10
    • (2013) Am J Biomass Bioenergy , vol.1 , pp. 1-10
    • He, M.X.1    Li, Q.2    Liu, X.Y.3    Hu, Q.C.4    Hu, G.Q.5    Pan, K.6    Zhu, Q.L.7    Wu, J.8
  • 97
    • 78049292737 scopus 로고    scopus 로고
    • Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis
    • Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Linger JG, Adney WS, Darzins A, Appl Environ Microbiol 2010 76 6360 6369
    • (2010) Appl Environ Microbiol , vol.76 , pp. 6360-6369
    • Linger, J.G.1    Adney, W.S.2    Darzins, A.3
  • 98
    • 84904393632 scopus 로고    scopus 로고
    • Cloning of bacterial cellulose gene into Zymomonas mobilis for cellulosic ethanol production
    • URI
    • Cloning of bacterial cellulose gene into Zymomonas mobilis for cellulosic ethanol production. Thirumalai Vasan P, PhD Thesis of Bharathidasan University 2012 URI: http://hdl.handle.net/10603/4784
    • (2012) PhD Thesis of Bharathidasan University
    • Thirumalai Vasan, P.1
  • 99
    • 84878020158 scopus 로고    scopus 로고
    • Direct ethanol production from cellulosic materials byZymobacter palmaecarrying Cellulomonas endoglucanase and Ruminococcus β-glucosidase genes
    • Direct ethanol production from cellulosic materials byZymobacter palmaecarrying Cellulomonas endoglucanase and Ruminococcus β-glucosidase genes. Kojima M, Okamoto K, Yanase H, Appl Microbiol Biotechnol 2013 97 5137 5147
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 5137-5147
    • Kojima, M.1    Okamoto, K.2    Yanase, H.3
  • 100
    • 84904402660 scopus 로고    scopus 로고
    • Top Value Added Chemicals from Biomass. Volume i - Results of Screening for Potential Candidates from Sugars and Synthesis Gas
    • website
    • Top Value Added Chemicals from Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Werpy T, Petersen G, DOE Report by PNNL, NREL, EERE 2013 website: http://ascension-publishingcom/BIZ/ HD49pdf
    • (2013) DOE Report by PNNL, NREL, EERE
    • Werpy, T.1    Petersen, G.2
  • 102
    • 0021678370 scopus 로고
    • A proposed pathway for sorbitol production by Zymomonas mobilis
    • A proposed pathway for sorbitol production by Zymomonas mobilis. Leigh D, Scopes R, Rogers P, Appl Microbiol Biotechnol 1984 20 413 415
    • (1984) Appl Microbiol Biotechnol , vol.20 , pp. 413-415
    • Leigh, D.1    Scopes, R.2    Rogers, P.3
  • 103
    • 0022497812 scopus 로고
    • Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production
    • Glucose-fructose oxidoreductase, a new enzyme isolated from Zymomonas mobilis that is responsible for sorbitol production. Zachariou M, Scopes RK, J Bacteriol 1986 167 863 869
    • (1986) J Bacteriol , vol.167 , pp. 863-869
    • Zachariou, M.1    Scopes, R.K.2
  • 104
    • 0002292801 scopus 로고
    • The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis
    • The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxidoreductase of Zymomonas mobilis. Chun U, Rogers P, Appl Microbiol Biotechnol 1988 29 19 24
    • (1988) Appl Microbiol Biotechnol , vol.29 , pp. 19-24
    • Chun, U.1    Rogers, P.2
  • 105
    • 0025884176 scopus 로고
    • Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis
    • Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Rehr B, Wilhelm C, Sahm H, Appl Microbiol Biotechnol 1991 35 144 148
    • (1991) Appl Microbiol Biotechnol , vol.35 , pp. 144-148
    • Rehr, B.1    Wilhelm, C.2    Sahm, H.3
  • 107
  • 109
    • 77954457341 scopus 로고    scopus 로고
    • Sorbitol production using recombinant Zymomonas mobilis strain
    • Sorbitol production using recombinant Zymomonas mobilis strain. Liu C, Dong HW, Zhong J, Ryu DD, Bao J, J Biotechnol 2010 148 105 112
    • (2010) J Biotechnol , vol.148 , pp. 105-112
    • Liu, C.1    Dong, H.W.2    Zhong, J.3    Ryu, D.D.4    Bao, J.5
  • 110
    • 76849106775 scopus 로고    scopus 로고
    • Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase
    • Sorbitol production from lactose by engineered Lactobacillus casei deficient in sorbitol transport system and mannitol-1-phosphate dehydrogenase. De Boeck R, Sarmiento-Rubiano LA, Nadal I, Monedero V, Pérez- Martínez G, Yebra MJ, Appl Microbiol Biotechnol 2010 85 1915 1922
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 1915-1922
    • De Boeck, R.1    Sarmiento-Rubiano, L.A.2    Nadal, I.3    Monedero, V.4    Pérez-Martínez, G.5    Yebra, M.J.6
  • 112
    • 53049083309 scopus 로고    scopus 로고
    • Metabolic engineering for bioproduction of sugar alcohols
    • Metabolic engineering for bioproduction of sugar alcohols. Akinterinwa O, Khankal R, Cirino PC, Curr Opin Biotechnol 2008 19 461 467
    • (2008) Curr Opin Biotechnol , vol.19 , pp. 461-467
    • Akinterinwa, O.1    Khankal, R.2    Cirino, P.C.3
  • 113
    • 84887988573 scopus 로고    scopus 로고
    • Bio-production of lactobionic acid: Current status, applications and future prospects
    • Bio-production of lactobionic acid: current status, applications and future prospects. Alonso S, Rendueles M, Díaz M, Biotechnol Adv 2013 31 1275 1291
    • (2013) Biotechnol Adv , vol.31 , pp. 1275-1291
    • Alonso, S.1    Rendueles, M.2    Díaz, M.3
  • 114
    • 0028033756 scopus 로고
    • Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: Evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection
    • Sorbitol promotes growth of Zymomonas mobilis in environments with high concentrations of sugar: evidence for a physiological function of glucose-fructose oxidoreductase in osmoprotection. Loos H, Krämer R, Sahm H, Sprenger GA, J Bacteriol 1994 176 7688 7693
    • (1994) J Bacteriol , vol.176 , pp. 7688-7693
    • Loos, H.1    Krämer, R.2    Sahm, H.3    Sprenger, G.A.4
  • 115
    • 0031463294 scopus 로고    scopus 로고
    • Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor
    • Continuous enzymatic production of lactobionic acid using glucose-fructose oxidoreductase in an ultrafiltration membrane reactor. Satory M, Fürlinger M, Haltrich D, Kulbe K, Pittner F, Nidetzky B, Biotechnol Lett 1997 19 1205 1208
    • (1997) Biotechnol Lett , vol.19 , pp. 1205-1208
    • Satory, M.1    Fürlinger, M.2    Haltrich, D.3    Kulbe, K.4    Pittner, F.5    Nidetzky, B.6
  • 116
    • 79959873552 scopus 로고    scopus 로고
    • Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: A kinetic study
    • Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study. Pedruzzi I, da Silva EAB, Rodrigues AE, Enzyme Microb Technol 2011 49 183 191
    • (2011) Enzyme Microb Technol , vol.49 , pp. 183-191
    • Pedruzzi, I.1    Da Silva, E.A.B.2    Rodrigues, A.E.3
  • 119
    • 0013888124 scopus 로고
    • Sucrose utilization by Zymomonas mobilis: Formation of a levan
    • Sucrose utilization by Zymomonas mobilis: formation of a levan. Dawes E, Ribbons D, Biochem J 1966 98 804 812
    • (1966) Biochem J , vol.98 , pp. 804-812
    • Dawes, E.1    Ribbons, D.2
  • 120
    • 0021173610 scopus 로고
    • Formation of levan and sorbitol from sucrose by Zymomonas mobilis
    • Formation of levan and sorbitol from sucrose by Zymomonas mobilis. Viikari L, Appl Microbiol Biotechnol 1984 19 252 255
    • (1984) Appl Microbiol Biotechnol , vol.19 , pp. 252-255
    • Viikari, L.1
  • 122
  • 124
    • 0032911280 scopus 로고    scopus 로고
    • Isolation and characterization of mutants from levan-producing Zymomonas mobilis
    • Isolation and characterization of mutants from levan-producing Zymomonas mobilis. Ananthalakshmy VK, Gunasekaran P, J Biosci Bioeng 1999 87 214 217
    • (1999) J Biosci Bioeng , vol.87 , pp. 214-217
    • Ananthalakshmy, V.K.1    Gunasekaran, P.2
  • 125
    • 0031043086 scopus 로고    scopus 로고
    • Antitumour activities of levans produced by Zymomonas mobilis strains
    • Antitumour activities of levans produced by Zymomonas mobilis strains. Calazans G, Lopes C, Lima R, De Franc F, Biotechnol Lett 1997 19 19 21
    • (1997) Biotechnol Lett , vol.19 , pp. 19-21
    • Calazans, G.1    Lopes, C.2    Lima, R.3    De Franc, F.4
  • 128
    • 35248884310 scopus 로고    scopus 로고
    • Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources
    • Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. de Oliveira MR, da Silva RSSF, Buzato JB, Celligoi MAPC, Biochem Eng J 2007 37 177 183
    • (2007) Biochem Eng J , vol.37 , pp. 177-183
    • De Oliveira, M.R.1    Da Silva, R.2    Buzato, J.B.3    Celligoi, M.4
  • 129
    • 84883872533 scopus 로고    scopus 로고
    • Levan production by Zymomonas mobilis in batch and continuous fermentation systems
    • Levan production by Zymomonas mobilis in batch and continuous fermentation systems. Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y, Carbohydr Polym 2014 99 454 461
    • (2014) Carbohydr Polym , vol.99 , pp. 454-461
    • Silbir, S.1    Dagbagli, S.2    Yegin, S.3    Baysal, T.4    Goksungur, Y.5
  • 130
    • 77954834802 scopus 로고    scopus 로고
    • Microbial succinic acid production: Natural versus metabolic engineered producers
    • Microbial succinic acid production: natural versus metabolic engineered producers. Beauprez JJ, De Mey M, Soetaert WK, Process Biochem 2010 45 1103 1114
    • (2010) Process Biochem , vol.45 , pp. 1103-1114
    • Beauprez, J.J.1    De Mey, M.2    Soetaert, W.K.3
  • 131
    • 84860918103 scopus 로고    scopus 로고
    • Biotechnological production of succinic acid: Current state and perspectives
    • Biotechnological production of succinic acid: current state and perspectives. Cheng KK, Zhao XB, Zeng J, Zhang JA, Biofuels Bioprod Biorefin 2012 6 302 318
    • (2012) Biofuels Bioprod Biorefin , vol.6 , pp. 302-318
    • Cheng, K.K.1    Zhao, X.B.2    Zeng, J.3    Zhang, J.A.4
  • 132
    • 29144484729 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia colifor enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation
    • Metabolic engineering of Escherichia colifor enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Lee SJ, Lee D-Y, Kim TY, Kim BH, Lee J, Lee SY, Appl Environ Microbiol 2005 71 7880 7887
    • (2005) Appl Environ Microbiol , vol.71 , pp. 7880-7887
    • Lee, S.J.1    Lee, D.-Y.2    Kim, T.Y.3    Kim, B.H.4    Lee, J.5    Lee, S.Y.6
  • 133
    • 76649093596 scopus 로고    scopus 로고
    • Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli
    • Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli. Jiang M, Liu SW, Ma J, Chen K, Yu L, Yue F, Xu B, Wei P, Appl Environ Microbiol 2010 76 1298 1300
    • (2010) Appl Environ Microbiol , vol.76 , pp. 1298-1300
    • Jiang, M.1    Liu, S.W.2    Ma, J.3    Chen, K.4    Yu, L.5    Yue, F.6    Xu, B.7    Wei, P.8
  • 134
    • 84879236195 scopus 로고    scopus 로고
    • Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiaefor succinic acid production
    • Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiaefor succinic acid production. Agren R, Otero JM, Nielsen J, J Ind Microbiol Biotechnol 2013 40 735 747
    • (2013) J Ind Microbiol Biotechnol , vol.40 , pp. 735-747
    • Agren, R.1    Otero, J.M.2    Nielsen, J.3
  • 135
    • 78049430020 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid
    • Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Raab AM, Gebhardt G, Bolotina N, Weuster-Botz D, Lang C, Metab Eng 2010 12 518 525
    • (2010) Metab Eng , vol.12 , pp. 518-525
    • Raab, A.M.1    Gebhardt, G.2    Bolotina, N.3    Weuster-Botz, D.4    Lang, C.5
  • 136
    • 78549287163 scopus 로고    scopus 로고
    • The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies
    • The genome-scale metabolic network analysis of Zymomonas mobilis ZM4 explains physiological features and suggests ethanol and succinic acid production strategies. Lee K, Park J, Kim T, Yun H, Lee S, Microb Cell Fact 2010 9 94
    • (2010) Microb Cell Fact , vol.9 , pp. 94
    • Lee, K.1    Park, J.2    Kim, T.3    Yun, H.4    Lee, S.5
  • 138
    • 84875644160 scopus 로고    scopus 로고
    • Biotechnological potential of respiring Zymomonas mobilis: A stoichiometric analysis of its central metabolism
    • Biotechnological potential of respiring Zymomonas mobilis: a stoichiometric analysis of its central metabolism. Pentjuss A, Odzina I, Kostromins A, Fell D, Stalidzans E, Kalnenieks U, J Biotechnol 2013 165 1 10
    • (2013) J Biotechnol , vol.165 , pp. 1-10
    • Pentjuss, A.1    Odzina, I.2    Kostromins, A.3    Fell, D.4    Stalidzans, E.5    Kalnenieks, U.6
  • 139
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels
    • Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Atsumi S, Hanai T, Liao JC, Nature 2008 451 86 89
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 140
    • 74149094503 scopus 로고    scopus 로고
    • Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes
    • Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC, Appl Microbiol Biotechnol 2010 85 651 657
    • (2010) Appl Microbiol Biotechnol , vol.85 , pp. 651-657
    • Atsumi, S.1    Wu, T.Y.2    Eckl, E.M.3    Hawkins, S.D.4    Buelter, T.5    Liao, J.C.6
  • 141
    • 53049083876 scopus 로고    scopus 로고
    • Metabolic engineering for advanced biofuels production from Escherichia coli
    • Metabolic engineering for advanced biofuels production from Escherichia coli. Atsumi S, Liao JC, Curr Opin Biotechnol 2008 19 414 419
    • (2008) Curr Opin Biotechnol , vol.19 , pp. 414-419
    • Atsumi, S.1    Liao, J.C.2
  • 142
    • 79960656765 scopus 로고    scopus 로고
    • Increased isobutanol production inSaccharomyces cerevisiaeby overexpression of genes in valine metabolism
    • Increased isobutanol production inSaccharomyces cerevisiaeby overexpression of genes in valine metabolism. Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K, Biotechnol Biofuels 2011 4 2089 2090
    • (2011) Biotechnol Biofuels , vol.4 , pp. 2089-2090
    • Chen, X.1    Nielsen, K.F.2    Borodina, I.3    Kielland-Brandt, M.C.4    Karhumaa, K.5
  • 143
    • 84873750369 scopus 로고    scopus 로고
    • Isobutanol production from D-ylose by recombinant Saccharomyces cerevisiae
    • Isobutanol production from D-ylose by recombinant Saccharomyces cerevisiae. Brat D, Boles E, FEMS Yeast Res 2013 3 241 244
    • (2013) FEMS Yeast Res , vol.3 , pp. 241-244
    • Brat, D.1    Boles, E.2
  • 145
    • 77955665708 scopus 로고    scopus 로고
    • Engineering Corynebacterium glutamicum for isobutanol production
    • Engineering Corynebacterium glutamicum for isobutanol production. Smith KM, Cho K-M, Liao JC, Appl Microbiol Biotechnol 2010 87 1045 1055
    • (2010) Appl Microbiol Biotechnol , vol.87 , pp. 1045-1055
    • Smith, K.M.1    Cho, K.-M.2    Liao, J.C.3
  • 147
    • 84884533991 scopus 로고    scopus 로고
    • Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation
    • Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation. Yamamoto S, Suda M, Niimi S, Inui M, Yukawa H, Biotechnol Bioeng 2013 110 2938 2948
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2938-2948
    • Yamamoto, S.1    Suda, M.2    Niimi, S.3    Inui, M.4    Yukawa, H.5
  • 148
    • 79960712071 scopus 로고    scopus 로고
    • Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression
    • Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Li SS, Wen JP, Jia XQ, Appl Microbiol Biotechnol 2011 91 577 589
    • (2011) Appl Microbiol Biotechnol , vol.91 , pp. 577-589
    • Li, S.S.1    Wen, J.P.2    Jia, X.Q.3
  • 149
  • 150
    • 0025906288 scopus 로고
    • Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine
    • Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine. Uhlenbusch I, Sahm H, Sprenger GA, Appl Environ Microbiol 1991 57 1360 1366
    • (1991) Appl Environ Microbiol , vol.57 , pp. 1360-1366
    • Uhlenbusch, I.1    Sahm, H.2    Sprenger, G.A.3
  • 151
    • 78649716727 scopus 로고    scopus 로고
    • Manufacturing molecules through metabolic engineering
    • Manufacturing molecules through metabolic engineering. Keasling JD, Science 2010 330 1355 1358
    • (2010) Science , vol.330 , pp. 1355-1358
    • Keasling, J.D.1
  • 152
    • 32944474480 scopus 로고    scopus 로고
    • Microbial Isoprenoid Production: An Example of Green Chemistry through Metabolic Engineering
    • Berlin Heidelberg: Springer Nielsen J Advances in Biochemical Engineering/Biotechnology
    • Microbial Isoprenoid Production: An Example of Green Chemistry through Metabolic Engineering. Maury J, Asadollahi M, Møller K, Clark A, Nielsen J, Biotechnology for the Future, Volume 100 Berlin Heidelberg: Springer, Nielsen J, 2005 19 51 Advances in Biochemical Engineering/Biotechnology
    • (2005) Biotechnology for the Future, Volume 100 , pp. 19-51
    • Maury, J.1    Asadollahi, M.2    Møller, K.3    Clark, A.4    Nielsen, J.5
  • 153
    • 0026077523 scopus 로고
    • Content and composition of hopanoids in Zymomonas mobilisunder various growth conditions
    • Content and composition of hopanoids in Zymomonas mobilisunder various growth conditions. Hermans MA, Neuss B, Sahm H, J Bacteriol 1991 173 5592 5595
    • (1991) J Bacteriol , vol.173 , pp. 5592-5595
    • Hermans, M.A.1    Neuss, B.2    Sahm, H.3
  • 154
  • 155
    • 0033214921 scopus 로고    scopus 로고
    • On the reduction steps in the mevalonate independent 2-C-methyl-d- erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in the bacterium Zymomonas mobilis
    • On the reduction steps in the mevalonate independent 2-C-methyl-d- erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in the bacterium Zymomonas mobilis. Charon L, Pale-Grosdemange C, Rohmer M, Tetrahedron Lett 1999 40 7231 7234
    • (1999) Tetrahedron Lett , vol.40 , pp. 7231-7234
    • Charon, L.1    Pale-Grosdemange, C.2    Rohmer, M.3
  • 157
    • 0034308011 scopus 로고    scopus 로고
    • Isolation of the dxr gene of Zymomonas mobilisand characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase
    • Isolation of the dxr gene of Zymomonas mobilisand characterization of the 1-deoxy-D-xylulose 5-phosphate reductoisomerase. Grolle S, Bringer-Meyer S, Sahm H, FEMS Microbiol Lett 2000 191 131 137
    • (2000) FEMS Microbiol Lett , vol.191 , pp. 131-137
    • Grolle, S.1    Bringer-Meyer, S.2    Sahm, H.3
  • 158
    • 0037459513 scopus 로고    scopus 로고
    • Composite hopanoid biosynthesis in Zymomonas mobilis: N-acetyl-D-glucosamine as precursor for the cyclopentane ring linked to bacteriohopanetetrol
    • Composite hopanoid biosynthesis in Zymomonas mobilis: N-acetyl-D-glucosamine as precursor for the cyclopentane ring linked to bacteriohopanetetrol. Vincent SP, Sinay P, Rohmer M, Chem Commun 2003 6 782 783
    • (2003) Chem Commun , vol.6 , pp. 782-783
    • Vincent, S.P.1    Sinay, P.2    Rohmer, M.3
  • 159
    • 0025758309 scopus 로고
    • Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciensby introduction of the biosynthesis genes from Erwinia uredovora
    • Production of beta-carotene in Zymomonas mobilis and Agrobacterium tumefaciensby introduction of the biosynthesis genes from Erwinia uredovora. Misawa N, Yamano S, Ikenaga H, Appl Environ Microbiol 1991 57 1847 1849
    • (1991) Appl Environ Microbiol , vol.57 , pp. 1847-1849
    • Misawa, N.1    Yamano, S.2    Ikenaga, H.3
  • 163
    • 0036235348 scopus 로고    scopus 로고
    • Genome engineering using site-specific recombinases
    • Genome engineering using site-specific recombinases. Kolb AF, Cloning Stem Cells 2002 4 65 80
    • (2002) Cloning Stem Cells , vol.4 , pp. 65-80
    • Kolb, A.F.1
  • 166
    • 33847083318 scopus 로고    scopus 로고
    • Global transcription machinery engineering: A new approach for improving cellular phenotype
    • Global transcription machinery engineering: a new approach for improving cellular phenotype. Alper H, Stephanopoulos G, Metab Eng 2007 9 258 267
    • (2007) Metab Eng , vol.9 , pp. 258-267
    • Alper, H.1    Stephanopoulos, G.2
  • 167
    • 80051535219 scopus 로고    scopus 로고
    • Genome engineering with zinc-finger nucleases
    • Genome engineering with zinc-finger nucleases. Carroll D, Genetics 2011 188 773 782
    • (2011) Genetics , vol.188 , pp. 773-782
    • Carroll, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.