-
1
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science 1956, 123:309-314.
-
(1956)
Science
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
2
-
-
84858604270
-
Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate
-
Ward P.S., Thompson C.B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 2012, 21:297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
Thompson, C.B.2
-
3
-
-
80052242132
-
Targeting cancer metabolism: a therapeutic window opens
-
Vander Heiden M.G. Targeting cancer metabolism: a therapeutic window opens. Nat. Rev. Drug Discov. 2011, 10:671-684.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
4
-
-
37449034854
-
Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis R.J., Mancuso A., Daikhin E., et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A. 2007, 104:19345-19350.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
Mancuso, A.2
Daikhin, E.3
-
6
-
-
84874949245
-
Dysregulated lipid metabolism in cancer
-
Zhang F., Du G. Dysregulated lipid metabolism in cancer. World J. Biol. Chem. 2012, 3:167-174.
-
(2012)
World J. Biol. Chem.
, vol.3
, pp. 167-174
-
-
Zhang, F.1
Du, G.2
-
7
-
-
84863837081
-
Lipid metabolism in cancer
-
Santos C.R., Schulze A. Lipid metabolism in cancer. FEBS J. 2012, 279:2610-2623.
-
(2012)
FEBS J.
, vol.279
, pp. 2610-2623
-
-
Santos, C.R.1
Schulze, A.2
-
8
-
-
79955518028
-
Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression
-
Hilvo M., Denkert C., Lehtinen L., et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011, 71:3236-3245.
-
(2011)
Cancer Res.
, vol.71
, pp. 3236-3245
-
-
Hilvo, M.1
Denkert, C.2
Lehtinen, L.3
-
9
-
-
77950509620
-
A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases
-
Hirsch H.A., Iliopoulos D., Joshi A., et al. A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 2010, 17:348-361.
-
(2010)
Cancer Cell
, vol.17
, pp. 348-361
-
-
Hirsch, H.A.1
Iliopoulos, D.2
Joshi, A.3
-
10
-
-
77649336663
-
Metabolic genes in cancer: their roles in tumor progression and clinical implications
-
Furuta E., Okuda H., Kobayashi A., et al. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim. Biophys. Acta 2010, 1805:141-152.
-
(2010)
Biochim. Biophys. Acta
, vol.1805
, pp. 141-152
-
-
Furuta, E.1
Okuda, H.2
Kobayashi, A.3
-
11
-
-
76049105429
-
Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives
-
Menendez J.A. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives. Biochim. Biophys. Acta 2010, 1801:381-391.
-
(2010)
Biochim. Biophys. Acta
, vol.1801
, pp. 381-391
-
-
Menendez, J.A.1
-
12
-
-
84881372774
-
Cellular fatty acid metabolism and cancer
-
Currie E., Schulze A., Zechner R., et al. Cellular fatty acid metabolism and cancer. Cell Metab. 2013, 18:153-161.
-
(2013)
Cell Metab.
, vol.18
, pp. 153-161
-
-
Currie, E.1
Schulze, A.2
Zechner, R.3
-
13
-
-
84866665390
-
Mitochondria and cancer
-
Wallace D.C. Mitochondria and cancer. Nat. Rev. Cancer 2012, 12:685-698.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 685-698
-
-
Wallace, D.C.1
-
15
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis R.J., Lum J.J., Hatzivassiliou G., et al. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008, 7:11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
-
17
-
-
30544433533
-
ATP citrate lyase is an important component of cell growth and transformation
-
Bauer D.E., Hatzivassiliou G., Zhao F., et al. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 2005, 24:6314-6322.
-
(2005)
Oncogene
, vol.24
, pp. 6314-6322
-
-
Bauer, D.E.1
Hatzivassiliou, G.2
Zhao, F.3
-
18
-
-
0037072780
-
The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes
-
Berwick D.C., Hers I., Heesom K.J., et al. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem. 2002, 277:33895-33900.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 33895-33900
-
-
Berwick, D.C.1
Hers, I.2
Heesom, K.J.3
-
19
-
-
20544449673
-
The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation
-
Buzzai M., Bauer D.E., Jones R.G., et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 2005, 24:4165-4173.
-
(2005)
Oncogene
, vol.24
, pp. 4165-4173
-
-
Buzzai, M.1
Bauer, D.E.2
Jones, R.G.3
-
20
-
-
34447134174
-
Cholesterol sensitivity of endogenous and myristoylated Akt
-
Adam R.M., Mukhopadhyay N.K., Kim J., et al. Cholesterol sensitivity of endogenous and myristoylated Akt. Cancer Res. 2007, 67:6238-6246.
-
(2007)
Cancer Res.
, vol.67
, pp. 6238-6246
-
-
Adam, R.M.1
Mukhopadhyay, N.K.2
Kim, J.3
-
21
-
-
84864858864
-
ATP-citrate lyase: a key player in cancer metabolism
-
Zaidi N., Swinnen J.V., Smans K. ATP-citrate lyase: a key player in cancer metabolism. Cancer Res. 2012, 72:3709-3714.
-
(2012)
Cancer Res.
, vol.72
, pp. 3709-3714
-
-
Zaidi, N.1
Swinnen, J.V.2
Smans, K.3
-
22
-
-
54249161009
-
ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer
-
Migita T., Narita T., Nomura K., et al. ATP citrate lyase: activation and therapeutic implications in non-small cell lung cancer. Cancer Res. 2008, 68:8547-8554.
-
(2008)
Cancer Res.
, vol.68
, pp. 8547-8554
-
-
Migita, T.1
Narita, T.2
Nomura, K.3
-
23
-
-
0345448918
-
Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer
-
Turyn J., Schlichtholz B., Dettlaff-Pokora A., et al. Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Horm. Metab. Res. 2003, 35:565-569.
-
(2003)
Horm. Metab. Res.
, vol.35
, pp. 565-569
-
-
Turyn, J.1
Schlichtholz, B.2
Dettlaff-Pokora, A.3
-
24
-
-
84890511382
-
ATP citrate lyase mediates resistance of colorectal cancer cells to SN38
-
Zhou Y., Bollu L.R., Tozzi F., et al. ATP citrate lyase mediates resistance of colorectal cancer cells to SN38. Mol. Cancer Ther. 2013, 12:2782-2791.
-
(2013)
Mol. Cancer Ther.
, vol.12
, pp. 2782-2791
-
-
Zhou, Y.1
Bollu, L.R.2
Tozzi, F.3
-
25
-
-
84882605310
-
Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
-
Lin R., Tao R., Gao X., et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 2013, 51:506-518.
-
(2013)
Mol. Cell
, vol.51
, pp. 506-518
-
-
Lin, R.1
Tao, R.2
Gao, X.3
-
26
-
-
61849135453
-
Tumor suppressors and cell metabolism: a recipe for cancer growth
-
Jones R.G., Thompson C.B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009, 23:537-548.
-
(2009)
Genes Dev.
, vol.23
, pp. 537-548
-
-
Jones, R.G.1
Thompson, C.B.2
-
27
-
-
0035970805
-
Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2
-
Abu-Elheiga L., Matzuk M.M., Abo-Hashema K.A., et al. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 2001, 291:2613-2616.
-
(2001)
Science
, vol.291
, pp. 2613-2616
-
-
Abu-Elheiga, L.1
Matzuk, M.M.2
Abo-Hashema, K.A.3
-
28
-
-
33744808464
-
Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival
-
Chajes V., Cambot M., Moreau K., et al. Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res. 2006, 66:5287-5294.
-
(2006)
Cancer Res.
, vol.66
, pp. 5287-5294
-
-
Chajes, V.1
Cambot, M.2
Moreau, K.3
-
29
-
-
23044482013
-
RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells
-
Brusselmans K., De Schrijver E., Verhoeven G., et al. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-alpha gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 2005, 65:6719-6725.
-
(2005)
Cancer Res.
, vol.65
, pp. 6719-6725
-
-
Brusselmans, K.1
De Schrijver, E.2
Verhoeven, G.3
-
30
-
-
34548814981
-
Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells
-
Yoon S., Lee M.Y., Park S.W., et al. Up-regulation of acetyl-CoA carboxylase alpha and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J. Biol. Chem. 2007, 282:26122-26131.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 26122-26131
-
-
Yoon, S.1
Lee, M.Y.2
Park, S.W.3
-
31
-
-
84893356389
-
Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments
-
Wu X., Qin L., Fako V., et al. Molecular mechanisms of fatty acid synthase (FASN)-mediated resistance to anti-cancer treatments. Adv. Biol. Regul. 2014, 54:214-221.
-
(2014)
Adv. Biol. Regul.
, vol.54
, pp. 214-221
-
-
Wu, X.1
Qin, L.2
Fako, V.3
-
32
-
-
77649216053
-
EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy
-
Guo D., Prins R.M., Dang J., et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci. Signal. 2009, 2:ra82.
-
(2009)
Sci. Signal.
, vol.2
-
-
Guo, D.1
Prins, R.M.2
Dang, J.3
-
33
-
-
84877731629
-
An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity
-
Williams K.J., Argus J.P., Zhu Y., et al. An essential requirement for the SCAP/SREBP signaling axis to protect cancer cells from lipotoxicity. Cancer Res. 2013, 73:2850-2862.
-
(2013)
Cancer Res.
, vol.73
, pp. 2850-2862
-
-
Williams, K.J.1
Argus, J.P.2
Zhu, Y.3
-
34
-
-
84865196616
-
A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products
-
Krycer J.R., Phan L., Brown A.J. A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochem. J. 2012, 446:191-201.
-
(2012)
Biochem. J.
, vol.446
, pp. 191-201
-
-
Krycer, J.R.1
Phan, L.2
Brown, A.J.3
-
35
-
-
84884806397
-
Cell survival during complete nutrient deprivation depends on lipid droplet-fueled beta-oxidation of fatty acids
-
Cabodevilla A.G., Sanchez-Caballero L., Nintou E., et al. Cell survival during complete nutrient deprivation depends on lipid droplet-fueled beta-oxidation of fatty acids. J. Biol. Chem. 2013, 288:27777-27788.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 27777-27788
-
-
Cabodevilla, A.G.1
Sanchez-Caballero, L.2
Nintou, E.3
-
36
-
-
84890123944
-
Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation
-
Lettieri Barbato D., Aquilano K., Baldelli S., et al. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation. Cell Death Differ. 2014, 21(1):113-123.
-
(2014)
Cell Death Differ.
, vol.21
, Issue.1
, pp. 113-123
-
-
Lettieri Barbato, D.1
Aquilano, K.2
Baldelli, S.3
-
37
-
-
70449769682
-
Lipid droplets finally get a little R-E-S-P-E-C-T
-
Farese R.V., Walther T.C. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 2009, 139:855-860.
-
(2009)
Cell
, vol.139
, pp. 855-860
-
-
Farese, R.V.1
Walther, T.C.2
-
38
-
-
84870685428
-
Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues
-
Morak M., Schmidinger H., Riesenhuber G., et al. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues. Mol. Cell. Proteomics 2012, 11:1777-1789.
-
(2012)
Mol. Cell. Proteomics
, vol.11
, pp. 1777-1789
-
-
Morak, M.1
Schmidinger, H.2
Riesenhuber, G.3
-
39
-
-
84878533962
-
MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability
-
O'Rourke E.J., Ruvkun G. MXL-3 and HLH-30 transcriptionally link lipolysis and autophagy to nutrient availability. Nat. Cell Biol. 2013, 15:668-676.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 668-676
-
-
O'Rourke, E.J.1
Ruvkun, G.2
-
40
-
-
84870995648
-
Regulation of lipid stores and metabolism by lipophagy
-
Liu K., Czaja M.J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 2013, 20:3-11.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 3-11
-
-
Liu, K.1
Czaja, M.J.2
-
41
-
-
84859768059
-
Lipophagy: connecting autophagy and lipid metabolism
-
Singh R., Cuervo A.M. Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 2012:282041.
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 282041
-
-
Singh, R.1
Cuervo, A.M.2
-
42
-
-
84887447290
-
FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment
-
Lettieri Barbato D., Tatulli G., Aquilano K., et al. FoxO1 controls lysosomal acid lipase in adipocytes: implication of lipophagy during nutrient restriction and metformin treatment. Cell Death Dis. 2013, 4:e861.
-
(2013)
Cell Death Dis.
, vol.4
-
-
Lettieri Barbato, D.1
Tatulli, G.2
Aquilano, K.3
-
43
-
-
84885609770
-
Autophagy is required for mitochondrial function, lipid metabolism, growth and fate of KRAS (G12D)-driven lung tumors
-
Guo J.Y., White E. Autophagy is required for mitochondrial function, lipid metabolism, growth and fate of KRAS (G12D)-driven lung tumors. Autophagy 2013, 9.
-
(2013)
Autophagy
, vol.9
-
-
Guo, J.Y.1
White, E.2
-
45
-
-
66349099340
-
Fatty acid metabolism: target for metabolic syndrome
-
Wakil S.J., Abu-Elheiga L.A. Fatty acid metabolism: target for metabolic syndrome. J. Lipid Res. 2009, 50:S138-143. (Suppl., pp.).
-
(2009)
J. Lipid Res.
, vol.50
, Issue.SUPPL.
-
-
Wakil, S.J.1
Abu-Elheiga, L.A.2
-
46
-
-
0029902428
-
Mammalian mitochondrial beta-oxidation
-
Eaton S., Bartlett K., Pourfarzam M. Mammalian mitochondrial beta-oxidation. Biochem. J. 1996, 320(Pt 2):345-357.
-
(1996)
Biochem. J.
, vol.320
, Issue.PART 2
, pp. 345-357
-
-
Eaton, S.1
Bartlett, K.2
Pourfarzam, M.3
-
47
-
-
58149354390
-
Cell cycle arrest in metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1
-
Zhuang Y., Miskimins W.K. Cell cycle arrest in metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J. Mol. Signal. 2008, 3:18.
-
(2008)
J. Mol. Signal.
, vol.3
, pp. 18
-
-
Zhuang, Y.1
Miskimins, W.K.2
-
48
-
-
79955623949
-
AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation
-
Jose C., Hebert-Chatelain E., Bellance N., et al. AICAR inhibits cancer cell growth and triggers cell-type distinct effects on OXPHOS biogenesis, oxidative stress and Akt activation. Biochim. Biophys. Acta 2011, 1807:707-718.
-
(2011)
Biochim. Biophys. Acta
, vol.1807
, pp. 707-718
-
-
Jose, C.1
Hebert-Chatelain, E.2
Bellance, N.3
-
49
-
-
26644441651
-
ATP citrate lyase inhibition can suppress tumor cell growth
-
Hatzivassiliou G., Zhao F., Bauer D.E., et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 2005, 8:311-321.
-
(2005)
Cancer Cell
, vol.8
, pp. 311-321
-
-
Hatzivassiliou, G.1
Zhao, F.2
Bauer, D.E.3
-
50
-
-
0032529044
-
The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076
-
Pearce N.J., Yates J.W., Berkhout T.A., et al. The role of ATP citrate-lyase in the metabolic regulation of plasma lipids. Hypolipidaemic effects of SB-204990, a lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076. Biochem. J. 1998, 334(Pt 1):113-119.
-
(1998)
Biochem. J.
, vol.334
, Issue.PART 1
, pp. 113-119
-
-
Pearce, N.J.1
Yates, J.W.2
Berkhout, T.A.3
-
51
-
-
10944226843
-
A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product
-
Shen Y., Volrath S.L., Weatherly S.C., et al. A mechanism for the potent inhibition of eukaryotic acetyl-coenzyme A carboxylase by soraphen A, a macrocyclic polyketide natural product. Mol. Cell 2004, 16:881-891.
-
(2004)
Mol. Cell
, vol.16
, pp. 881-891
-
-
Shen, Y.1
Volrath, S.L.2
Weatherly, S.C.3
-
52
-
-
34548580317
-
Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells
-
Beckers A., Organe S., Timmermans L., et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 2007, 67:8180-8187.
-
(2007)
Cancer Res.
, vol.67
, pp. 8180-8187
-
-
Beckers, A.1
Organe, S.2
Timmermans, L.3
-
53
-
-
67349227746
-
Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis
-
Wang C., Xu C., Sun M., et al. Acetyl-CoA carboxylase-alpha inhibitor TOFA induces human cancer cell apoptosis. Biochem. Biophys. Res. Commun. 2009, 385:302-306.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.385
, pp. 302-306
-
-
Wang, C.1
Xu, C.2
Sun, M.3
-
54
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon S.M., Chandel N.S., Hay N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485:661-665.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.M.1
Chandel, N.S.2
Hay, N.3
-
55
-
-
34748912615
-
Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
-
Menendez J.A., Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7:763-777.
-
(2007)
Nat. Rev. Cancer
, vol.7
, pp. 763-777
-
-
Menendez, J.A.1
Lupu, R.2
-
56
-
-
1542720382
-
Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity
-
Kridel S.J., Axelrod F., Rozenkrantz N., et al. Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res. 2004, 64:2070-2075.
-
(2004)
Cancer Res.
, vol.64
, pp. 2070-2075
-
-
Kridel, S.J.1
Axelrod, F.2
Rozenkrantz, N.3
-
57
-
-
23044480300
-
Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene
-
Menendez J.A., Vellon L., Lupu R. Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann. Oncol. 2005, 16:1253-1267.
-
(2005)
Ann. Oncol.
, vol.16
, pp. 1253-1267
-
-
Menendez, J.A.1
Vellon, L.2
Lupu, R.3
-
58
-
-
57349175482
-
Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model
-
Carvalho M.A., Zecchin K.G., Seguin F., et al. Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Int. J. Cancer 2008, 123:2557-2565.
-
(2008)
Int. J. Cancer
, vol.123
, pp. 2557-2565
-
-
Carvalho, M.A.1
Zecchin, K.G.2
Seguin, F.3
-
59
-
-
67349217677
-
Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo
-
Dowling S., Cox J., Cenedella R.J. Inhibition of fatty acid synthase by Orlistat accelerates gastric tumor cell apoptosis in culture and increases survival rates in gastric tumor bearing mice in vivo. Lipids 2009, 44:489-498.
-
(2009)
Lipids
, vol.44
, pp. 489-498
-
-
Dowling, S.1
Cox, J.2
Cenedella, R.J.3
-
60
-
-
77950605484
-
Fatty acid synthase as a potential therapeutic target in cancer
-
Flavin R., Peluso S., Nguyen P.L., et al. Fatty acid synthase as a potential therapeutic target in cancer. Future Oncol. 2010, 6:551-562.
-
(2010)
Future Oncol.
, vol.6
, pp. 551-562
-
-
Flavin, R.1
Peluso, S.2
Nguyen, P.L.3
-
61
-
-
0029971427
-
Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer
-
Pizer E.S., Wood F.D., Heine H.S., et al. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res. 1996, 56:1189-1193.
-
(1996)
Cancer Res.
, vol.56
, pp. 1189-1193
-
-
Pizer, E.S.1
Wood, F.D.2
Heine, H.S.3
-
62
-
-
0029949512
-
Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells
-
Pizer E.S., Jackisch C., Wood F.D., et al. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res. 1996, 56:2745-2747.
-
(1996)
Cancer Res.
, vol.56
, pp. 2745-2747
-
-
Pizer, E.S.1
Jackisch, C.2
Wood, F.D.3
-
63
-
-
76649115299
-
Protein myristoylation in health and disease
-
Wright M.H., Heal W.P., Mann D.J., et al. Protein myristoylation in health and disease. J. Chem. Biol. 2010, 3:19-35.
-
(2010)
J. Chem. Biol.
, vol.3
, pp. 19-35
-
-
Wright, M.H.1
Heal, W.P.2
Mann, D.J.3
-
64
-
-
0034733730
-
Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors
-
Loftus T.M., Jaworsky D.E., Frehywot G.L., et al. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000, 288:2379-2381.
-
(2000)
Science
, vol.288
, pp. 2379-2381
-
-
Loftus, T.M.1
Jaworsky, D.E.2
Frehywot, G.L.3
-
65
-
-
37249017959
-
Selective inhibition of fatty acid synthase for lung cancer treatment
-
Orita H., Coulter J., Lemmon C., et al. Selective inhibition of fatty acid synthase for lung cancer treatment. Clin. Cancer Res. 2007, 13:7139-7145.
-
(2007)
Clin. Cancer Res.
, vol.13
, pp. 7139-7145
-
-
Orita, H.1
Coulter, J.2
Lemmon, C.3
-
66
-
-
0041337028
-
Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells
-
Brusselmans K., De Schrijver E., Heyns W., et al. Epigallocatechin-3-gallate is a potent natural inhibitor of fatty acid synthase in intact cells and selectively induces apoptosis in prostate cancer cells. Int. J. Cancer 2003, 106:856-862.
-
(2003)
Int. J. Cancer
, vol.106
, pp. 856-862
-
-
Brusselmans, K.1
De Schrijver, E.2
Heyns, W.3
-
67
-
-
84862849835
-
Redox implications of AMPK-mediated signal transduction beyond energetic clues
-
Cardaci S., Filomeni G., Ciriolo M.R. Redox implications of AMPK-mediated signal transduction beyond energetic clues. J. Cell Sci. 2012, 125:2115-2125.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 2115-2125
-
-
Cardaci, S.1
Filomeni, G.2
Ciriolo, M.R.3
-
68
-
-
84864960619
-
Caloric restriction and the nutrient-sensing PGC-1alpha in mitochondrial homeostasis: new perspectives in neurodegeneration
-
Lettieri Barbato D., Baldelli S., Pagliei B., et al. Caloric restriction and the nutrient-sensing PGC-1alpha in mitochondrial homeostasis: new perspectives in neurodegeneration. Int. J. Cell Biol. 2012, 2012:759583.
-
(2012)
Int. J. Cell Biol.
, vol.2012
, pp. 759583
-
-
Lettieri Barbato, D.1
Baldelli, S.2
Pagliei, B.3
-
69
-
-
77949462458
-
AMPK as a metabolic tumor suppressor: control of metabolism and cell growth
-
Luo Z., Zang M., Guo W. AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol. 2010, 6:457-470.
-
(2010)
Future Oncol.
, vol.6
, pp. 457-470
-
-
Luo, Z.1
Zang, M.2
Guo, W.3
-
70
-
-
3042818799
-
Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome
-
Corradetti M.N., Inoki K., Bardeesy N., et al. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev. 2004, 18:1533-1538.
-
(2004)
Genes Dev.
, vol.18
, pp. 1533-1538
-
-
Corradetti, M.N.1
Inoki, K.2
Bardeesy, N.3
-
71
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T., Kamon J., Minokoshi Y., et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8:1288-1295.
-
(2002)
Nat. Med.
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
Kamon, J.2
Minokoshi, Y.3
-
72
-
-
79953755370
-
AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice
-
Li Y., Xu S., Mihaylova M.M., et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011, 13:376-388.
-
(2011)
Cell Metab.
, vol.13
, pp. 376-388
-
-
Li, Y.1
Xu, S.2
Mihaylova, M.M.3
-
73
-
-
77954234363
-
New strategies in prostate cancer: targeting lipogenic pathways and the energy sensor AMPK
-
Zadra G., Priolo C., Patnaik A., et al. New strategies in prostate cancer: targeting lipogenic pathways and the energy sensor AMPK. Clin. Cancer Res. 2010, 16:3322-3328.
-
(2010)
Clin. Cancer Res.
, vol.16
, pp. 3322-3328
-
-
Zadra, G.1
Priolo, C.2
Patnaik, A.3
-
74
-
-
0032511053
-
AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes
-
Foretz M., Carling D., Guichard C., et al. AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J. Biol. Chem. 1998, 273:14767-14771.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 14767-14771
-
-
Foretz, M.1
Carling, D.2
Guichard, C.3
-
75
-
-
0032541083
-
The 5'-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex
-
Leclerc I., Kahn A., Doiron B. The 5'-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett. 1998, 431:180-184.
-
(1998)
FEBS Lett.
, vol.431
, pp. 180-184
-
-
Leclerc, I.1
Kahn, A.2
Doiron, B.3
-
76
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G., Myers R., Li Y., et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108:1167-1174.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
Myers, R.2
Li, Y.3
-
77
-
-
84859360525
-
Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy
-
Shi W.Y., Xiao D., Wang L., et al. Therapeutic metformin/AMPK activation blocked lymphoma cell growth via inhibition of mTOR pathway and induction of autophagy. Cell Death Dis. 2012, 3:e275.
-
(2012)
Cell Death Dis.
, vol.3
-
-
Shi, W.Y.1
Xiao, D.2
Wang, L.3
-
78
-
-
80053417028
-
Metformin inhibits melanoma development through autophagy and apoptosis mechanisms
-
Tomic T., Botton T., Cerezo M., et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011, 2:e199.
-
(2011)
Cell Death Dis.
, vol.2
-
-
Tomic, T.1
Botton, T.2
Cerezo, M.3
-
79
-
-
84879666294
-
Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells
-
Dando I., Donadelli M., Costanzo C., et al. Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis. 2013, 4:e664.
-
(2013)
Cell Death Dis.
, vol.4
-
-
Dando, I.1
Donadelli, M.2
Costanzo, C.3
-
80
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M., Sabatini D.M. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. 2009, 19:R1046-R1052.
-
(2009)
Curr. Biol.
, vol.19
-
-
Laplante, M.1
Sabatini, D.M.2
-
81
-
-
59749106220
-
A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size
-
Porstmann T., Santos C.R., Lewis C., et al. A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem. Soc. Trans. 2009, 37:278-283.
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 278-283
-
-
Porstmann, T.1
Santos, C.R.2
Lewis, C.3
-
82
-
-
35248816945
-
The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes
-
Brown N.F., Stefanovic-Racic M., Sipula I.J., et al. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metabolism 2007, 56:1500-1507.
-
(2007)
Metabolism
, vol.56
, pp. 1500-1507
-
-
Brown, N.F.1
Stefanovic-Racic, M.2
Sipula, I.J.3
-
83
-
-
0036310982
-
The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation
-
Peng T., Golub T.R., Sabatini D.M. The immunosuppressant rapamycin mimics a starvation-like signal distinct from amino acid and glucose deprivation. Mol. Cell. Biol. 2002, 22:5575-5584.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 5575-5584
-
-
Peng, T.1
Golub, T.R.2
Sabatini, D.M.3
-
84
-
-
36249025723
-
Autophagy: process and function
-
Mizushima N. Autophagy: process and function. Genes Dev. 2007, 21:2861-2873.
-
(2007)
Genes Dev.
, vol.21
, pp. 2861-2873
-
-
Mizushima, N.1
-
85
-
-
84878606239
-
TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop
-
Settembre C., De Cegli R., Mansueto G., et al. TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat. Cell Biol. 2013, 15:647-658.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 647-658
-
-
Settembre, C.1
De Cegli, R.2
Mansueto, G.3
-
86
-
-
63449127032
-
Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores
-
Zechner R., Kienesberger P.C., Haemmerle G., et al. Adipose triglyceride lipase and the lipolytic catabolism of cellular fat stores. J. Lipid Res. 2009, 50:3-21.
-
(2009)
J. Lipid Res.
, vol.50
, pp. 3-21
-
-
Zechner, R.1
Kienesberger, P.C.2
Haemmerle, G.3
-
87
-
-
33745183847
-
Functions of AMP-activated protein kinase in adipose tissue
-
Daval M., Foufelle F., Ferre P. Functions of AMP-activated protein kinase in adipose tissue. J. Physiol. 2006, 574:55-62.
-
(2006)
J. Physiol.
, vol.574
, pp. 55-62
-
-
Daval, M.1
Foufelle, F.2
Ferre, P.3
-
88
-
-
65349152290
-
Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL
-
Gaidhu M.P., Fediuc S., Anthony N.M., et al. Prolonged AICAR-induced AMP-kinase activation promotes energy dissipation in white adipocytes: novel mechanisms integrating HSL and ATGL. J. Lipid Res. 2009, 50:704-715.
-
(2009)
J. Lipid Res.
, vol.50
, pp. 704-715
-
-
Gaidhu, M.P.1
Fediuc, S.2
Anthony, N.M.3
-
89
-
-
81255157465
-
Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
-
Nieman K.M., Kenny H.A., Penicka C.V., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17:1498-1503.
-
(2011)
Nat. Med.
, vol.17
, pp. 1498-1503
-
-
Nieman, K.M.1
Kenny, H.A.2
Penicka, C.V.3
-
90
-
-
79959347692
-
Visceral adiposity, insulin resistance and cancer risk
-
Donohoe C.L., Doyle S.L., Reynolds J.V. Visceral adiposity, insulin resistance and cancer risk. Diabetol. Metab. Syndr. 2011, 3:12.
-
(2011)
Diabetol. Metab. Syndr.
, vol.3
, pp. 12
-
-
Donohoe, C.L.1
Doyle, S.L.2
Reynolds, J.V.3
-
91
-
-
79953305102
-
Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion
-
Dirat B., Bochet L., Dabek M., et al. Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res. 2011, 71:2455-2465.
-
(2011)
Cancer Res.
, vol.71
, pp. 2455-2465
-
-
Dirat, B.1
Bochet, L.2
Dabek, M.3
-
92
-
-
84875738351
-
Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism
-
Cabreiro F., Au C., Leung K.Y., et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 2013, 153:228-239.
-
(2013)
Cell
, vol.153
, pp. 228-239
-
-
Cabreiro, F.1
Au, C.2
Leung, K.Y.3
-
93
-
-
79959705713
-
AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study
-
Boyle J.G., Logan P.J., Jones G.C., et al. AMP-activated protein kinase is activated in adipose tissue of individuals with type 2 diabetes treated with metformin: a randomised glycaemia-controlled crossover study. Diabetologia 2011, 54:1799-1809.
-
(2011)
Diabetologia
, vol.54
, pp. 1799-1809
-
-
Boyle, J.G.1
Logan, P.J.2
Jones, G.C.3
-
94
-
-
84889001940
-
Metformin targets c-MYC oncogene to prevent prostate cancer
-
Akinyeke T., Matsumura S., Wang X., et al. Metformin targets c-MYC oncogene to prevent prostate cancer. Carcinogenesis 2013, 34(12):2823-2832.
-
(2013)
Carcinogenesis
, vol.34
, Issue.12
, pp. 2823-2832
-
-
Akinyeke, T.1
Matsumura, S.2
Wang, X.3
-
95
-
-
84892678284
-
New perspective for an old antidiabetic drug: metformin as anticancer agent
-
Leone A., Di Gennaro E., Bruzzese F., et al. New perspective for an old antidiabetic drug: metformin as anticancer agent. Cancer Treat. Res. 2014, 159:355-376.
-
(2014)
Cancer Treat. Res.
, vol.159
, pp. 355-376
-
-
Leone, A.1
Di Gennaro, E.2
Bruzzese, F.3
-
96
-
-
84891532512
-
Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells
-
Qu C., Zhang W., Zheng G., et al. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol. Cell. Biochem. 2014, 386(1-2):63-71.
-
(2014)
Mol. Cell. Biochem.
, vol.386
, Issue.1-2
, pp. 63-71
-
-
Qu, C.1
Zhang, W.2
Zheng, G.3
-
97
-
-
84890353160
-
Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer
-
Marini C., Salani B., Massollo M., et al. Direct inhibition of hexokinase activity by metformin at least partially impairs glucose metabolism and tumor growth in experimental breast cancer. Cell Cycle 2013, 12. (pp.).
-
(2013)
Cell Cycle
, vol.12
-
-
Marini, C.1
Salani, B.2
Massollo, M.3
-
98
-
-
83655161344
-
Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients
-
Bo S., Ciccone G., Rosato R., et al. Cancer mortality reduction and metformin: a retrospective cohort study in type 2 diabetic patients. Diabetes Obes. Metab. 2012, 14:23-29.
-
(2012)
Diabetes Obes. Metab.
, vol.14
, pp. 23-29
-
-
Bo, S.1
Ciccone, G.2
Rosato, R.3
-
99
-
-
84858695046
-
Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis
-
Noto H., Goto A., Tsujimoto T., et al. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One 2012, 7:e33411.
-
(2012)
PLoS One
, vol.7
-
-
Noto, H.1
Goto, A.2
Tsujimoto, T.3
-
100
-
-
77953537179
-
Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure
-
Bowker S.L., Yasui Y., Veugelers P., et al. Glucose-lowering agents and cancer mortality rates in type 2 diabetes: assessing effects of time-varying exposure. Diabetologia 2010, 53:1631-1637.
-
(2010)
Diabetologia
, vol.53
, pp. 1631-1637
-
-
Bowker, S.L.1
Yasui, Y.2
Veugelers, P.3
-
101
-
-
75149179169
-
Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16
-
Landman G.W., Kleefstra N., van Hateren K.J., et al. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 2010, 33:322-326.
-
(2010)
Diabetes Care
, vol.33
, pp. 322-326
-
-
Landman, G.W.1
Kleefstra, N.2
van Hateren, K.J.3
-
102
-
-
69549097703
-
New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes
-
Libby G., Donnelly L.A., Donnan P.T., et al. New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 2009, 32:1620-1625.
-
(2009)
Diabetes Care
, vol.32
, pp. 1620-1625
-
-
Libby, G.1
Donnelly, L.A.2
Donnan, P.T.3
-
103
-
-
79953661884
-
Understanding the benefit of metformin use in cancer treatment
-
Dowling R.J., Goodwin P.J., Stambolic V. Understanding the benefit of metformin use in cancer treatment. BMC Med. 2011, 9:33.
-
(2011)
BMC Med.
, vol.9
, pp. 33
-
-
Dowling, R.J.1
Goodwin, P.J.2
Stambolic, V.3
-
104
-
-
77952116629
-
Metformin in cancer therapy: a new perspective for an old antidiabetic drug?
-
Ben Sahra I., Le Marchand-Brustel Y., Tanti J.F., et al. Metformin in cancer therapy: a new perspective for an old antidiabetic drug?. Mol. Cancer Ther. 2010, 9:1092-1099.
-
(2010)
Mol. Cancer Ther.
, vol.9
, pp. 1092-1099
-
-
Ben Sahra, I.1
Le Marchand-Brustel, Y.2
Tanti, J.F.3
-
105
-
-
44449103256
-
Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice
-
Huang X., Wullschleger S., Shpiro N., et al. Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 2008, 412:211-221.
-
(2008)
Biochem. J.
, vol.412
, pp. 211-221
-
-
Huang, X.1
Wullschleger, S.2
Shpiro, N.3
-
106
-
-
84873584845
-
LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin
-
Shackelford D.B., Abt E., Gerken L., et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 2013, 23:143-158.
-
(2013)
Cancer Cell
, vol.23
, pp. 143-158
-
-
Shackelford, D.B.1
Abt, E.2
Gerken, L.3
-
107
-
-
84876320551
-
LKB1 and AMPK and the cancer-metabolism link - ten years after
-
Hardie D.G., Alessi D.R. LKB1 and AMPK and the cancer-metabolism link - ten years after. BMC Biol. 2013, 11:36.
-
(2013)
BMC Biol.
, vol.11
, pp. 36
-
-
Hardie, D.G.1
Alessi, D.R.2
-
108
-
-
36348950449
-
Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells
-
Dowling R.J., Zakikhani M., Fantus I.G., et al. Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells. Cancer Res. 2007, 67:10804-10812.
-
(2007)
Cancer Res.
, vol.67
, pp. 10804-10812
-
-
Dowling, R.J.1
Zakikhani, M.2
Fantus, I.G.3
-
109
-
-
47249088612
-
In vitro metformin anti-neoplastic activity in epithelial ovarian cancer
-
Gotlieb W.H., Saumet J., Beauchamp M.C., et al. In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol. Oncol. 2008, 110:246-250.
-
(2008)
Gynecol. Oncol.
, vol.110
, pp. 246-250
-
-
Gotlieb, W.H.1
Saumet, J.2
Beauchamp, M.C.3
-
110
-
-
33751284806
-
Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells
-
Zakikhani M., Dowling R., Fantus I.G., et al. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 2006, 66:10269-10273.
-
(2006)
Cancer Res.
, vol.66
, pp. 10269-10273
-
-
Zakikhani, M.1
Dowling, R.2
Fantus, I.G.3
-
111
-
-
84855603512
-
Cellular and molecular mechanisms of metformin: an overview
-
Viollet B., Guigas B., Sanz Garcia N., et al. Cellular and molecular mechanisms of metformin: an overview. Clin. Sci. (Lond.) 2012, 122:253-270.
-
(2012)
Clin. Sci. (Lond.)
, vol.122
, pp. 253-270
-
-
Viollet, B.1
Guigas, B.2
Sanz Garcia, N.3
-
113
-
-
47349099980
-
Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity
-
Caldeira da Silva C.C., Cerqueira F.M., Barbosa L.F., et al. Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 2008, 7:552-560.
-
(2008)
Aging Cell
, vol.7
, pp. 552-560
-
-
Caldeira da Silva, C.C.1
Cerqueira, F.M.2
Barbosa, L.F.3
-
114
-
-
75349099919
-
Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer
-
Fogarty S., Hardie D.G. Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim. Biophys. Acta 2010, 1804:581-591.
-
(2010)
Biochim. Biophys. Acta
, vol.1804
, pp. 581-591
-
-
Fogarty, S.1
Hardie, D.G.2
-
115
-
-
84858713948
-
Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance
-
Heise M., Lautem A., Knapstein J., et al. Downregulation of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) in human hepatocellular carcinoma and their prognostic significance. BMC Cancer 2012, 12:109.
-
(2012)
BMC Cancer
, vol.12
, pp. 109
-
-
Heise, M.1
Lautem, A.2
Knapstein, J.3
-
116
-
-
80555149233
-
Relevance of the OCT1 transporter to the antineoplastic effect of biguanides
-
Segal E.D., Yasmeen A., Beauchamp M.C., et al. Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem. Biophys. Res. Commun. 2011, 414:694-699.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.414
, pp. 694-699
-
-
Segal, E.D.1
Yasmeen, A.2
Beauchamp, M.C.3
-
117
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
Foretz M., Hebrard S., Leclerc J., et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 2010, 120:2355-2369.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hebrard, S.2
Leclerc, J.3
-
118
-
-
77955287742
-
Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner
-
Kalender A., Selvaraj A., Kim S.Y., et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab. 2010, 11:390-401.
-
(2010)
Cell Metab.
, vol.11
, pp. 390-401
-
-
Kalender, A.1
Selvaraj, A.2
Kim, S.Y.3
-
119
-
-
77956415337
-
Metformin prevents tobacco carcinogen-induced lung tumorigenesis
-
Memmott R.M., Mercado J.R., Maier C.R., et al. Metformin prevents tobacco carcinogen-induced lung tumorigenesis. Cancer Prev. Res. (Phila) 2010, 3:1066-1076.
-
(2010)
Cancer Prev. Res. (Phila)
, vol.3
, pp. 1066-1076
-
-
Memmott, R.M.1
Mercado, J.R.2
Maier, C.R.3
-
120
-
-
44849099894
-
The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level
-
Ben Sahra I., Laurent K., Loubat A., et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene 2008, 27:3576-3586.
-
(2008)
Oncogene
, vol.27
, pp. 3576-3586
-
-
Ben Sahra, I.1
Laurent, K.2
Loubat, A.3
-
121
-
-
33745218224
-
5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation
-
Guigas B., Bertrand L., Taleux N., et al. 5-Aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an AMP-activated protein kinase-independent effect on glucokinase translocation. Diabetes 2006, 55:865-874.
-
(2006)
Diabetes
, vol.55
, pp. 865-874
-
-
Guigas, B.1
Bertrand, L.2
Taleux, N.3
-
122
-
-
84864072013
-
Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis
-
Bhalla K., Hwang B.J., Dewi R.E., et al. Metformin prevents liver tumorigenesis by inhibiting pathways driving hepatic lipogenesis. Cancer Prev. Res. (Phila) 2012, 5:544-552.
-
(2012)
Cancer Prev. Res. (Phila)
, vol.5
, pp. 544-552
-
-
Bhalla, K.1
Hwang, B.J.2
Dewi, R.E.3
-
123
-
-
60749108023
-
The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells
-
Vazquez-Martin A., Oliveras-Ferraros C., Menendez J.A. The antidiabetic drug metformin suppresses HER2 (erbB-2) oncoprotein overexpression via inhibition of the mTOR effector p70S6K1 in human breast carcinoma cells. Cell Cycle 2009, 8:88-96.
-
(2009)
Cell Cycle
, vol.8
, pp. 88-96
-
-
Vazquez-Martin, A.1
Oliveras-Ferraros, C.2
Menendez, J.A.3
|