메뉴 건너뛰기




Volumn 34, Issue 8, 2014, Pages 1521-1534

A saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability

Author keywords

[No Author keywords available]

Indexed keywords

OKAZAKI FRAGMENT; RAD51 PROTEIN; RIBONUCLEASE; DNA BINDING PROTEIN; RIBONUCLEASE H; RIBONUCLEASE HII;

EID: 84896520900     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00960-13     Document Type: Article
Times cited : (46)

References (103)
  • 1
    • 0028337685 scopus 로고
    • Anatomy of a DNA replication fork revealed by reconstitution of SV40DNAreplication in vitro
    • Waga S, Stillman B. 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40DNAreplication in vitro. Nature 369:20-212.
    • (1994) Nature , vol.369 , pp. 207-212
    • Waga, S.1    Stillman, B.2
  • 2
    • 79951500316 scopus 로고    scopus 로고
    • Okazaki fragment maturation: nucleases take centre stage
    • Zheng L, Shen B. 2011. Okazaki fragment maturation: nucleases take centre stage. J. Mol. Cell Biol. 3:23-30. http://dx.doi.org/10.1093/jmcb/mjq048.
    • (2011) J. Mol. Cell Biol. , vol.3 , pp. 23-30
    • Zheng, L.1    Shen, B.2
  • 3
    • 0035954737 scopus 로고    scopus 로고
    • RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
    • Bae SH, Bae KH, Kim JA, Seo YS. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456-461. http://dx.doi.org/10.1038/35086609.
    • (2001) Nature , vol.412 , pp. 456-461
    • Bae, S.H.1    Bae, K.H.2    Kim, J.A.3    Seo, Y.S.4
  • 4
    • 0035899864 scopus 로고    scopus 로고
    • DNA replication: partners in the Okazaki two-step
    • MacNeill SA. 2001. DNA replication: partners in the Okazaki two-step. Curr. Biol. 11:R842-R844. http://dx.doi.org/10.1016/S0960-9822(01)00500-0.
    • (2001) Curr. Biol. , vol.11
    • MacNeill, S.A.1
  • 5
    • 0027988074 scopus 로고
    • Structure-specific cleavage of the RNA primer from Okazaki fragments by calf thymus RNase HI
    • Huang L, Kim Y, Turchi JJ, Bambara RA. 1994. Structure-specific cleavage of the RNA primer from Okazaki fragments by calf thymus RNase HI. J. Biol. Chem. 269:25922-25927.
    • (1994) J. Biol. Chem. , vol.269 , pp. 25922-25927
    • Huang, L.1    Kim, Y.2    Turchi, J.J.3    Bambara, R.A.4
  • 6
    • 0032478084 scopus 로고    scopus 로고
    • Junction ribonuclease: an activity in Okazaki fragment processing
    • Murante RS, Henricksen LA, Bambara RA. 1998. Junction ribonuclease: an activity in Okazaki fragment processing. Proc. Natl. Acad. Sci. U. S. A. 95:2244-2249. http://dx.doi.org/10.1073/pnas.95.5.2244.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 2244-2249
    • Murante, R.S.1    Henricksen, L.A.2    Bambara, R.A.3
  • 7
    • 0033512305 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging- strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease
    • Qiu J, Qian Y, Frank P, Wintersberger U, Shen B. 1999. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging- strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol. Cell. Biol. 19:8361-8371.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 8361-8371
    • Qiu, J.1    Qian, Y.2    Frank, P.3    Wintersberger, U.4    Shen, B.5
  • 11
    • 0034177982 scopus 로고    scopus 로고
    • Links between replication, recombination and genome instability in eukaryotes
    • Flores-Rozas H, Kolodner RD. 2000. Links between replication, recombination and genome instability in eukaryotes. Trends Biochem. Sci. 25:196-200. http://dx.doi.org/10.1016/S0968-0004(00)01568-1.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 196-200
    • Flores-Rozas, H.1    Kolodner, R.D.2
  • 12
    • 0025017971 scopus 로고
    • Discontinuous DNA synthesis by purified mammalian proteins
    • Goulian M, Richards SH, Heard CJ, Bigsby BM. 1990. Discontinuous DNA synthesis by purified mammalian proteins. J. Biol. Chem. 265: 18461-18471.
    • (1990) J. Biol. Chem. , vol.265 , pp. 18461-18471
    • Goulian, M.1    Richards, S.H.2    Heard, C.J.3    Bigsby, B.M.4
  • 13
    • 1642545486 scopus 로고    scopus 로고
    • The protein components and mechanism of eukaryotic Okazaki fragment maturation
    • Kao HI, Bambara RA. 2003. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit. Rev. Biochem. Mol. Biol. 38:433-452. http://dx.doi.org/10.1080/10409230390259382.
    • (2003) Crit. Rev. Biochem. Mol. Biol. , vol.38 , pp. 433-452
    • Kao, H.I.1    Bambara, R.A.2
  • 14
    • 63249130106 scopus 로고    scopus 로고
    • Polymerase dynamics at the eukaryotic DNA replication fork
    • Burgers PM. 2009. Polymerase dynamics at the eukaryotic DNA replication fork. J. Biol. Chem. 284:4041-4045.
    • (2009) J. Biol. Chem. , vol.284 , pp. 4041-4045
    • Burgers, P.M.1
  • 15
    • 77956525557 scopus 로고    scopus 로고
    • Components of the secondary pathway stimulate the primary pathway of eukaryotic Okazaki fragment processing
    • Henry RA, Balakrishnan L, Ying-Lin ST, Campbell JL, Bambara RA. 2010. Components of the secondary pathway stimulate the primary pathway of eukaryotic Okazaki fragment processing. J. Biol. Chem. 285: 28496-28505. http://dx.doi.org/10.1074/jbc. M110.131870.
    • (2010) J. Biol. Chem. , vol.285 , pp. 28496-28505
    • Henry, R.A.1    Balakrishnan, L.2    Ying-Lin, S.T.3    Campbell, J.L.4    Bambara, R.A.5
  • 16
    • 33748755119 scopus 로고    scopus 로고
    • Reconstituted Okazaki fragment processing indicates two pathways of primer removal
    • Rossi ML, Bambara RA. 2006. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. J. Biol. Chem. 281:26051-26061. http://dx.doi.org/10.1074/jbc. M604805200.
    • (2006) J. Biol. Chem. , vol.281 , pp. 26051-26061
    • Rossi, M.L.1    Bambara, R.A.2
  • 17
    • 0031442653 scopus 로고    scopus 로고
    • A novel mutation avoidance mechanism dependent on S. cerevisiae. RAD27 is distinct from DNA mismatch repair
    • TishkoffDX, Filosi N, Gaida GM, Kolodner RD. 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253-263. http://dx.doi.org/10.1016/S0092-8674(00)81846-2.
    • (1997) Cell , vol.88 , pp. 253-263
    • Tishkoff, D.X.1    Filosi, N.2    Gaida, G.M.3    Kolodner, R.D.4
  • 18
    • 0036837137 scopus 로고    scopus 로고
    • Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae
    • Tran PT, Erdeniz N, Dudley S, Liskay RM. 2002. Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. DNA Repair 1:895-912. http://dx.doi.org/10.1016/S1568-7864(02) 00114-3.
    • (2002) DNA Repair , vol.1 , pp. 895-912
    • Tran, P.T.1    Erdeniz, N.2    Dudley, S.3    Liskay, R.M.4
  • 19
    • 0032472275 scopus 로고    scopus 로고
    • Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII
    • Frank P, Braunshofer-Reiter C, Wintersberger U. 1998. Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII. FEBS Lett. 421:23-26. http://dx.doi.org/10.1016/S0014-5793(97)01528-7.
    • (1998) FEBS Lett. , vol.421 , pp. 23-26
    • Frank, P.1    Braunshofer-Reiter, C.2    Wintersberger, U.3
  • 22
    • 13944259332 scopus 로고    scopus 로고
    • Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast
    • Loeillet S, Palancade B, Cartron M, Thierry A, Richard GF, Dujon B, Doye V, Nicolas A. 2005. Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Rep. 4:459-468. http://dx.doi.org/10.1016/j.dnarep.2004.11.010.
    • (2005) DNA Rep. , vol.4 , pp. 459-468
    • Loeillet, S.1    Palancade, B.2    Cartron, M.3    Thierry, A.4    Richard, G.F.5    Dujon, B.6    Doye, V.7    Nicolas, A.8
  • 23
    • 33644778778 scopus 로고    scopus 로고
    • A DNA integrity network in the yeast Saccharomyces cerevisiae
    • Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD. 2006. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124:1069-1081. http://dx.doi.org/10.1016/j.cell.2005.12.036.
    • (2006) Cell , vol.124 , pp. 1069-1081
    • Pan, X.1    Ye, P.2    Yuan, D.S.3    Wang, X.4    Bader, J.S.5    Boeke, J.D.6
  • 27
    • 0033756041 scopus 로고    scopus 로고
    • The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair
    • Arudchandran A, Cerritelli S, Narimatsu S, Itaya M, Shin DY, Shimada Y, Crouch RJ. 2000. The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 5:789-802. http://dx.doi.org/10.1046/j.1365-2443.2000.00373.x.
    • (2000) Genes Cells , vol.5 , pp. 789-802
    • Arudchandran, A.1    Cerritelli, S.2    Narimatsu, S.3    Itaya, M.4    Shin, D.Y.5    Shimada, Y.6    Crouch, R.J.7
  • 28
    • 61349102407 scopus 로고    scopus 로고
    • Ribonuclease H: the enzymes in eukaryotes
    • Cerritelli SM, Crouch RJ. 2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276:1494-1505. http://dx.doi.org/10.1111/j.1742-4658.2009.06908.x.
    • (2009) FEBS J. , vol.276 , pp. 1494-1505
    • Cerritelli, S.M.1    Crouch, R.J.2
  • 29
    • 57749100294 scopus 로고    scopus 로고
    • Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis
    • Stith CM, Sterling J, Resnick MA, Gordenin DA, Burgers PM. 2008. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem. 283:34129-34140. http://dx.doi.org/10.1074/jbc. M806668200.
    • (2008) J. Biol. Chem. , vol.283 , pp. 34129-34140
    • Stith, C.M.1    Sterling, J.2    Resnick, M.A.3    Gordenin, D.A.4    Burgers, P.M.5
  • 31
    • 0031310666 scopus 로고    scopus 로고
    • Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I
    • Sekiguchi J, Shuman S. 1997. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol. Cell 1:89-97. http://dx.doi.org/10.1016/S1097-2765(00)80010-6.
    • (1997) Mol. Cell , vol.1 , pp. 89-97
    • Sekiguchi, J.1    Shuman, S.2
  • 32
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner RD, Putnam CD, Myung K. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552-557. http://dx.doi.org/10.1126/science.1075277.
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 33
    • 33645215616 scopus 로고    scopus 로고
    • Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
    • Budd ME, Reis CC, Smith S, Myung K, Campbell JL. 2006. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 26:2490-2500. http://dx.doi.org/10.1128/MCB.26.7.2490-2500.2006.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2490-2500
    • Budd, M.E.1    Reis, C.C.2    Smith, S.3    Myung, K.4    Campbell, J.L.5
  • 34
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen C, Kolodner RD. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23:81-85. http://dx.doi.org/10.1038/12687.
    • (1999) Nat. Genet. , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 35
    • 0032696025 scopus 로고    scopus 로고
    • Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability
    • Greene AL, Snipe JR, Gordenin DA, Resnick MA. 1999. Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum. Mol. Genet. 8:2263-2273. http://dx.doi.org/10.1093/hmg/8.12.2263.
    • (1999) Hum. Mol. Genet. , vol.8 , pp. 2263-2273
    • Greene, A.L.1    Snipe, J.R.2    Gordenin, D.A.3    Resnick, M.A.4
  • 36
    • 78649819004 scopus 로고    scopus 로고
    • Genetic and functional interactions between Mus81-Mms4 and Rad27
    • Kang MJ, Lee CH, Kang YH, Cho IT, Nguyen TA, Seo YS. 2010. Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Res. 38:7611-7625. http://dx.doi.org/10.1093/nar/gkq651.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 7611-7625
    • Kang, M.J.1    Lee, C.H.2    Kang, Y.H.3    Cho, I.T.4    Nguyen, T.A.5    Seo, Y.S.6
  • 37
    • 77949557756 scopus 로고    scopus 로고
    • Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes
    • Kang YH, Lee CH, Seo YS. 2010. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 45:71-96. http://dx.doi.org/10.3109/10409230903578593.
    • (2010) Crit. Rev. Biochem. Mol. Biol. , vol.45 , pp. 71-96
    • Kang, Y.H.1    Lee, C.H.2    Seo, Y.S.3
  • 38
    • 1942422156 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability
    • Liu Y, Zhang H, Veeraraghavan J, Bambara RA, Freudenreich CH. 2004. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol. Cell. Biol. 24:4049-4064. http://dx.doi.org/10.1128/MCB.24.9.4049-4064.2004.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 4049-4064
    • Liu, Y.1    Zhang, H.2    Veeraraghavan, J.3    Bambara, R.A.4    Freudenreich, C.H.5
  • 39
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung K, Chen C, Kolodner RD. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411:1073-1076. http://dx.doi.org/10.1038/35082608.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 41
    • 33749603235 scopus 로고    scopus 로고
    • A network of multi-tasking proteins at the DNA replication fork preserves genome stability
    • Budd ME, Tong AH, Polaczek P, Peng X, Boone C, Campbell JL. 2005. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet. 1:e61. http://dx.doi.org/10.1371/journal.pgen.0010061.
    • (2005) PLoS Genet. , vol.1
    • Budd, M.E.1    Tong, A.H.2    Polaczek, P.3    Peng, X.4    Boone, C.5    Campbell, J.L.6
  • 43
    • 0141482059 scopus 로고    scopus 로고
    • A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations
    • Huang ME, Rio AG, Nicolas A, Kolodner RD. 2003. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. U. S. A. 100:11529-11534. http://dx.doi.org/10.1073/pnas.2035018100.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 11529-11534
    • Huang, M.E.1    Rio, A.G.2    Nicolas, A.3    Kolodner, R.D.4
  • 44
    • 80051805241 scopus 로고    scopus 로고
    • Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2
    • Ii M, Ii T, Mironova LI, Brill SJ. 2011. Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mut. Res. 714:33-43. http://dx.doi.org/10.1016/j.mrfmmm.2011.06.007.
    • (2011) Mut. Res. , vol.714 , pp. 33-43
    • Ii, M.1    Ii, T.2    Mironova, L.I.3    Brill, S.J.4
  • 45
    • 84887156806 scopus 로고    scopus 로고
    • Ribonucleotides are signals for mismatch repair of leading-strand replication errors
    • Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA. 2013. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50:437-443. http://dx.doi.org/10.1016/j.molcel.2013.03.017.
    • (2013) Mol. Cell , vol.50 , pp. 437-443
    • Lujan, S.A.1    Williams, J.S.2    Clausen, A.R.3    Clark, A.B.4    Kunkel, T.A.5
  • 46
    • 84866462296 scopus 로고    scopus 로고
    • Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity
    • Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A. 2012. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209:1419-1426. http://dx.doi.org/10.1084/jem.20120876.
    • (2012) J. Exp. Med. , vol.209 , pp. 1419-1426
    • Hiller, B.1    Achleitner, M.2    Glage, S.3    Naumann, R.4    Behrendt, R.5    Roers, A.6
  • 48
    • 84860338675 scopus 로고    scopus 로고
    • R loops: from transcription byproducts to threats to genome stability
    • Aguilera A, Garcia-Muse T. 2012. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46:115-124. http://dx.doi.org/10.1016/j.molcel.2012.04.009.
    • (2012) Mol. Cell , vol.46 , pp. 115-124
    • Aguilera, A.1    Garcia-Muse, T.2
  • 49
    • 0141819093 scopus 로고    scopus 로고
    • Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcriptionassociated recombination
    • Huertas P, Aguilera A. 2003. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcriptionassociated recombination. Mol. Cell 12:711-721. http://dx.doi.org/10.1016/j.molcel.2003.08.010.
    • (2003) Mol. Cell , vol.12 , pp. 711-721
    • Huertas, P.1    Aguilera, A.2
  • 50
    • 0029868110 scopus 로고    scopus 로고
    • Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair
    • Marsischky GT, Filosi N, Kane MF, Kolodner R. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407-420. http://dx.doi.org/10.1101/gad.10.4.407.
    • (1996) Genes Dev. , vol.10 , pp. 407-420
    • Marsischky, G.T.1    Filosi, N.2    Kane, M.F.3    Kolodner, R.4
  • 51
    • 0032109778 scopus 로고    scopus 로고
    • Chromosomal rearrangements occur in S. cerevisiae. rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
    • Chen C, Umezu K, Kolodner RD. 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2:9-22. http://dx.doi.org/10.1016/S1097-2765(00)80109-4.
    • (1998) Mol. Cell , vol.2 , pp. 9-22
    • Chen, C.1    Umezu, K.2    Kolodner, R.D.3
  • 52
    • 0033989249 scopus 로고    scopus 로고
    • Novel dominant mutations in Saccharomyces cerevisiae MSH6
    • Das Gupta R, Kolodner RD. 2000. Novel dominant mutations in Saccharomyces cerevisiae MSH6. Nat. Genet. 24:53-56. http://dx.doi.org/10.1038/71684.
    • (2000) Nat. Genet. , vol.24 , pp. 53-56
    • Das Gupta, R.1    Kolodner, R.D.2
  • 53
    • 0032514709 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations
    • Flores-Rozas H, Kolodner RD. 1998. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl. Acad. Sci. U. S. A. 95:12404-12409. http://dx.doi.org/10.1073/pnas.95.21.12404.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 12404-12409
    • Flores-Rozas, H.1    Kolodner, R.D.2
  • 54
    • 34548761416 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs
    • Harrington JM, Kolodner RD. 2007. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol. Cell. Biol. 27:6546-6554. http://dx.doi.org/10.1128/MCB.00855-07.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 6546-6554
    • Harrington, J.M.1    Kolodner, R.D.2
  • 55
    • 1642416422 scopus 로고    scopus 로고
    • Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase
    • Schmidt KH, Kolodner RD. 2004. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol. Cell. Biol. 24:3213-3226. http://dx.doi.org/10.1128/MCB.24.8.3213-3226.2004.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3213-3226
    • Schmidt, K.H.1    Kolodner, R.D.2
  • 56
    • 33644863310 scopus 로고    scopus 로고
    • Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants
    • Kats ES, Albuquerque CP, Zhou H, Kolodner RD. 2006. Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc. Natl. Acad. Sci. U. S. A. 103:3710-3715. http://dx.doi.org/10.1073/pnas.0511102103.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 3710-3715
    • Kats, E.S.1    Albuquerque, C.P.2    Zhou, H.3    Kolodner, R.D.4
  • 57
    • 84255177502 scopus 로고    scopus 로고
    • RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability
    • Wahba L, Amon JD, Koshland D, Vuica-Ross M. 2011. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44:978-988. http://dx.doi.org/10.1016/j.molcel.2011.10.017.
    • (2011) Mol. Cell , vol.44 , pp. 978-988
    • Wahba, L.1    Amon, J.D.2    Koshland, D.3    Vuica-Ross, M.4
  • 61
    • 28044431820 scopus 로고    scopus 로고
    • Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae
    • Ii M, Brill SJ. 2005. Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae. Curr. Genet. 48:213-225. http://dx.doi.org/10.1007/s00294-005-0014-5.
    • (2005) Curr. Genet. , vol.48 , pp. 213-225
    • Ii, M.1    Brill, S.J.2
  • 64
    • 33845337082 scopus 로고    scopus 로고
    • Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
    • Enserink JM, Smolka MB, Zhou H, Kolodner RD. 2006. Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J. Cell Biol. 175:729-741. http://dx.doi.org/10.1083/jcb.200605080.
    • (2006) J. Cell Biol. , vol.175 , pp. 729-741
    • Enserink, J.M.1    Smolka, M.B.2    Zhou, H.3    Kolodner, R.D.4
  • 65
    • 0037168658 scopus 로고    scopus 로고
    • Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
    • Fabre F, Chan A, Heyer WD, GangloffS. 2002. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. U. S. A. 99:16887-16892. http://dx.doi.org/10.1073/pnas.252652399.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 16887-16892
    • Fabre, F.1    Chan, A.2    Heyer, W.D.3    Gangloff, S.4
  • 66
    • 33745845186 scopus 로고    scopus 로고
    • Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance
    • Hishida T, Ohya T, Kubota Y, Kamada Y, Shinagawa H. 2006. Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance. Mol. Cell. Biol. 26:5509-5517. http://dx.doi.org/10.1128/MCB.00307-06.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 5509-5517
    • Hishida, T.1    Ohya, T.2    Kubota, Y.3    Kamada, Y.4    Shinagawa, H.5
  • 67
    • 0031858054 scopus 로고    scopus 로고
    • Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I
    • Kaufman PD, Cohen JL, Osley MA. 1998. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18:4793-4806.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 4793-4806
    • Kaufman, P.D.1    Cohen, J.L.2    Osley, M.A.3
  • 68
    • 0242298316 scopus 로고    scopus 로고
    • DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray
    • Ooi SL, Shoemaker DD, Boeke JD. 2003. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat. Genet. 35:277-286. http://dx.doi.org/10.1038/ng1258.
    • (2003) Nat. Genet. , vol.35 , pp. 277-286
    • Ooi, S.L.1    Shoemaker, D.D.2    Boeke, J.D.3
  • 69
    • 33845335815 scopus 로고    scopus 로고
    • Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants
    • Schmidt KH, Kolodner RD. 2006. Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc. Natl. Acad. Sci. U. S. A. 103:18196-18201. http://dx.doi.org/10.1073/pnas.0608566103.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 18196-18201
    • Schmidt, K.H.1    Kolodner, R.D.2
  • 70
    • 0036812236 scopus 로고    scopus 로고
    • Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae
    • Shor E, GangloffS, Wagner M, Weinstein J, Price G, Rothstein R. 2002. Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae. Genetics 162:647-662.
    • (2002) Genetics , vol.162 , pp. 647-662
    • Shor, E.1    Gangloff, S.2    Wagner, M.3    Weinstein, J.4    Price, G.5    Rothstein, R.6
  • 71
    • 0037108948 scopus 로고    scopus 로고
    • Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage
    • Vance JR, Wilson TE. 2002. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage. Proc. Natl. Acad. Sci. U. S. A. 99:13669-13674. http://dx.doi.org/10.1073/pnas.202242599.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 13669-13674
    • Vance, J.R.1    Wilson, T.E.2
  • 73
    • 0025316170 scopus 로고
    • An essential Saccharomyces cerevisiae single-strandedDNAbinding protein is homologous to the large subunit of human RP-A
    • Heyer WD, Rao MR, Erdile LF, Kelly TJ, Kolodner RD. 1990. An essential Saccharomyces cerevisiae single-strandedDNAbinding protein is homologous to the large subunit of human RP-A. EMBO J. 9:2321-2329.
    • (1990) EMBO J. , vol.9 , pp. 2321-2329
    • Heyer, W.D.1    Rao, M.R.2    Erdile, L.F.3    Kelly, T.J.4    Kolodner, R.D.5
  • 75
    • 0034119866 scopus 로고    scopus 로고
    • Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
    • GangloffS, Soustelle C, Fabre F. 2000. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 25:192-194. http://dx.doi.org/10.1038/76055.
    • (2000) Nat. Genet. , vol.25 , pp. 192-194
    • Gangloff, S.1    Soustelle, C.2    Fabre, F.3
  • 76
    • 1642309305 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities
    • Torres JZ, Schnakenberg SL, Zakian VA. 2004. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24:3198-3212. http://dx.doi.org/10.1128/MCB.24.8.3198-3212.2004.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 3198-3212
    • Torres, J.Z.1    Schnakenberg, S.L.2    Zakian, V.A.3
  • 77
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K, Datta A, Kolodner RD. 2001. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397-408. http://dx.doi.org/10.1016/S0092-8674(01)00227-6.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 78
    • 0033518179 scopus 로고    scopus 로고
    • The RCAF complex mediates chromatin assembly duringDNA replication and repair
    • Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. 1999. The RCAF complex mediates chromatin assembly duringDNA replication and repair. Nature 402:555-560. http://dx.doi.org/10.1038/990147.
    • (1999) Nature , vol.402 , pp. 555-560
    • Tyler, J.K.1    Adams, C.R.2    Chen, S.R.3    Kobayashi, R.4    Kamakaka, R.T.5    Kadonaga, J.T.6
  • 79
    • 0032712707 scopus 로고    scopus 로고
    • A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59
    • Bai Y, Davis AP, Symington LS. 1999. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153:1117-1130.
    • (1999) Genetics , vol.153 , pp. 1117-1130
    • Bai, Y.1    Davis, A.P.2    Symington, L.S.3
  • 80
    • 33646120588 scopus 로고    scopus 로고
    • Esc4/Rtt107 and the control of recombination during replication
    • Chin JK, Bashkirov VI, Heyer WD, Romesberg FE. 2006. Esc4/Rtt107 and the control of recombination during replication. DNA Repair 5:618-628. http://dx.doi.org/10.1016/j.dnarep.2006.02.005.
    • (2006) DNA Repair , vol.5 , pp. 618-628
    • Chin, J.K.1    Bashkirov, V.I.2    Heyer, W.D.3    Romesberg, F.E.4
  • 81
    • 84866058758 scopus 로고    scopus 로고
    • The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats
    • Mazon G, Lam AF, Ho CK, Kupiec M, Symington LS. 2012. The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nat. Struct. Mol. Biol. 19:964-971. http://dx.doi.org/10.1038/nsmb.2359.
    • (2012) Nat. Struct. Mol. Biol. , vol.19 , pp. 964-971
    • Mazon, G.1    Lam, A.F.2    Ho, C.K.3    Kupiec, M.4    Symington, L.S.5
  • 82
    • 53649104599 scopus 로고    scopus 로고
    • Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
    • Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770-774. http://dx.doi.org/10.1038/nature07312.
    • (2008) Nature , vol.455 , pp. 770-774
    • Mimitou, E.P.1    Symington, L.S.2
  • 83
    • 77953208583 scopus 로고    scopus 로고
    • Post-replication repair suppresses duplication-mediated genome instability
    • Putnam CD, Hayes TK, Kolodner RD. 2010. Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet. 6:e1000933. http://dx.doi.org/10.1371/journal.pgen.1000933.
    • (2010) PLoS Genet. , vol.6
    • Putnam, C.D.1    Hayes, T.K.2    Kolodner, R.D.3
  • 84
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135-141. http://dx.doi.org/10.1038/nature00991.
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1    Pfander, B.2    Moldovan, G.L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 85
    • 48149093617 scopus 로고    scopus 로고
    • Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications
    • Hwang JY, Smith S, Ceschia A, Torres-Rosell J, Aragon L, Myung K. 2008. Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair 7:1426-1436. http://dx.doi.org/10.1016/j.dnarep.2008.05.006.
    • (2008) DNA Repair , vol.7 , pp. 1426-1436
    • Hwang, J.Y.1    Smith, S.2    Ceschia, A.3    Torres-Rosell, J.4    Aragon, L.5    Myung, K.6
  • 86
    • 78649451417 scopus 로고    scopus 로고
    • Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection
    • Paull TT. 2010. Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair 9:1283-1291. http://dx.doi.org/10.1016/j.dnarep.2010.09.015.
    • (2010) DNA Repair , vol.9 , pp. 1283-1291
    • Paull, T.T.1
  • 87
    • 65249118311 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair
    • Sollier J, Driscoll R, Castellucci F, Foiani M, Jackson SP, Branzei D. 2009. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol. Biol. Cell 20: 1671-1682. http://dx.doi.org/10.1091/mbc. E08-08-0875.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1671-1682
    • Sollier, J.1    Driscoll, R.2    Castellucci, F.3    Foiani, M.4    Jackson, S.P.5    Branzei, D.6
  • 88
    • 79957512884 scopus 로고    scopus 로고
    • Rtt107 phosphorylation promotes localisation to DNA double-stranded breaks (DSBs) and recombinational repair between sister chromatids
    • Ullal P, Vilella-Mitjana F, Jarmuz A, Aragon L. 2011. Rtt107 phosphorylation promotes localisation to DNA double-stranded breaks (DSBs) and recombinational repair between sister chromatids. PLoS One 6:e20152. http://dx.doi.org/10.1371/journal.pone.0020152.
    • (2011) PLoS One , vol.6
    • Ullal, P.1    Vilella-Mitjana, F.2    Jarmuz, A.3    Aragon, L.4
  • 89
    • 10344263324 scopus 로고    scopus 로고
    • Recombination proteins in yeast
    • Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu. Rev. Genet. 38:233-271. http://dx.doi.org/10.1146/annurev.genet.38.072902.091500.
    • (2004) Annu. Rev. Genet. , vol.38 , pp. 233-271
    • Krogh, B.O.1    Symington, L.S.2
  • 90
    • 18844449401 scopus 로고    scopus 로고
    • The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae
    • Hwang JY, Smith S, Myung K. 2005. The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae. Genetics 169:1927-1937. http://dx.doi.org/10.1534/genetics.104.039768.
    • (2005) Genetics , vol.169 , pp. 1927-1937
    • Hwang, J.Y.1    Smith, S.2    Myung, K.3
  • 91
    • 70349329465 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants
    • Kats ES, Enserink JM, Martinez S, Kolodner RD. 2009. The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol. Cell. Biol. 29:5226-5237. http://dx.doi.org/10.1128/MCB.00894-09.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 5226-5237
    • Kats, E.S.1    Enserink, J.M.2    Martinez, S.3    Kolodner, R.D.4
  • 92
    • 52149118942 scopus 로고    scopus 로고
    • The RAD5-dependent postreplication repair pathway is important to suppress gross chromosomal rearrangements
    • Myung K, Smith S. 2008. The RAD5-dependent postreplication repair pathway is important to suppress gross chromosomal rearrangements. J. Nat. Cancer Inst. Monogr. 2008(39):12-15. http://dx.doi.org/10.1093/jncimonographs/lgn019.
    • (2008) J. Nat. Cancer Inst. Monogr. , vol.2008 , Issue.39 , pp. 12-15
    • Myung, K.1    Smith, S.2
  • 93
    • 35148847451 scopus 로고    scopus 로고
    • Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression
    • Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, Haracska L. 2007. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28:167-175. http://dx.doi.org/10.1016/j.molcel.2007.07.030.
    • (2007) Mol. Cell , vol.28 , pp. 167-175
    • Blastyak, A.1    Pinter, L.2    Unk, I.3    Prakash, L.4    Prakash, S.5    Haracska, L.6
  • 94
    • 84892431829 scopus 로고    scopus 로고
    • Checkpoint kinases regulate a global network of transcription factors in response to DNA damage
    • Jaehnig EJ, Kuo D, Hombauer H, Ideker TG, Kolodner RD. 2013. Checkpoint kinases regulate a global network of transcription factors in response to DNA damage. Cell Rep. 4:174-188. http://dx.doi.org/10.1016/j.celrep.2013.05.041.
    • (2013) Cell Rep. , vol.4 , pp. 174-188
    • Jaehnig, E.J.1    Kuo, D.2    Hombauer, H.3    Ideker, T.G.4    Kolodner, R.D.5
  • 95
    • 47549105301 scopus 로고    scopus 로고
    • Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair
    • Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler JK. 2008. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134: 231-243. http://dx.doi.org/10.1016/j.cell.2008.06.035.
    • (2008) Cell , vol.134 , pp. 231-243
    • Chen, C.C.1    Carson, J.J.2    Feser, J.3    Tamburini, B.4    Zabaronick, S.5    Linger, J.6    Tyler, J.K.7
  • 96
    • 59049094825 scopus 로고    scopus 로고
    • Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete
    • Kim JA, Haber JE. 2009. Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proc. Natl. Acad. Sci. U. S. A. 106:1151-1156. http://dx.doi.org/10.1073/pnas.0812578106.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 1151-1156
    • Kim, J.A.1    Haber, J.E.2
  • 97
    • 84876390863 scopus 로고    scopus 로고
    • MRX protects fork integrity at protein- DNA barriers, and its absence causes checkpoint activation dependent on chromatin context
    • Bentsen IB, Nielsen I, Lisby M, Nielsen HB, Gupta SS, Mundbjerg K, Andersen AH, Bjergbaek L. 2013. MRX protects fork integrity at protein- DNA barriers, and its absence causes checkpoint activation dependent on chromatin context. Nucleic Acids Res. 41:3173-3189. http://dx.doi.org/10.1093/nar/gkt051.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 3173-3189
    • Bentsen, I.B.1    Nielsen, I.2    Lisby, M.3    Nielsen, H.B.4    Gupta, S.S.5    Mundbjerg, K.6    Andersen, A.H.7    Bjergbaek, L.8
  • 98
    • 79952694801 scopus 로고    scopus 로고
    • RAD51-independent inverted-repeat recombination by a strand-annealing mechanism
    • Mott C, Symington LS. 2011. RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. DNA Repair 10:408-415. http://dx.doi.org/10.1016/j.dnarep.2011.01.007.
    • (2011) DNA Repair , vol.10 , pp. 408-415
    • Mott, C.1    Symington, L.S.2
  • 99
    • 65249090885 scopus 로고    scopus 로고
    • Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae
    • Mankouri HW, Ngo HP, Hickson ID. 2009. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 20:1683-1694. http://dx.doi.org/10.1091/mbc. E08-08-0877.
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1683-1694
    • Mankouri, H.W.1    Ngo, H.P.2    Hickson, I.D.3
  • 100
    • 77954186960 scopus 로고    scopus 로고
    • The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae
    • Choi K, Szakal B, Chen YH, Branzei D, Zhao X. 2010. The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae. Mol. Biol. Cell 21:2306-2314. http://dx.doi.org/10.1091/mbc. E10-01-0050.
    • (2010) Mol. Biol. Cell , vol.21 , pp. 2306-2314
    • Choi, K.1    Szakal, B.2    Chen, Y.H.3    Branzei, D.4    Zhao, X.5
  • 101
    • 3042546122 scopus 로고    scopus 로고
    • Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1
    • Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE. 2004. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc. Natl. Acad. Sci. U. S. A. 101:9315-9320. http://dx.doi.org/10.1073/pnas.0305749101.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 9315-9320
    • Sugawara, N.1    Goldfarb, T.2    Studamire, B.3    Alani, E.4    Haber, J.E.5
  • 102
    • 23744455164 scopus 로고    scopus 로고
    • Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability
    • Li X, Manley JL. 2005. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365-378. http://dx.doi.org/10.1016/j.cell.2005.06.008.
    • (2005) Cell , vol.122 , pp. 365-378
    • Li, X.1    Manley, J.L.2
  • 103


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.