-
1
-
-
0028337685
-
Anatomy of a DNA replication fork revealed by reconstitution of SV40DNAreplication in vitro
-
Waga S, Stillman B. 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40DNAreplication in vitro. Nature 369:20-212.
-
(1994)
Nature
, vol.369
, pp. 207-212
-
-
Waga, S.1
Stillman, B.2
-
2
-
-
79951500316
-
Okazaki fragment maturation: nucleases take centre stage
-
Zheng L, Shen B. 2011. Okazaki fragment maturation: nucleases take centre stage. J. Mol. Cell Biol. 3:23-30. http://dx.doi.org/10.1093/jmcb/mjq048.
-
(2011)
J. Mol. Cell Biol.
, vol.3
, pp. 23-30
-
-
Zheng, L.1
Shen, B.2
-
3
-
-
0035954737
-
RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes
-
Bae SH, Bae KH, Kim JA, Seo YS. 2001. RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456-461. http://dx.doi.org/10.1038/35086609.
-
(2001)
Nature
, vol.412
, pp. 456-461
-
-
Bae, S.H.1
Bae, K.H.2
Kim, J.A.3
Seo, Y.S.4
-
4
-
-
0035899864
-
DNA replication: partners in the Okazaki two-step
-
MacNeill SA. 2001. DNA replication: partners in the Okazaki two-step. Curr. Biol. 11:R842-R844. http://dx.doi.org/10.1016/S0960-9822(01)00500-0.
-
(2001)
Curr. Biol.
, vol.11
-
-
MacNeill, S.A.1
-
5
-
-
0027988074
-
Structure-specific cleavage of the RNA primer from Okazaki fragments by calf thymus RNase HI
-
Huang L, Kim Y, Turchi JJ, Bambara RA. 1994. Structure-specific cleavage of the RNA primer from Okazaki fragments by calf thymus RNase HI. J. Biol. Chem. 269:25922-25927.
-
(1994)
J. Biol. Chem.
, vol.269
, pp. 25922-25927
-
-
Huang, L.1
Kim, Y.2
Turchi, J.J.3
Bambara, R.A.4
-
6
-
-
0032478084
-
Junction ribonuclease: an activity in Okazaki fragment processing
-
Murante RS, Henricksen LA, Bambara RA. 1998. Junction ribonuclease: an activity in Okazaki fragment processing. Proc. Natl. Acad. Sci. U. S. A. 95:2244-2249. http://dx.doi.org/10.1073/pnas.95.5.2244.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 2244-2249
-
-
Murante, R.S.1
Henricksen, L.A.2
Bambara, R.A.3
-
7
-
-
0033512305
-
Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging- strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease
-
Qiu J, Qian Y, Frank P, Wintersberger U, Shen B. 1999. Saccharomyces cerevisiae RNase H(35) functions in RNA primer removal during lagging- strand DNA synthesis, most efficiently in cooperation with Rad27 nuclease. Mol. Cell. Biol. 19:8361-8371.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 8361-8371
-
-
Qiu, J.1
Qian, Y.2
Frank, P.3
Wintersberger, U.4
Shen, B.5
-
8
-
-
0027937802
-
Enzymatic completion of mammalian lagging-strand DNA replication
-
Turchi JJ, Huang L, Murante RS, Kim Y, Bambara RA. 1994. Enzymatic completion of mammalian lagging-strand DNA replication. Proc. Natl. Acad. Sci. U. S. A. 91:9803-9807. http://dx.doi.org/10.1073/pnas.91.21.9803.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 9803-9807
-
-
Turchi, J.J.1
Huang, L.2
Murante, R.S.3
Kim, Y.4
Bambara, R.A.5
-
9
-
-
1342286049
-
RNase H2 of Saccharomyces cerevisiae is a complex of three proteins
-
Jeong HS, Backlund PS, Chen HC, Karavanov AA, Crouch RJ. 2004. RNase H2 of Saccharomyces cerevisiae is a complex of three proteins. Nucleic Acids Res. 32:407-414. http://dx.doi.org/10.1093/nar/gkh209.
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 407-414
-
-
Jeong, H.S.1
Backlund, P.S.2
Chen, H.C.3
Karavanov, A.A.4
Crouch, R.J.5
-
10
-
-
33746522835
-
Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection
-
Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, Ali M, Semple C, Aicardi J, Babul-Hirji R, Baumann C, Baxter P, Bertini E, Chandler KE, Chitayat D, Cau D, Dery C, Fazzi E, Goizet C, King MD, Klepper J, Lacombe D, Lanzi G, Lyall H, Martinez-Frias ML, Mathieu M, McKeown C, Monier A, Oade Y, Quarrell OW, Rittey CD, Rogers RC, Sanchis A, Stephenson JB, Tacke U, Till M, Tolmie JL, Tomlin P, Voit T, Weschke B, Woods CG, Lebon P, Bonthron DT, Ponting CP, Jackson AP. 2006. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat. Genet. 38:910-916. http://dx.doi.org/10.1038/ng1842.
-
(2006)
Nat. Genet.
, vol.38
, pp. 910-916
-
-
Crow, Y.J.1
Leitch, A.2
Hayward, B.E.3
Garner, A.4
Parmar, R.5
Griffith, E.6
Ali, M.7
Semple, C.8
Aicardi, J.9
Babul-Hirji, R.10
Baumann, C.11
Baxter, P.12
Bertini, E.13
Chandler, K.E.14
Chitayat, D.15
Cau, D.16
Dery, C.17
Fazzi, E.18
Goizet, C.19
King, M.D.20
Klepper, J.21
Lacombe, D.22
Lanzi, G.23
Lyall, H.24
Martinez-Frias, M.L.25
Mathieu, M.26
McKeown, C.27
Monier, A.28
Oade, Y.29
Quarrell, O.W.30
Rittey, C.D.31
Rogers, R.C.32
Sanchis, A.33
Stephenson, J.B.34
Tacke, U.35
Till, M.36
Tolmie, J.L.37
Tomlin, P.38
Voit, T.39
Weschke, B.40
Woods, C.G.41
Lebon, P.42
Bonthron, D.T.43
Ponting, C.P.44
Jackson, A.P.45
more..
-
11
-
-
0034177982
-
Links between replication, recombination and genome instability in eukaryotes
-
Flores-Rozas H, Kolodner RD. 2000. Links between replication, recombination and genome instability in eukaryotes. Trends Biochem. Sci. 25:196-200. http://dx.doi.org/10.1016/S0968-0004(00)01568-1.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 196-200
-
-
Flores-Rozas, H.1
Kolodner, R.D.2
-
13
-
-
1642545486
-
The protein components and mechanism of eukaryotic Okazaki fragment maturation
-
Kao HI, Bambara RA. 2003. The protein components and mechanism of eukaryotic Okazaki fragment maturation. Crit. Rev. Biochem. Mol. Biol. 38:433-452. http://dx.doi.org/10.1080/10409230390259382.
-
(2003)
Crit. Rev. Biochem. Mol. Biol.
, vol.38
, pp. 433-452
-
-
Kao, H.I.1
Bambara, R.A.2
-
14
-
-
63249130106
-
Polymerase dynamics at the eukaryotic DNA replication fork
-
Burgers PM. 2009. Polymerase dynamics at the eukaryotic DNA replication fork. J. Biol. Chem. 284:4041-4045.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 4041-4045
-
-
Burgers, P.M.1
-
15
-
-
77956525557
-
Components of the secondary pathway stimulate the primary pathway of eukaryotic Okazaki fragment processing
-
Henry RA, Balakrishnan L, Ying-Lin ST, Campbell JL, Bambara RA. 2010. Components of the secondary pathway stimulate the primary pathway of eukaryotic Okazaki fragment processing. J. Biol. Chem. 285: 28496-28505. http://dx.doi.org/10.1074/jbc. M110.131870.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 28496-28505
-
-
Henry, R.A.1
Balakrishnan, L.2
Ying-Lin, S.T.3
Campbell, J.L.4
Bambara, R.A.5
-
16
-
-
33748755119
-
Reconstituted Okazaki fragment processing indicates two pathways of primer removal
-
Rossi ML, Bambara RA. 2006. Reconstituted Okazaki fragment processing indicates two pathways of primer removal. J. Biol. Chem. 281:26051-26061. http://dx.doi.org/10.1074/jbc. M604805200.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 26051-26061
-
-
Rossi, M.L.1
Bambara, R.A.2
-
17
-
-
0031442653
-
A novel mutation avoidance mechanism dependent on S. cerevisiae. RAD27 is distinct from DNA mismatch repair
-
TishkoffDX, Filosi N, Gaida GM, Kolodner RD. 1997. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88:253-263. http://dx.doi.org/10.1016/S0092-8674(00)81846-2.
-
(1997)
Cell
, vol.88
, pp. 253-263
-
-
Tishkoff, D.X.1
Filosi, N.2
Gaida, G.M.3
Kolodner, R.D.4
-
18
-
-
0036837137
-
Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae
-
Tran PT, Erdeniz N, Dudley S, Liskay RM. 2002. Characterization of nuclease-dependent functions of Exo1p in Saccharomyces cerevisiae. DNA Repair 1:895-912. http://dx.doi.org/10.1016/S1568-7864(02) 00114-3.
-
(2002)
DNA Repair
, vol.1
, pp. 895-912
-
-
Tran, P.T.1
Erdeniz, N.2
Dudley, S.3
Liskay, R.M.4
-
19
-
-
0032472275
-
Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII
-
Frank P, Braunshofer-Reiter C, Wintersberger U. 1998. Yeast RNase H(35) is the counterpart of the mammalian RNase HI, and is evolutionarily related to prokaryotic RNase HII. FEBS Lett. 421:23-26. http://dx.doi.org/10.1016/S0014-5793(97)01528-7.
-
(1998)
FEBS Lett.
, vol.421
, pp. 23-26
-
-
Frank, P.1
Braunshofer-Reiter, C.2
Wintersberger, U.3
-
20
-
-
75649111192
-
The genetic landscape of a cell
-
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh JL, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T, Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z, Lin ZY, Liang W, Marback M, Paw J, San Luis BJ, Shuteriqi E, Tong AH, van Dyk N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M, Ragibizadeh S, Papp B, Pal C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey H, Bader GD, Gingras AC, Morris QD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, Boone C. 2010. The genetic landscape of a cell. Science 327:425-431. http://dx.doi.org/10.1126/science.1180823.
-
(2010)
Science
, vol.327
, pp. 425-431
-
-
Costanzo, M.1
Baryshnikova, A.2
Bellay, J.3
Kim, Y.4
Spear, E.D.5
Sevier, C.S.6
Ding, H.7
Koh, J.L.8
Toufighi, K.9
Mostafavi, S.10
Prinz, J.11
St Onge, R.P.12
VanderSluis, B.13
Makhnevych, T.14
Vizeacoumar, F.J.15
Alizadeh, S.16
Bahr, S.17
Brost, R.L.18
Chen, Y.19
Cokol, M.20
Deshpande, R.21
Li, Z.22
Lin, Z.Y.23
Liang, W.24
Marback, M.25
Paw, J.26
San Luis, B.J.27
Shuteriqi, E.28
Tong, A.H.29
van Dyk, N.30
Wallace, I.M.31
Whitney, J.A.32
Weirauch, M.T.33
Zhong, G.34
Zhu, H.35
Houry, W.A.36
Brudno, M.37
Ragibizadeh, S.38
Papp, B.39
Pal, C.40
Roth, F.P.41
Giaever, G.42
Nislow, C.43
Troyanskaya, O.G.44
Bussey, H.45
Bader, G.D.46
Gingras, A.C.47
Morris, Q.D.48
Kim, P.M.49
Kaiser, C.A.50
Myers, C.L.51
Andrews, B.J.52
Boone, C.53
more..
-
21
-
-
55949124306
-
Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes
-
Dixon SJ, Fedyshyn Y, Koh JL, Prasad TS, Chahwan C, Chua G, Toufighi K, Baryshnikova A, Hayles J, Hoe KL, Kim DU, Park HO, Myers CL, Pandey A, Durocher D, Andrews BJ, Boone C. 2008. Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc. Natl. Acad. Sci. U. S. A. 105: 16653-16658. http://dx.doi.org/10.1073/pnas.0806261105.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 16653-16658
-
-
Dixon, S.J.1
Fedyshyn, Y.2
Koh, J.L.3
Prasad, T.S.4
Chahwan, C.5
Chua, G.6
Toufighi, K.7
Baryshnikova, A.8
Hayles, J.9
Hoe, K.L.10
Kim, D.U.11
Park, H.O.12
Myers, C.L.13
Pandey, A.14
Durocher, D.15
Andrews, B.J.16
Boone, C.17
-
22
-
-
13944259332
-
Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast
-
Loeillet S, Palancade B, Cartron M, Thierry A, Richard GF, Dujon B, Doye V, Nicolas A. 2005. Genetic network interactions among replication, repair and nuclear pore deficiencies in yeast. DNA Rep. 4:459-468. http://dx.doi.org/10.1016/j.dnarep.2004.11.010.
-
(2005)
DNA Rep.
, vol.4
, pp. 459-468
-
-
Loeillet, S.1
Palancade, B.2
Cartron, M.3
Thierry, A.4
Richard, G.F.5
Dujon, B.6
Doye, V.7
Nicolas, A.8
-
23
-
-
33644778778
-
A DNA integrity network in the yeast Saccharomyces cerevisiae
-
Pan X, Ye P, Yuan DS, Wang X, Bader JS, Boeke JD. 2006. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124:1069-1081. http://dx.doi.org/10.1016/j.cell.2005.12.036.
-
(2006)
Cell
, vol.124
, pp. 1069-1081
-
-
Pan, X.1
Ye, P.2
Yuan, D.S.3
Wang, X.4
Bader, J.S.5
Boeke, J.D.6
-
24
-
-
84876363526
-
RNase H2 roles in genome integrity revealed by unlinking its activities
-
Chon H, Sparks JL, Rychlik M, Nowotny M, Burgers PM, Crouch RJ, Cerritelli SM. 2013. RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res. 41:3130-3143. http://dx.doi.org/10.1093/nar/gkt027.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 3130-3143
-
-
Chon, H.1
Sparks, J.L.2
Rychlik, M.3
Nowotny, M.4
Burgers, P.M.5
Crouch, R.J.6
Cerritelli, S.M.7
-
25
-
-
77950406088
-
Abundant ribonucleotide incorporation intoDNAby yeast replicative polymerases
-
Nick McElhinny SA, Watts BE, Kumar D, Watt DL, Lundstrom EB, Burgers PM, Johansson E, Chabes A, Kunkel TA. 2010. Abundant ribonucleotide incorporation intoDNAby yeast replicative polymerases. Proc. Natl. Acad. Sci. U. S. A. 107:4949-4954. http://dx.doi.org/10.1073/pnas.0914857107.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 4949-4954
-
-
Nick McElhinny, S.A.1
Watts, B.E.2
Kumar, D.3
Watt, D.L.4
Lundstrom, E.B.5
Burgers, P.M.6
Johansson, E.7
Chabes, A.8
Kunkel, T.A.9
-
26
-
-
84866851215
-
RNase H2-initiated ribonucleotide excision repair
-
Sparks JL, Chon H, Cerritelli SM, Kunkel TA, Johansson E, Crouch RJ, Burgers PM. 2012. RNase H2-initiated ribonucleotide excision repair. Mol. Cell 47:980-986. http://dx.doi.org/10.1016/j.molcel.2012.06.035.
-
(2012)
Mol. Cell
, vol.47
, pp. 980-986
-
-
Sparks, J.L.1
Chon, H.2
Cerritelli, S.M.3
Kunkel, T.A.4
Johansson, E.5
Crouch, R.J.6
Burgers, P.M.7
-
27
-
-
0033756041
-
The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair
-
Arudchandran A, Cerritelli S, Narimatsu S, Itaya M, Shin DY, Shimada Y, Crouch RJ. 2000. The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells 5:789-802. http://dx.doi.org/10.1046/j.1365-2443.2000.00373.x.
-
(2000)
Genes Cells
, vol.5
, pp. 789-802
-
-
Arudchandran, A.1
Cerritelli, S.2
Narimatsu, S.3
Itaya, M.4
Shin, D.Y.5
Shimada, Y.6
Crouch, R.J.7
-
28
-
-
61349102407
-
Ribonuclease H: the enzymes in eukaryotes
-
Cerritelli SM, Crouch RJ. 2009. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 276:1494-1505. http://dx.doi.org/10.1111/j.1742-4658.2009.06908.x.
-
(2009)
FEBS J.
, vol.276
, pp. 1494-1505
-
-
Cerritelli, S.M.1
Crouch, R.J.2
-
29
-
-
57749100294
-
Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis
-
Stith CM, Sterling J, Resnick MA, Gordenin DA, Burgers PM. 2008. Flexibility of eukaryotic Okazaki fragment maturation through regulated strand displacement synthesis. J. Biol. Chem. 283:34129-34140. http://dx.doi.org/10.1074/jbc. M806668200.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 34129-34140
-
-
Stith, C.M.1
Sterling, J.2
Resnick, M.A.3
Gordenin, D.A.4
Burgers, P.M.5
-
30
-
-
79959504063
-
Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I
-
Kim N, Huang SN, Williams JS, Li YC, Clark AB, Cho JE, Kunkel TA, Pommier Y, Jinks-Robertson S. 2011. Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332:1561-1564. http://dx.doi.org/10.1126/science.1205016.
-
(2011)
Science
, vol.332
, pp. 1561-1564
-
-
Kim, N.1
Huang, S.N.2
Williams, J.S.3
Li, Y.C.4
Clark, A.B.5
Cho, J.E.6
Kunkel, T.A.7
Pommier, Y.8
Jinks-Robertson, S.9
-
31
-
-
0031310666
-
Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I
-
Sekiguchi J, Shuman S. 1997. Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol. Cell 1:89-97. http://dx.doi.org/10.1016/S1097-2765(00)80010-6.
-
(1997)
Mol. Cell
, vol.1
, pp. 89-97
-
-
Sekiguchi, J.1
Shuman, S.2
-
32
-
-
0037178722
-
Maintenance of genome stability in Saccharomyces cerevisiae
-
Kolodner RD, Putnam CD, Myung K. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552-557. http://dx.doi.org/10.1126/science.1075277.
-
(2002)
Science
, vol.297
, pp. 552-557
-
-
Kolodner, R.D.1
Putnam, C.D.2
Myung, K.3
-
33
-
-
33645215616
-
Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta
-
Budd ME, Reis CC, Smith S, Myung K, Campbell JL. 2006. Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta. Mol. Cell. Biol. 26:2490-2500. http://dx.doi.org/10.1128/MCB.26.7.2490-2500.2006.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2490-2500
-
-
Budd, M.E.1
Reis, C.C.2
Smith, S.3
Myung, K.4
Campbell, J.L.5
-
34
-
-
0032860479
-
Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
-
Chen C, Kolodner RD. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23:81-85. http://dx.doi.org/10.1038/12687.
-
(1999)
Nat. Genet.
, vol.23
, pp. 81-85
-
-
Chen, C.1
Kolodner, R.D.2
-
35
-
-
0032696025
-
Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability
-
Greene AL, Snipe JR, Gordenin DA, Resnick MA. 1999. Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum. Mol. Genet. 8:2263-2273. http://dx.doi.org/10.1093/hmg/8.12.2263.
-
(1999)
Hum. Mol. Genet.
, vol.8
, pp. 2263-2273
-
-
Greene, A.L.1
Snipe, J.R.2
Gordenin, D.A.3
Resnick, M.A.4
-
36
-
-
78649819004
-
Genetic and functional interactions between Mus81-Mms4 and Rad27
-
Kang MJ, Lee CH, Kang YH, Cho IT, Nguyen TA, Seo YS. 2010. Genetic and functional interactions between Mus81-Mms4 and Rad27. Nucleic Acids Res. 38:7611-7625. http://dx.doi.org/10.1093/nar/gkq651.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 7611-7625
-
-
Kang, M.J.1
Lee, C.H.2
Kang, Y.H.3
Cho, I.T.4
Nguyen, T.A.5
Seo, Y.S.6
-
37
-
-
77949557756
-
Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes
-
Kang YH, Lee CH, Seo YS. 2010. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 45:71-96. http://dx.doi.org/10.3109/10409230903578593.
-
(2010)
Crit. Rev. Biochem. Mol. Biol.
, vol.45
, pp. 71-96
-
-
Kang, Y.H.1
Lee, C.H.2
Seo, Y.S.3
-
38
-
-
1942422156
-
Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability
-
Liu Y, Zhang H, Veeraraghavan J, Bambara RA, Freudenreich CH. 2004. Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol. Cell. Biol. 24:4049-4064. http://dx.doi.org/10.1128/MCB.24.9.4049-4064.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4049-4064
-
-
Liu, Y.1
Zhang, H.2
Veeraraghavan, J.3
Bambara, R.A.4
Freudenreich, C.H.5
-
39
-
-
0035963338
-
Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
-
Myung K, Chen C, Kolodner RD. 2001. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411:1073-1076. http://dx.doi.org/10.1038/35082608.
-
(2001)
Nature
, vol.411
, pp. 1073-1076
-
-
Myung, K.1
Chen, C.2
Kolodner, R.D.3
-
40
-
-
84861578543
-
Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development
-
Reijns MA, Rabe B, Rigby RE, Mill P, Astell KR, Lettice LA, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney PS, Sexton D, Grimes G, Holt IJ, Hill RE, Taylor MS, Lawson KA, Dorin JR, Jackson AP. 2012. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 149:1008-1022. http://dx.doi.org/10.1016/j.cell.2012.04.011.
-
(2012)
Cell
, vol.149
, pp. 1008-1022
-
-
Reijns, M.A.1
Rabe, B.2
Rigby, R.E.3
Mill, P.4
Astell, K.R.5
Lettice, L.A.6
Boyle, S.7
Leitch, A.8
Keighren, M.9
Kilanowski, F.10
Devenney, P.S.11
Sexton, D.12
Grimes, G.13
Holt, I.J.14
Hill, R.E.15
Taylor, M.S.16
Lawson, K.A.17
Dorin, J.R.18
Jackson, A.P.19
-
41
-
-
33749603235
-
A network of multi-tasking proteins at the DNA replication fork preserves genome stability
-
Budd ME, Tong AH, Polaczek P, Peng X, Boone C, Campbell JL. 2005. A network of multi-tasking proteins at the DNA replication fork preserves genome stability. PLoS Genet. 1:e61. http://dx.doi.org/10.1371/journal.pgen.0010061.
-
(2005)
PLoS Genet.
, vol.1
-
-
Budd, M.E.1
Tong, A.H.2
Polaczek, P.3
Peng, X.4
Boone, C.5
Campbell, J.L.6
-
42
-
-
84887141327
-
Ribonucleotides misincorporated into DNA act as stranddiscrimination signals in eukaryotic mismatch repair
-
Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, Artola-Boran M, Cejka P, Reijns MA, Jackson AP, Plevani P, Muzi-Falconi M, Jiricny J. 2013. Ribonucleotides misincorporated into DNA act as stranddiscrimination signals in eukaryotic mismatch repair. Mol. Cell 50:323-332. http://dx.doi.org/10.1016/j.molcel.2013.03.019.
-
(2013)
Mol. Cell
, vol.50
, pp. 323-332
-
-
Ghodgaonkar, M.M.1
Lazzaro, F.2
Olivera-Pimentel, M.3
Artola-Boran, M.4
Cejka, P.5
Reijns, M.A.6
Jackson, A.P.7
Plevani, P.8
Muzi-Falconi, M.9
Jiricny, J.10
-
43
-
-
0141482059
-
A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations
-
Huang ME, Rio AG, Nicolas A, Kolodner RD. 2003. A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc. Natl. Acad. Sci. U. S. A. 100:11529-11534. http://dx.doi.org/10.1073/pnas.2035018100.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 11529-11534
-
-
Huang, M.E.1
Rio, A.G.2
Nicolas, A.3
Kolodner, R.D.4
-
44
-
-
80051805241
-
Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2
-
Ii M, Ii T, Mironova LI, Brill SJ. 2011. Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mut. Res. 714:33-43. http://dx.doi.org/10.1016/j.mrfmmm.2011.06.007.
-
(2011)
Mut. Res.
, vol.714
, pp. 33-43
-
-
Ii, M.1
Ii, T.2
Mironova, L.I.3
Brill, S.J.4
-
45
-
-
84887156806
-
Ribonucleotides are signals for mismatch repair of leading-strand replication errors
-
Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA. 2013. Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol. Cell 50:437-443. http://dx.doi.org/10.1016/j.molcel.2013.03.017.
-
(2013)
Mol. Cell
, vol.50
, pp. 437-443
-
-
Lujan, S.A.1
Williams, J.S.2
Clausen, A.R.3
Clark, A.B.4
Kunkel, T.A.5
-
46
-
-
84866462296
-
Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity
-
Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A. 2012. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J. Exp. Med. 209:1419-1426. http://dx.doi.org/10.1084/jem.20120876.
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1419-1426
-
-
Hiller, B.1
Achleitner, M.2
Glage, S.3
Naumann, R.4
Behrendt, R.5
Roers, A.6
-
47
-
-
33746581694
-
Mutations in the gene encoding the 3=-5= DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus
-
Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, Black DN, van Bokhoven H, Brunner HG, Hamel BC, Corry PC, Cowan FM, Frints SG, Klepper J, Livingston JH, Lynch SA, Massey RF, Meritet JF, Michaud JL, Ponsot G, Voit T, Lebon P, Bonthron DT, Jackson AP, Barnes DE, Lindahl T. 2006. Mutations in the gene encoding the 3=-5= DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38:917-920. http://dx.doi.org/10.1038/ng1845.
-
(2006)
Nat. Genet.
, vol.38
, pp. 917-920
-
-
Crow, Y.J.1
Hayward, B.E.2
Parmar, R.3
Robins, P.4
Leitch, A.5
Ali, M.6
Black, D.N.7
van Bokhoven, H.8
Brunner, H.G.9
Hamel, B.C.10
Corry, P.C.11
Cowan, F.M.12
Frints, S.G.13
Klepper, J.14
Livingston, J.H.15
Lynch, S.A.16
Massey, R.F.17
Meritet, J.F.18
Michaud, J.L.19
Ponsot, G.20
Voit, T.21
Lebon, P.22
Bonthron, D.T.23
Jackson, A.P.24
Barnes, D.E.25
Lindahl, T.26
more..
-
48
-
-
84860338675
-
R loops: from transcription byproducts to threats to genome stability
-
Aguilera A, Garcia-Muse T. 2012. R loops: from transcription byproducts to threats to genome stability. Mol. Cell 46:115-124. http://dx.doi.org/10.1016/j.molcel.2012.04.009.
-
(2012)
Mol. Cell
, vol.46
, pp. 115-124
-
-
Aguilera, A.1
Garcia-Muse, T.2
-
49
-
-
0141819093
-
Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcriptionassociated recombination
-
Huertas P, Aguilera A. 2003. Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcriptionassociated recombination. Mol. Cell 12:711-721. http://dx.doi.org/10.1016/j.molcel.2003.08.010.
-
(2003)
Mol. Cell
, vol.12
, pp. 711-721
-
-
Huertas, P.1
Aguilera, A.2
-
50
-
-
0029868110
-
Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair
-
Marsischky GT, Filosi N, Kane MF, Kolodner R. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407-420. http://dx.doi.org/10.1101/gad.10.4.407.
-
(1996)
Genes Dev.
, vol.10
, pp. 407-420
-
-
Marsischky, G.T.1
Filosi, N.2
Kane, M.F.3
Kolodner, R.4
-
51
-
-
0032109778
-
Chromosomal rearrangements occur in S. cerevisiae. rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
-
Chen C, Umezu K, Kolodner RD. 1998. Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol. Cell 2:9-22. http://dx.doi.org/10.1016/S1097-2765(00)80109-4.
-
(1998)
Mol. Cell
, vol.2
, pp. 9-22
-
-
Chen, C.1
Umezu, K.2
Kolodner, R.D.3
-
52
-
-
0033989249
-
Novel dominant mutations in Saccharomyces cerevisiae MSH6
-
Das Gupta R, Kolodner RD. 2000. Novel dominant mutations in Saccharomyces cerevisiae MSH6. Nat. Genet. 24:53-56. http://dx.doi.org/10.1038/71684.
-
(2000)
Nat. Genet.
, vol.24
, pp. 53-56
-
-
Das Gupta, R.1
Kolodner, R.D.2
-
53
-
-
0032514709
-
The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations
-
Flores-Rozas H, Kolodner RD. 1998. The Saccharomyces cerevisiae MLH3 gene functions in MSH3-dependent suppression of frameshift mutations. Proc. Natl. Acad. Sci. U. S. A. 95:12404-12409. http://dx.doi.org/10.1073/pnas.95.21.12404.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 12404-12409
-
-
Flores-Rozas, H.1
Kolodner, R.D.2
-
54
-
-
34548761416
-
Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs
-
Harrington JM, Kolodner RD. 2007. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol. Cell. Biol. 27:6546-6554. http://dx.doi.org/10.1128/MCB.00855-07.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 6546-6554
-
-
Harrington, J.M.1
Kolodner, R.D.2
-
55
-
-
1642416422
-
Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase
-
Schmidt KH, Kolodner RD. 2004. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol. Cell. Biol. 24:3213-3226. http://dx.doi.org/10.1128/MCB.24.8.3213-3226.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3213-3226
-
-
Schmidt, K.H.1
Kolodner, R.D.2
-
56
-
-
33644863310
-
Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants
-
Kats ES, Albuquerque CP, Zhou H, Kolodner RD. 2006. Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc. Natl. Acad. Sci. U. S. A. 103:3710-3715. http://dx.doi.org/10.1073/pnas.0511102103.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 3710-3715
-
-
Kats, E.S.1
Albuquerque, C.P.2
Zhou, H.3
Kolodner, R.D.4
-
57
-
-
84255177502
-
RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability
-
Wahba L, Amon JD, Koshland D, Vuica-Ross M. 2011. RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol. Cell 44:978-988. http://dx.doi.org/10.1016/j.molcel.2011.10.017.
-
(2011)
Mol. Cell
, vol.44
, pp. 978-988
-
-
Wahba, L.1
Amon, J.D.2
Koshland, D.3
Vuica-Ross, M.4
-
58
-
-
34147217542
-
Functional dissection of protein complexes involved in yeastchromosomebiology using a genetic interaction map
-
Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ. 2007. Functional dissection of protein complexes involved in yeastchromosomebiology using a genetic interaction map. Nature 446:806-810. http://dx.doi.org/10.1038/nature05649.
-
(2007)
Nature
, vol.446
, pp. 806-810
-
-
Collins, S.R.1
Miller, K.M.2
Maas, N.L.3
Roguev, A.4
Fillingham, J.5
Chu, C.S.6
Schuldiner, M.7
Gebbia, M.8
Recht, J.9
Shales, M.10
Ding, H.11
Xu, H.12
Han, J.13
Ingvarsdottir, K.14
Cheng, B.15
Andrews, B.16
Boone, C.17
Berger, S.L.18
Hieter, P.19
Zhang, Z.20
Brown, G.W.21
Ingles, C.J.22
Emili, A.23
Allis, C.D.24
Toczyski, D.P.25
Weissman, J.S.26
Greenblatt, J.F.27
Krogan, N.J.28
more..
-
59
-
-
44449135980
-
Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles
-
Decourty L, Saveanu C, Zemam K, Hantraye F, Frachon E, Rousselle JC, Fromont-Racine M, Jacquier A. 2008. Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles. Proc. Natl. Acad. Sci. U. S. A. 105:5821-5826. http://dx.doi.org/10.1073/pnas.0710533105.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 5821-5826
-
-
Decourty, L.1
Saveanu, C.2
Zemam, K.3
Hantraye, F.4
Frachon, E.5
Rousselle, J.C.6
Fromont-Racine, M.7
Jacquier, A.8
-
60
-
-
84866378510
-
An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks
-
Hegnauer AM, Hustedt N, Shimada K, Pike BL, Vogel M, Amsler P, Rubin SM, van Leeuwen F, Guenole A, van Attikum H, Thoma NH, Gasser SM. 2012. An N-terminal acidic region of Sgs1 interacts with Rpa70 and recruits Rad53 kinase to stalled forks. EMBO J. 31:3768-3783. http://dx.doi.org/10.1038/emboj.2012.195.
-
(2012)
EMBO J.
, vol.31
, pp. 3768-3783
-
-
Hegnauer, A.M.1
Hustedt, N.2
Shimada, K.3
Pike, B.L.4
Vogel, M.5
Amsler, P.6
Rubin, S.M.7
van Leeuwen, F.8
Guenole, A.9
van Attikum, H.10
Thoma, N.H.11
Gasser, S.M.12
-
61
-
-
28044431820
-
Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae
-
Ii M, Brill SJ. 2005. Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae. Curr. Genet. 48:213-225. http://dx.doi.org/10.1007/s00294-005-0014-5.
-
(2005)
Curr. Genet.
, vol.48
, pp. 213-225
-
-
Ii, M.1
Brill, S.J.2
-
62
-
-
10744230485
-
Global mapping of the yeast genetic interaction network
-
Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C. 2004. Global mapping of the yeast genetic interaction network. Science 303:808-813. http://dx.doi.org/10.1126/science.1091317.
-
(2004)
Science
, vol.303
, pp. 808-813
-
-
Tong, A.H.1
Lesage, G.2
Bader, G.D.3
Ding, H.4
Xu, H.5
Xin, X.6
Young, J.7
Berriz, G.F.8
Brost, R.L.9
Chang, M.10
Chen, Y.11
Cheng, X.12
Chua, G.13
Friesen, H.14
Goldberg, D.S.15
Haynes, J.16
Humphries, C.17
He, G.18
Hussein, S.19
Ke, L.20
Krogan, N.21
Li, Z.22
Levinson, J.N.23
Lu, H.24
Menard, P.25
Munyana, C.26
Parsons, A.B.27
Ryan, O.28
Tonikian, R.29
Roberts, T.30
Sdicu, A.M.31
Shapiro, J.32
Sheikh, B.33
Suter, B.34
Wong, S.L.35
Zhang, L.V.36
Zhu, H.37
Burd, C.G.38
Munro, S.39
Sander, C.40
Rine, J.41
Greenblatt, J.42
Peter, M.43
Bretscher, A.44
Bell, G.45
Roth, F.P.46
Brown, G.W.47
Andrews, B.48
Bussey, H.49
Boone, C.50
more..
-
63
-
-
56849094282
-
A genetic interaction map of RNAprocessing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing
-
Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H, Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, Ideker T, Guthrie C, Krogan NJ. 2008. A genetic interaction map of RNAprocessing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell 32:735-746. http://dx.doi.org/10.1016/j.molcel.2008.11.012.
-
(2008)
Mol. Cell
, vol.32
, pp. 735-746
-
-
Wilmes, G.M.1
Bergkessel, M.2
Bandyopadhyay, S.3
Shales, M.4
Braberg, H.5
Cagney, G.6
Collins, S.R.7
Whitworth, G.B.8
Kress, T.L.9
Weissman, J.S.10
Ideker, T.11
Guthrie, C.12
Krogan, N.J.13
-
64
-
-
33845337082
-
Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
-
Enserink JM, Smolka MB, Zhou H, Kolodner RD. 2006. Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J. Cell Biol. 175:729-741. http://dx.doi.org/10.1083/jcb.200605080.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 729-741
-
-
Enserink, J.M.1
Smolka, M.B.2
Zhou, H.3
Kolodner, R.D.4
-
65
-
-
0037168658
-
Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
-
Fabre F, Chan A, Heyer WD, GangloffS. 2002. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl. Acad. Sci. U. S. A. 99:16887-16892. http://dx.doi.org/10.1073/pnas.252652399.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 16887-16892
-
-
Fabre, F.1
Chan, A.2
Heyer, W.D.3
Gangloff, S.4
-
66
-
-
33745845186
-
Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance
-
Hishida T, Ohya T, Kubota Y, Kamada Y, Shinagawa H. 2006. Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance. Mol. Cell. Biol. 26:5509-5517. http://dx.doi.org/10.1128/MCB.00307-06.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 5509-5517
-
-
Hishida, T.1
Ohya, T.2
Kubota, Y.3
Kamada, Y.4
Shinagawa, H.5
-
67
-
-
0031858054
-
Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I
-
Kaufman PD, Cohen JL, Osley MA. 1998. Hir proteins are required for position-dependent gene silencing in Saccharomyces cerevisiae in the absence of chromatin assembly factor I. Mol. Cell. Biol. 18:4793-4806.
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 4793-4806
-
-
Kaufman, P.D.1
Cohen, J.L.2
Osley, M.A.3
-
68
-
-
0242298316
-
DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray
-
Ooi SL, Shoemaker DD, Boeke JD. 2003. DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat. Genet. 35:277-286. http://dx.doi.org/10.1038/ng1258.
-
(2003)
Nat. Genet.
, vol.35
, pp. 277-286
-
-
Ooi, S.L.1
Shoemaker, D.D.2
Boeke, J.D.3
-
69
-
-
33845335815
-
Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants
-
Schmidt KH, Kolodner RD. 2006. Suppression of spontaneous genome rearrangements in yeast DNA helicase mutants. Proc. Natl. Acad. Sci. U. S. A. 103:18196-18201. http://dx.doi.org/10.1073/pnas.0608566103.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 18196-18201
-
-
Schmidt, K.H.1
Kolodner, R.D.2
-
70
-
-
0036812236
-
Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae
-
Shor E, GangloffS, Wagner M, Weinstein J, Price G, Rothstein R. 2002. Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae. Genetics 162:647-662.
-
(2002)
Genetics
, vol.162
, pp. 647-662
-
-
Shor, E.1
Gangloff, S.2
Wagner, M.3
Weinstein, J.4
Price, G.5
Rothstein, R.6
-
71
-
-
0037108948
-
Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage
-
Vance JR, Wilson TE. 2002. Yeast Tdp1 and Rad1-Rad10 function as redundant pathways for repairing Top1 replicative damage. Proc. Natl. Acad. Sci. U. S. A. 99:13669-13674. http://dx.doi.org/10.1073/pnas.202242599.
-
(2002)
Proc. Natl. Acad. Sci. U. S. A.
, vol.99
, pp. 13669-13674
-
-
Vance, J.R.1
Wilson, T.E.2
-
72
-
-
84855881475
-
RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA
-
Lazzaro F, Novarina D, Amara F, Watt DL, Stone JE, Costanzo V, Burgers PM, Kunkel TA, Plevani P, Muzi-Falconi M. 2012. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol. Cell 45:99-110. http://dx.doi.org/10.1016/j.molcel.2011.12.019.
-
(2012)
Mol. Cell
, vol.45
, pp. 99-110
-
-
Lazzaro, F.1
Novarina, D.2
Amara, F.3
Watt, D.L.4
Stone, J.E.5
Costanzo, V.6
Burgers, P.M.7
Kunkel, T.A.8
Plevani, P.9
Muzi-Falconi, M.10
-
73
-
-
0025316170
-
An essential Saccharomyces cerevisiae single-strandedDNAbinding protein is homologous to the large subunit of human RP-A
-
Heyer WD, Rao MR, Erdile LF, Kelly TJ, Kolodner RD. 1990. An essential Saccharomyces cerevisiae single-strandedDNAbinding protein is homologous to the large subunit of human RP-A. EMBO J. 9:2321-2329.
-
(1990)
EMBO J.
, vol.9
, pp. 2321-2329
-
-
Heyer, W.D.1
Rao, M.R.2
Erdile, L.F.3
Kelly, T.J.4
Kolodner, R.D.5
-
74
-
-
0038095203
-
The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression
-
Zettel MF, Garza LR, Cass AM, Myhre RA, Haizlip LA, Osadebe SN, Sudimack DW, Pathak R, Stone TL, Polymenis M. 2003. The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression. FEMS Microbiol. Lett. 223:253-258. http://dx.doi.org/10.1016/S0378-1097(03)00384-7.
-
(2003)
FEMS Microbiol. Lett.
, vol.223
, pp. 253-258
-
-
Zettel, M.F.1
Garza, L.R.2
Cass, A.M.3
Myhre, R.A.4
Haizlip, L.A.5
Osadebe, S.N.6
Sudimack, D.W.7
Pathak, R.8
Stone, T.L.9
Polymenis, M.10
-
75
-
-
0034119866
-
Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases
-
GangloffS, Soustelle C, Fabre F. 2000. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat. Genet. 25:192-194. http://dx.doi.org/10.1038/76055.
-
(2000)
Nat. Genet.
, vol.25
, pp. 192-194
-
-
Gangloff, S.1
Soustelle, C.2
Fabre, F.3
-
76
-
-
1642309305
-
Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities
-
Torres JZ, Schnakenberg SL, Zakian VA. 2004. Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol. Cell. Biol. 24:3198-3212. http://dx.doi.org/10.1128/MCB.24.8.3198-3212.2004.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3198-3212
-
-
Torres, J.Z.1
Schnakenberg, S.L.2
Zakian, V.A.3
-
77
-
-
0035830498
-
Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
-
Myung K, Datta A, Kolodner RD. 2001. Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104:397-408. http://dx.doi.org/10.1016/S0092-8674(01)00227-6.
-
(2001)
Cell
, vol.104
, pp. 397-408
-
-
Myung, K.1
Datta, A.2
Kolodner, R.D.3
-
78
-
-
0033518179
-
The RCAF complex mediates chromatin assembly duringDNA replication and repair
-
Tyler JK, Adams CR, Chen SR, Kobayashi R, Kamakaka RT, Kadonaga JT. 1999. The RCAF complex mediates chromatin assembly duringDNA replication and repair. Nature 402:555-560. http://dx.doi.org/10.1038/990147.
-
(1999)
Nature
, vol.402
, pp. 555-560
-
-
Tyler, J.K.1
Adams, C.R.2
Chen, S.R.3
Kobayashi, R.4
Kamakaka, R.T.5
Kadonaga, J.T.6
-
79
-
-
0032712707
-
A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59
-
Bai Y, Davis AP, Symington LS. 1999. A novel allele of RAD52 that causes severe DNA repair and recombination deficiencies only in the absence of RAD51 or RAD59. Genetics 153:1117-1130.
-
(1999)
Genetics
, vol.153
, pp. 1117-1130
-
-
Bai, Y.1
Davis, A.P.2
Symington, L.S.3
-
80
-
-
33646120588
-
Esc4/Rtt107 and the control of recombination during replication
-
Chin JK, Bashkirov VI, Heyer WD, Romesberg FE. 2006. Esc4/Rtt107 and the control of recombination during replication. DNA Repair 5:618-628. http://dx.doi.org/10.1016/j.dnarep.2006.02.005.
-
(2006)
DNA Repair
, vol.5
, pp. 618-628
-
-
Chin, J.K.1
Bashkirov, V.I.2
Heyer, W.D.3
Romesberg, F.E.4
-
81
-
-
84866058758
-
The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats
-
Mazon G, Lam AF, Ho CK, Kupiec M, Symington LS. 2012. The Rad1-Rad10 nuclease promotes chromosome translocations between dispersed repeats. Nat. Struct. Mol. Biol. 19:964-971. http://dx.doi.org/10.1038/nsmb.2359.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 964-971
-
-
Mazon, G.1
Lam, A.F.2
Ho, C.K.3
Kupiec, M.4
Symington, L.S.5
-
82
-
-
53649104599
-
Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing
-
Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455:770-774. http://dx.doi.org/10.1038/nature07312.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
83
-
-
77953208583
-
Post-replication repair suppresses duplication-mediated genome instability
-
Putnam CD, Hayes TK, Kolodner RD. 2010. Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet. 6:e1000933. http://dx.doi.org/10.1371/journal.pgen.1000933.
-
(2010)
PLoS Genet.
, vol.6
-
-
Putnam, C.D.1
Hayes, T.K.2
Kolodner, R.D.3
-
84
-
-
0037068455
-
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
-
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135-141. http://dx.doi.org/10.1038/nature00991.
-
(2002)
Nature
, vol.419
, pp. 135-141
-
-
Hoege, C.1
Pfander, B.2
Moldovan, G.L.3
Pyrowolakis, G.4
Jentsch, S.5
-
85
-
-
48149093617
-
Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications
-
Hwang JY, Smith S, Ceschia A, Torres-Rosell J, Aragon L, Myung K. 2008. Smc5-Smc6 complex suppresses gross chromosomal rearrangements mediated by break-induced replications. DNA Repair 7:1426-1436. http://dx.doi.org/10.1016/j.dnarep.2008.05.006.
-
(2008)
DNA Repair
, vol.7
, pp. 1426-1436
-
-
Hwang, J.Y.1
Smith, S.2
Ceschia, A.3
Torres-Rosell, J.4
Aragon, L.5
Myung, K.6
-
86
-
-
78649451417
-
Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection
-
Paull TT. 2010. Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair 9:1283-1291. http://dx.doi.org/10.1016/j.dnarep.2010.09.015.
-
(2010)
DNA Repair
, vol.9
, pp. 1283-1291
-
-
Paull, T.T.1
-
87
-
-
65249118311
-
The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair
-
Sollier J, Driscoll R, Castellucci F, Foiani M, Jackson SP, Branzei D. 2009. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol. Biol. Cell 20: 1671-1682. http://dx.doi.org/10.1091/mbc. E08-08-0875.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1671-1682
-
-
Sollier, J.1
Driscoll, R.2
Castellucci, F.3
Foiani, M.4
Jackson, S.P.5
Branzei, D.6
-
88
-
-
79957512884
-
Rtt107 phosphorylation promotes localisation to DNA double-stranded breaks (DSBs) and recombinational repair between sister chromatids
-
Ullal P, Vilella-Mitjana F, Jarmuz A, Aragon L. 2011. Rtt107 phosphorylation promotes localisation to DNA double-stranded breaks (DSBs) and recombinational repair between sister chromatids. PLoS One 6:e20152. http://dx.doi.org/10.1371/journal.pone.0020152.
-
(2011)
PLoS One
, vol.6
-
-
Ullal, P.1
Vilella-Mitjana, F.2
Jarmuz, A.3
Aragon, L.4
-
89
-
-
10344263324
-
Recombination proteins in yeast
-
Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu. Rev. Genet. 38:233-271. http://dx.doi.org/10.1146/annurev.genet.38.072902.091500.
-
(2004)
Annu. Rev. Genet.
, vol.38
, pp. 233-271
-
-
Krogh, B.O.1
Symington, L.S.2
-
90
-
-
18844449401
-
The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae
-
Hwang JY, Smith S, Myung K. 2005. The Rad1-Rad10 complex promotes the production of gross chromosomal rearrangements from spontaneous DNA damage in Saccharomyces cerevisiae. Genetics 169:1927-1937. http://dx.doi.org/10.1534/genetics.104.039768.
-
(2005)
Genetics
, vol.169
, pp. 1927-1937
-
-
Hwang, J.Y.1
Smith, S.2
Myung, K.3
-
91
-
-
70349329465
-
The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants
-
Kats ES, Enserink JM, Martinez S, Kolodner RD. 2009. The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol. Cell. Biol. 29:5226-5237. http://dx.doi.org/10.1128/MCB.00894-09.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 5226-5237
-
-
Kats, E.S.1
Enserink, J.M.2
Martinez, S.3
Kolodner, R.D.4
-
92
-
-
52149118942
-
The RAD5-dependent postreplication repair pathway is important to suppress gross chromosomal rearrangements
-
Myung K, Smith S. 2008. The RAD5-dependent postreplication repair pathway is important to suppress gross chromosomal rearrangements. J. Nat. Cancer Inst. Monogr. 2008(39):12-15. http://dx.doi.org/10.1093/jncimonographs/lgn019.
-
(2008)
J. Nat. Cancer Inst. Monogr.
, vol.2008
, Issue.39
, pp. 12-15
-
-
Myung, K.1
Smith, S.2
-
93
-
-
35148847451
-
Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression
-
Blastyak A, Pinter L, Unk I, Prakash L, Prakash S, Haracska L. 2007. Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28:167-175. http://dx.doi.org/10.1016/j.molcel.2007.07.030.
-
(2007)
Mol. Cell
, vol.28
, pp. 167-175
-
-
Blastyak, A.1
Pinter, L.2
Unk, I.3
Prakash, L.4
Prakash, S.5
Haracska, L.6
-
94
-
-
84892431829
-
Checkpoint kinases regulate a global network of transcription factors in response to DNA damage
-
Jaehnig EJ, Kuo D, Hombauer H, Ideker TG, Kolodner RD. 2013. Checkpoint kinases regulate a global network of transcription factors in response to DNA damage. Cell Rep. 4:174-188. http://dx.doi.org/10.1016/j.celrep.2013.05.041.
-
(2013)
Cell Rep.
, vol.4
, pp. 174-188
-
-
Jaehnig, E.J.1
Kuo, D.2
Hombauer, H.3
Ideker, T.G.4
Kolodner, R.D.5
-
95
-
-
47549105301
-
Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair
-
Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, Linger J, Tyler JK. 2008. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134: 231-243. http://dx.doi.org/10.1016/j.cell.2008.06.035.
-
(2008)
Cell
, vol.134
, pp. 231-243
-
-
Chen, C.C.1
Carson, J.J.2
Feser, J.3
Tamburini, B.4
Zabaronick, S.5
Linger, J.6
Tyler, J.K.7
-
96
-
-
59049094825
-
Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete
-
Kim JA, Haber JE. 2009. Chromatin assembly factors Asf1 and CAF-1 have overlapping roles in deactivating the DNA damage checkpoint when DNA repair is complete. Proc. Natl. Acad. Sci. U. S. A. 106:1151-1156. http://dx.doi.org/10.1073/pnas.0812578106.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 1151-1156
-
-
Kim, J.A.1
Haber, J.E.2
-
97
-
-
84876390863
-
MRX protects fork integrity at protein- DNA barriers, and its absence causes checkpoint activation dependent on chromatin context
-
Bentsen IB, Nielsen I, Lisby M, Nielsen HB, Gupta SS, Mundbjerg K, Andersen AH, Bjergbaek L. 2013. MRX protects fork integrity at protein- DNA barriers, and its absence causes checkpoint activation dependent on chromatin context. Nucleic Acids Res. 41:3173-3189. http://dx.doi.org/10.1093/nar/gkt051.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 3173-3189
-
-
Bentsen, I.B.1
Nielsen, I.2
Lisby, M.3
Nielsen, H.B.4
Gupta, S.S.5
Mundbjerg, K.6
Andersen, A.H.7
Bjergbaek, L.8
-
98
-
-
79952694801
-
RAD51-independent inverted-repeat recombination by a strand-annealing mechanism
-
Mott C, Symington LS. 2011. RAD51-independent inverted-repeat recombination by a strand-annealing mechanism. DNA Repair 10:408-415. http://dx.doi.org/10.1016/j.dnarep.2011.01.007.
-
(2011)
DNA Repair
, vol.10
, pp. 408-415
-
-
Mott, C.1
Symington, L.S.2
-
99
-
-
65249090885
-
Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae
-
Mankouri HW, Ngo HP, Hickson ID. 2009. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 20:1683-1694. http://dx.doi.org/10.1091/mbc. E08-08-0877.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1683-1694
-
-
Mankouri, H.W.1
Ngo, H.P.2
Hickson, I.D.3
-
100
-
-
77954186960
-
The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae
-
Choi K, Szakal B, Chen YH, Branzei D, Zhao X. 2010. The Smc5/6 complex and Esc2 influence multiple replication-associated recombination processes in Saccharomyces cerevisiae. Mol. Biol. Cell 21:2306-2314. http://dx.doi.org/10.1091/mbc. E10-01-0050.
-
(2010)
Mol. Biol. Cell
, vol.21
, pp. 2306-2314
-
-
Choi, K.1
Szakal, B.2
Chen, Y.H.3
Branzei, D.4
Zhao, X.5
-
101
-
-
3042546122
-
Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1
-
Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE. 2004. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc. Natl. Acad. Sci. U. S. A. 101:9315-9320. http://dx.doi.org/10.1073/pnas.0305749101.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 9315-9320
-
-
Sugawara, N.1
Goldfarb, T.2
Studamire, B.3
Alani, E.4
Haber, J.E.5
-
102
-
-
23744455164
-
Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability
-
Li X, Manley JL. 2005. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365-378. http://dx.doi.org/10.1016/j.cell.2005.06.008.
-
(2005)
Cell
, vol.122
, pp. 365-378
-
-
Li, X.1
Manley, J.L.2
-
103
-
-
79955993911
-
PCNA directs type 2 RNase H activity on DNA replication and repair substrates
-
Bubeck D, Reijns MA, Graham SC, Astell KR, Jones EY, Jackson AP. 2011. PCNA directs type 2 RNase H activity on DNA replication and repair substrates. Nucleic Acids Res. 39:3652-3666. http://dx.doi.org/10.1093/nar/gkq980.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 3652-3666
-
-
Bubeck, D.1
Reijns, M.A.2
Graham, S.C.3
Astell, K.R.4
Jones, E.Y.5
Jackson, A.P.6
|