메뉴 건너뛰기




Volumn 51, Issue 4, 2013, Pages 249-264

Crosstalk between autophagy and proteasome protein degradation systems: Possible implications for cancer therapy

Author keywords

Aggresomes; ATF4; Autophagy; Cancer; LC3; MTOR; Proteasome inhibitors; Ubiquitin Proteasomes System; Unfolded Protein Response

Indexed keywords

ANIMALS; AUTOPHAGY; HUMANS; NEOPLASMS; PROTEASOME ENDOPEPTIDASE COMPLEX; PROTEASOME INHIBITORS; PROTEOLYSIS;

EID: 84893491874     PISSN: 02398508     EISSN: 18975631     Source Type: Journal    
DOI: 10.5603/FHC.2013.0036     Document Type: Review
Times cited : (59)

References (144)
  • 1
    • 0022988477 scopus 로고
    • The ubiquitin pathway for the degradation of intracellular proteins
    • Hershko A, Ciechanover A. The ubiquitin pathway for the degradation of intracellular proteins. Prog Nucleic Acid Res Mol Biol. 1986;33:19-56.
    • (1986) Prog Nucleic Acid Res Mol Biol. , vol.33 , pp. 19-56
    • Hershko, A.1    Ciechanover, A.2
  • 2
    • 9744227183 scopus 로고    scopus 로고
    • Ubiquitin: Structures, functions, mechanisms
    • Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004;1695:55-72.
    • (2004) Biochim Biophys Acta. , vol.1695 , pp. 55-72
    • Pickart, C.M.1    Eddins, M.J.2
  • 3
    • 77955493107 scopus 로고    scopus 로고
    • Mechanisms of mono-and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine
    • Sadowski M, Sarcevic B. Mechanisms of mono-and poly-ubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Div. 2010;5:19.
    • (2010) Cell Div. , vol.5 , pp. 19
    • Sadowski, M.1    Sarcevic, B.2
  • 4
    • 34248379575 scopus 로고    scopus 로고
    • Ubiquitin and ubiquitin-like proteins in protein regulation
    • Herrmann J, Lerman LO, Lerman A. Ubiquitin and ubiquitin-like proteins in protein regulation. Circ Res. 2007;100:1276-1291.
    • (2007) Circ Res. , vol.100 , pp. 1276-1291
    • Herrmann, J.1    Lerman, L.O.2    Lerman, A.3
  • 5
    • 84878934964 scopus 로고    scopus 로고
    • Ubiquitin ligases and cell cycle control
    • Teixeira LK, Reed SI. Ubiquitin ligases and cell cycle control. Annu Rev Biochem. 2013;82:387-414.
    • (2013) Annu Rev Biochem. , vol.82 , pp. 387-414
    • Teixeira, L.K.1    Reed, S.I.2
  • 6
    • 82755187338 scopus 로고    scopus 로고
    • Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting
    • Ciechanover A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting. Biochim Biophys Acta. 2012;1824:3-13.
    • (2012) Biochim Biophys Acta. , vol.1824 , pp. 3-13
    • Ciechanover, A.1
  • 7
    • 0142199959 scopus 로고    scopus 로고
    • Feeding the machine: Mechanisms of proteasomecatalyzed degradation of ubiquitinated proteins
    • Crews CM. Feeding the machine: mechanisms of proteasomecatalyzed degradation of ubiquitinated proteins. Curr Opin Chem Biol. 2003;7:534-539.
    • (2003) Curr Opin Chem Biol. , vol.7 , pp. 534-539
    • Crews, C.M.1
  • 8
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll M, Ditzel L, Lowe J et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature. 1997;386:463-471.
    • (1997) Nature. , vol.386 , pp. 463-471
    • Groll, M.1    Ditzel, L.2    Lowe, J.3
  • 10
    • 84893448098 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system and models of Parkinson's disease
    • McNaught KS, Olanow W. The ubiquitin-proteasome system and models of Parkinson's disease. Movement Disorders. 2004;19:S2-S3.
    • (2004) Movement Disorders. , vol.19
    • McNaught, K.S.1    Olanow, W.2
  • 11
    • 33750946999 scopus 로고    scopus 로고
    • Narrative review: Protein degradation and human diseases: The ubiquitin connection
    • Reinstein E, Ciechanover A. Narrative review: protein degradation and human diseases: the ubiquitin connection. Ann Intern Med. 2006;145:676-684.
    • (2006) Ann Intern Med. , vol.145 , pp. 676-684
    • Reinstein, E.1    Ciechanover, A.2
  • 13
    • 84858142724 scopus 로고    scopus 로고
    • HECT and RING finger families of E3 ubiquitin ligases at a glance
    • Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of E3 ubiquitin ligases at a glance. J Cell Sci. 2012;125:531-537.
    • (2012) J Cell Sci. , vol.125 , pp. 531-537
    • Metzger, M.B.1    Hristova, V.A.2    Weissman, A.M.3
  • 14
    • 84875981508 scopus 로고    scopus 로고
    • Role of ubiquitin ligases and the proteasome in oncogenesis: Novel targets for anticancer therapies
    • Micel LN, Tentler JJ, Smith PG et al. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol. 2013;31:1231-1238.
    • (2013) J Clin Oncol. , vol.31 , pp. 1231-1238
    • Micel, L.N.1    Tentler, J.J.2    Smith, P.G.3
  • 15
    • 0034641615 scopus 로고    scopus 로고
    • Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex
    • Kamura T, Sato S, Iwai K et al. Activation of HIF1alpha ubiquitination by a reconstituted von Hippel-Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A. 2000;97:10430-10435.
    • (2000) Proc Natl Acad Sci U S A. , vol.97 , pp. 10430-10435
    • Kamura, T.1    Sato, S.2    Iwai, K.3
  • 16
    • 0034663894 scopus 로고    scopus 로고
    • Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein
    • Tanimoto K, Makino Y, Pereira T et al. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J. 2000;19:4298-4309.
    • (2000) EMBO J. , vol.19 , pp. 4298-4309
    • Tanimoto, K.1    Makino, Y.2    Pereira, T.3
  • 17
    • 0027771443 scopus 로고
    • Structural features of the 26 S proteasome complex
    • Peters JM, Cejka Z, Harris JR et al. Structural features of the 26 S proteasome complex. J Mol Biol. 1993;234:932-937.
    • (1993) J Mol Biol. , vol.234 , pp. 932-937
    • Peters, J.M.1    Cejka, Z.2    Harris, J.R.3
  • 18
    • 0026786503 scopus 로고
    • Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex
    • Vinitsky A, Michaud C, Powers JC et al. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry. 1992;31:9421-9428.
    • (1992) Biochemistry. , vol.31 , pp. 9421-9428
    • Vinitsky, A.1    Michaud, C.2    Powers, J.C.3
  • 19
    • 77949439403 scopus 로고    scopus 로고
    • Proteasome inhibitors: Recent advances and new perspectives in medicinal chemistry
    • Genin E, Reboud-Ravaux M, Vidal J. Proteasome inhibitors: recent advances and new perspectives in medicinal chemistry. Curr Top Med Chem. 2010;10:232-256.
    • (2010) Curr Top Med Chem. , vol.10 , pp. 232-256
    • Genin, E.1    Reboud-Ravaux, M.2    Vidal, J.3
  • 20
    • 84890437830 scopus 로고    scopus 로고
    • Development of Proteasome Inhibitors as Therapeutic Drugs
    • Pellom ST Jr., Shanker A. Development of Proteasome Inhibitors as Therapeutic Drugs. J Clin Cell Immunol. 2012;S5:5.
    • (2012) J Clin Cell Immunol.
    • Pellom Jr., S.T.1    Shanker, A.2
  • 21
    • 77952420148 scopus 로고    scopus 로고
    • Proteasome inhibition: A new therapeutic strategy to cancer treatment
    • Wu WK, Cho CH, Lee CW et al. Proteasome inhibition: a new therapeutic strategy to cancer treatment. Cancer Lett. 2010;293:15-22.
    • (2010) Cancer Lett. , vol.293 , pp. 15-22
    • Wu, W.K.1    Cho, C.H.2    Lee, C.W.3
  • 22
    • 4544337315 scopus 로고    scopus 로고
    • Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design
    • Furet P, Imbach P, Noorani M et al. Entry into a new class of potent proteasome inhibitors having high antiproliferative activity by structure-based design. J Med Chem. 2004;47:4810-4813.
    • (2004) J Med Chem. , vol.47 , pp. 4810-4813
    • Furet, P.1    Imbach, P.2    Noorani, M.3
  • 24
    • 84868503037 scopus 로고    scopus 로고
    • Bortezomib/ proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells
    • Selimovic D, Porzig BB, El-Khattouti A et al. Bortezomib/ proteasome inhibitor triggers both apoptosis and autophagy-dependent pathways in melanoma cells. Cell Signal. 2013;25:308-318.
    • (2013) Cell Signal. , vol.25 , pp. 308-318
    • Selimovic, D.1    Porzig, B.B.2    El-Khattouti, A.3
  • 25
    • 0032885416 scopus 로고    scopus 로고
    • The proteasome inhibitor PS-341 in cancer therapy
    • Teicher BA, Ara G, Herbst R et al. The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res. 1999;5:2638-2645.
    • (1999) Clin Cancer Res. , vol.5 , pp. 2638-2645
    • Teicher, B.A.1    Ara, G.2    Herbst, R.3
  • 26
    • 33644845743 scopus 로고    scopus 로고
    • Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome
    • Groll M, Berkers CR, Ploegh HL et al. Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure. 2006;14:451-456.
    • (2006) Structure. , vol.14 , pp. 451-456
    • Groll, M.1    Berkers, C.R.2    Ploegh, H.L.3
  • 27
    • 84877996248 scopus 로고    scopus 로고
    • Clinical and marketed proteasome inhibitors for cancer treatment
    • Zhang J, Wu P, Hu Y. Clinical and marketed proteasome inhibitors for cancer treatment. Curr Med Chem. 2013;20:2537-2551.
    • (2013) Curr Med Chem. , vol.20 , pp. 2537-2551
    • Zhang, J.1    Wu, P.2    Hu, Y.3
  • 28
    • 84862180074 scopus 로고    scopus 로고
    • Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor
    • Qureshi AA, Guan XQ, Reis JC et al. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor. Lipids Health Dis. 2012;11:76.
    • (2012) Lipids Health Dis. , vol.11 , pp. 76
    • Qureshi, A.A.1    Guan, X.Q.2    Reis, J.C.3
  • 29
    • 78751706756 scopus 로고    scopus 로고
    • Resveratrol and cellular mechanisms of cancer prevention
    • Shukla Y, Singh R. Resveratrol and cellular mechanisms of cancer prevention. Ann N Y Acad Sci. 2011;1215:1-8.
    • (2011) Ann N Y Acad Sci. , vol.1215 , pp. 1-8
    • Shukla, Y.1    Singh, R.2
  • 30
    • 84871899963 scopus 로고    scopus 로고
    • A berry thought-provoking idea: The potential role of plant polyphenols in the treatment of age-related cognitive disorders
    • Cherniack EP. A berry thought-provoking idea: the potential role of plant polyphenols in the treatment of age-related cognitive disorders. Br J Nutr. 2012;108:794-800.
    • (2012) Br J Nutr. , vol.108 , pp. 794-800
    • Cherniack, E.P.1
  • 31
    • 78649833857 scopus 로고    scopus 로고
    • Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells
    • Chen RJ, Ho CT, Wang YJ. Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Mol Nutr Food Res. 2010;54:1819-1832.
    • (2010) Mol Nutr Food Res. , vol.54 , pp. 1819-1832
    • Chen, R.J.1    Ho, C.T.2    Wang, Y.J.3
  • 32
    • 70349316711 scopus 로고    scopus 로고
    • The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells
    • Li J, Qin Z, Liang Z. The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells. BMC Cancer. 2009;9:215.
    • (2009) BMC Cancer. , vol.9 , pp. 215
    • Li, J.1    Qin, Z.2    Liang, Z.3
  • 33
    • 82855170845 scopus 로고    scopus 로고
    • Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation
    • Mauthe M, Jacob A, Freiberger S et al. Resveratrol-mediated autophagy requires WIPI-1-regulated LC3 lipidation in the absence of induced phagophore formation. Autophagy. 2011;7:1448-1461.
    • (2011) Autophagy. , vol.7 , pp. 1448-1461
    • Mauthe, M.1    Jacob, A.2    Freiberger, S.3
  • 34
    • 77955743270 scopus 로고    scopus 로고
    • Resveratrol-induced autophagy in human U373 glioma cells
    • Yamamoto M, Suzuki SO, Himeno M. Resveratrol-induced autophagy in human U373 glioma cells. Oncol Lett. 2010;1:489-493.
    • (2010) Oncol Lett. , vol.1 , pp. 489-493
    • Yamamoto, M.1    Suzuki, S.O.2    Himeno, M.3
  • 35
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069-1075.
    • (2008) Nature. , vol.451 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3    Klionsky, D.J.4
  • 36
  • 37
    • 56249138284 scopus 로고    scopus 로고
    • Liaisons dangereuses: Autophagy, neuronal survival and neurodegeneration
    • Tooze SA, Schiavo G. Liaisons dangereuses: autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol. 2008;18:504-515.
    • (2008) Curr Opin Neurobiol. , vol.18 , pp. 504-515
    • Tooze, S.A.1    Schiavo, G.2
  • 38
    • 77949915406 scopus 로고    scopus 로고
    • AMPK-independent induction of autophagy by cytosolic Ca2+ increase
    • Grotemeier A, Alers S, Pfisterer SG et al. AMPK-independent induction of autophagy by cytosolic Ca2+ increase. Cell Signal. 2010;22:914-925.
    • (2010) Cell Signal. , vol.22 , pp. 914-925
    • Grotemeier, A.1    Alers, S.2    Pfisterer, S.G.3
  • 39
    • 77950501014 scopus 로고    scopus 로고
    • mTOR regulation of autophagy
    • Jung CH, Ro SH, Cao J et al. mTOR regulation of autophagy. FEBS Lett. 2010;584:1287-1295.
    • (2010) FEBS Lett. , vol.584 , pp. 1287-1295
    • Jung, C.H.1    Ro, S.H.2    Cao, J.3
  • 40
    • 58149524838 scopus 로고    scopus 로고
    • ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression
    • Whitney ML, Jefferson LS, Kimball SR. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem Biophys Res Commun. 2009;379:451-455.
    • (2009) Biochem Biophys Res Commun. , vol.379 , pp. 451-455
    • Whitney, M.L.1    Jefferson, L.S.2    Kimball, S.R.3
  • 41
    • 0037178781 scopus 로고    scopus 로고
    • Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
    • Hara K, Maruki Y, Long X et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell. 2002;110:177-189.
    • (2002) Cell. , vol.110 , pp. 177-189
    • Hara, K.1    Maruki, Y.2    Long, X.3
  • 42
    • 33847397874 scopus 로고    scopus 로고
    • Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
    • Vander Haar E, Lee SI, Bandhakavi S et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol. 2007;9:316-323.
    • (2007) Nat Cell Biol. , vol.9 , pp. 316-323
    • Vander Haar, E.1    Lee, S.I.2    Bandhakavi, S.3
  • 43
    • 36448968532 scopus 로고    scopus 로고
    • FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
    • Zhao J, Brault JJ, Schild A et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell MeTable. 2007;6:472-483.
    • (2007) Cell MeTable. , vol.6 , pp. 472-483
    • Zhao, J.1    Brault, J.J.2    Schild, A.3
  • 44
    • 34347210090 scopus 로고    scopus 로고
    • Identification of Protor as a novel Rictor-binding component of mTOR complex-2
    • Pearce LR, Huang X, Boudeau J et al. Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J. 2007;405:513-522.
    • (2007) Biochem J. , vol.405 , pp. 513-522
    • Pearce, L.R.1    Huang, X.2    Boudeau, J.3
  • 45
    • 3342895823 scopus 로고    scopus 로고
    • Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
    • Sarbassov DD, Ali SM, Kim DH et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol. 2004;14:1296-1302.
    • (2004) Curr Biol. , vol.14 , pp. 1296-1302
    • Sarbassov, D.D.1    Ali, S.M.2    Kim, D.H.3
  • 46
    • 33749076673 scopus 로고    scopus 로고
    • SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
    • Jacinto E, Facchinetti V, Liu D et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell. 2006;127:125-137.
    • (2006) Cell. , vol.127 , pp. 125-137
    • Jacinto, E.1    Facchinetti, V.2    Liu, D.3
  • 47
    • 79960470913 scopus 로고    scopus 로고
    • mTOR complex 2 signaling and functions
    • Oh WJ, Jacinto E. mTOR complex 2 signaling and functions. Cell Cycle. 2011;10:2305-2316.
    • (2011) Cell Cycle. , vol.10 , pp. 2305-2316
    • Oh, W.J.1    Jacinto, E.2
  • 48
    • 77953726483 scopus 로고    scopus 로고
    • Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation
    • Polson HE, de Lartigue J, Rigden DJ et al. Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy. 2010;6:506-522.
    • (2010) Autophagy. , vol.6 , pp. 506-522
    • Polson, H.E.1    de Lartigue, J.2    Rigden, D.J.3
  • 49
    • 77950487987 scopus 로고    scopus 로고
    • Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems
    • Korolchuk VI, Menzies FM, Rubinsztein DC. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 2010;584:1393-1398.
    • (2010) FEBS Lett. , vol.584 , pp. 1393-1398
    • Korolchuk, V.I.1    Menzies, F.M.2    Rubinsztein, D.C.3
  • 50
    • 77951221542 scopus 로고    scopus 로고
    • The role of the Atg1/ULK1 complex in autophagy regulation
    • Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol. 2010;22:132-139.
    • (2010) Curr Opin Cell Biol. , vol.22 , pp. 132-139
    • Mizushima, N.1
  • 51
    • 33846204370 scopus 로고    scopus 로고
    • UVRAG: A new player in autophagy and tumor cell growth
    • Liang C, Feng P, Ku B et al. UVRAG: a new player in autophagy and tumor cell growth. Autophagy. 2007;3:69-71.
    • (2007) Autophagy. , vol.3 , pp. 69-71
    • Liang, C.1    Feng, P.2    Ku, B.3
  • 52
    • 0035809160 scopus 로고    scopus 로고
    • Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae
    • Kihara A, Noda T, Ishihara N et al. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol. 2001;152:519-530.
    • (2001) J Cell Biol. , vol.152 , pp. 519-530
    • Kihara, A.1    Noda, T.2    Ishihara, N.3
  • 53
    • 77950491704 scopus 로고    scopus 로고
    • New insights into the function of Atg9
    • Webber JL, Tooze SA. New insights into the function of Atg9. FEBS Lett. 2010;584:1319-1326.
    • (2010) FEBS Lett. , vol.584 , pp. 1319-1326
    • Webber, J.L.1    Tooze, S.A.2
  • 54
    • 84883235992 scopus 로고    scopus 로고
    • mTOR, AMBRA1, and autophagy: An intricate relationship
    • Nazio F, Cecconi F. mTOR, AMBRA1, and autophagy: an intricate relationship. Cell Cycle. 2013;12:2524-2525.
    • (2013) Cell Cycle. , vol.12 , pp. 2524-2525
    • Nazio, F.1    Cecconi, F.2
  • 55
    • 43149090064 scopus 로고    scopus 로고
    • FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
    • Hara T, Takamura A, Kishi C et al. FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol. 2008;181:497-510.
    • (2008) J Cell Biol. , vol.181 , pp. 497-510
    • Hara, T.1    Takamura, A.2    Kishi, C.3
  • 56
    • 78650328444 scopus 로고    scopus 로고
    • Autophagy basics
    • Tanida I. Autophagy basics. Microbiol Immunol. 2011;55:1-11.
    • (2011) Microbiol Immunol. , vol.55 , pp. 1-11
    • Tanida, I.1
  • 57
    • 70349644856 scopus 로고    scopus 로고
    • Atg101, a novel mammalian autophagy protein interacting with Atg13
    • Hosokawa N, Sasaki T, Iemura S et al. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy. 2009;5:973-979.
    • (2009) Autophagy. , vol.5 , pp. 973-979
    • Hosokawa, N.1    Sasaki, T.2    Iemura, S.3
  • 58
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Hosokawa N, Hara T, Kaizuka T et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981-1991.
    • (2009) Mol Biol Cell. , vol.20 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3
  • 59
    • 77955716131 scopus 로고    scopus 로고
    • DAP1, a novel substrate of mTOR, negatively regulates autophagy
    • Koren I, Reem E, Kimchi A. DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol. 2010;20:1093-1098.
    • (2010) Curr Biol. , vol.20 , pp. 1093-1098
    • Koren, I.1    Reem, E.2    Kimchi, A.3
  • 60
    • 0034329418 scopus 로고    scopus 로고
    • LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
    • Kabeya Y, Mizushima N, Ueno T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000;19:5720-5728.
    • (2000) EMBO J. , vol.19 , pp. 5720-5728
    • Kabeya, Y.1    Mizushima, N.2    Ueno, T.3
  • 61
    • 84869080400 scopus 로고    scopus 로고
    • LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy
    • von Muhlinen N, Akutsu M, Ravenhill BJ et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell. 2012;48:329-342.
    • (2012) Mol Cell. , vol.48 , pp. 329-342
    • von Muhlinen, N.1    Akutsu, M.2    Ravenhill, B.J.3
  • 63
    • 84859857694 scopus 로고    scopus 로고
    • VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma
    • Mikhaylova O, Stratton Y, Hall D et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell. 2012;21:532-546.
    • (2012) Cancer Cell. , vol.21 , pp. 532-546
    • Mikhaylova, O.1    Stratton, Y.2    Hall, D.3
  • 65
    • 84892147754 scopus 로고    scopus 로고
    • Autophagosome maturation and lysosomal fusion
    • Ganley IG. Autophagosome maturation and lysosomal fusion. Essays Biochem. 2013;55:65-78.
    • (2013) Essays Biochem. , vol.55 , pp. 65-78
    • Ganley, I.G.1
  • 66
    • 79952376730 scopus 로고    scopus 로고
    • Proteomic characterization of aggregating proteins after the inhibition of the ubiquitin proteasome system
    • Wilde IB, Brack M, Winget JM et al. Proteomic characterization of aggregating proteins after the inhibition of the ubiquitin proteasome system. J Proteome Res. 2011;10:1062-1072.
    • (2011) J Proteome Res. , vol.10 , pp. 1062-1072
    • Wilde, I.B.1    Brack, M.2    Winget, J.M.3
  • 67
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Komatsu M, Waguri S, Koike M et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007;131:1149-1163.
    • (2007) Cell. , vol.131 , pp. 1149-1163
    • Komatsu, M.1    Waguri, S.2    Koike, M.3
  • 68
    • 75149153425 scopus 로고    scopus 로고
    • Processing of autophagic protein LC3 by the 20S proteasome
    • Gao Z, Gammoh N, Wong PM et al. Processing of autophagic protein LC3 by the 20S proteasome. Autophagy. 2010;6:126-137.
    • (2010) Autophagy. , vol.6 , pp. 126-137
    • Gao, Z.1    Gammoh, N.2    Wong, P.M.3
  • 69
    • 84892611793 scopus 로고    scopus 로고
    • Inclusion body formation, macroautophagy, and the role of HDAC6 in neurodegeneration
    • Richter-Landsberg C, Leyk J. Inclusion body formation, macroautophagy, and the role of HDAC6 in neurodegeneration. Acta Neuropathol. 2013;126:793-807.
    • (2013) Acta Neuropathol. , vol.126 , pp. 793-807
    • Richter-Landsberg, C.1    Leyk, J.2
  • 70
    • 84884697823 scopus 로고    scopus 로고
    • SQSTM1/ p62 Interacts with HDAC6 and Regulates Deacetylase Activity
    • Yan J, Seibenhener ML, Calderilla-Barbosa L et al. SQSTM1/ p62 Interacts with HDAC6 and Regulates Deacetylase Activity. PLoS One. 2013;8:e76016.
    • (2013) PLoS One. , vol.8
    • Yan, J.1    Seibenhener, M.L.2    Calderilla-Barbosa, L.3
  • 71
    • 1642575075 scopus 로고    scopus 로고
    • TMC-95A, a reversible proteasome inhibitor, induces neurite outgrowth in PC12 cells
    • Inoue M, Zhai H, Sakazaki H et al. TMC-95A, a reversible proteasome inhibitor, induces neurite outgrowth in PC12 cells. Bioorg Med Chem Lett. 2004;14:663-665.
    • (2004) Bioorg Med Chem Lett. , vol.14 , pp. 663-665
    • Inoue, M.1    Zhai, H.2    Sakazaki, H.3
  • 72
    • 77953012647 scopus 로고    scopus 로고
    • Elucidation of the structure and intermolecular interactions of a reversible cyclic-peptide inhibitor of the proteasome by NMR spectroscopy and molecular modeling
    • Stauch B, Simon B, Basile T et al. Elucidation of the structure and intermolecular interactions of a reversible cyclic-peptide inhibitor of the proteasome by NMR spectroscopy and molecular modeling. Angew Chem Int Ed Engl. 2010;49:3934-3938.
    • (2010) Angew Chem Int Ed Engl. , vol.49 , pp. 3934-3938
    • Stauch, B.1    Simon, B.2    Basile, T.3
  • 73
    • 47349100951 scopus 로고    scopus 로고
    • Natural compounds with proteasome inhibitory activity for cancer prevention and treatment
    • Yang H, Landis-Piwowar KR, Chen D et al. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci. 2008;9:227-239.
    • (2008) Curr Protein Pept Sci. , vol.9 , pp. 227-239
    • Yang, H.1    Landis-Piwowar, K.R.2    Chen, D.3
  • 74
    • 84890448328 scopus 로고    scopus 로고
    • Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells
    • Zhang X, Li W, Wang C et al. Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol Cell Biochem. 2014;385:265-275.
    • (2014) Mol Cell Biochem. , vol.385 , pp. 265-275
    • Zhang, X.1    Li, W.2    Wang, C.3
  • 75
    • 34548299555 scopus 로고    scopus 로고
    • Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability
    • Ding WX, Ni HM, Gao W et al. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol. 2007;171:513-524.
    • (2007) Am J Pathol. , vol.171 , pp. 513-524
    • Ding, W.X.1    Ni, H.M.2    Gao, W.3
  • 76
    • 82355175279 scopus 로고    scopus 로고
    • Bortezomib induces autophagy in head and neck squamous cell carcinoma cells via JNK activation
    • Li C, Johnson DE. Bortezomib induces autophagy in head and neck squamous cell carcinoma cells via JNK activation. Cancer Lett. 2012;314:102-107.
    • (2012) Cancer Lett. , vol.314 , pp. 102-107
    • Li, C.1    Johnson, D.E.2
  • 77
    • 84887275715 scopus 로고    scopus 로고
    • Bortezomib induces apoptosis and autophagy in osteosarcoma cells through mitogen-activated protein kinase pathway in vitro
    • Lou Z, Ren T, Peng X et al. Bortezomib induces apoptosis and autophagy in osteosarcoma cells through mitogen-activated protein kinase pathway in vitro. J Int Med Res. 2013;41:1505-1519.
    • (2013) J Int Med Res. , vol.41 , pp. 1505-1519
    • Lou, Z.1    Ren, T.2    Peng, X.3
  • 78
    • 84873669786 scopus 로고    scopus 로고
    • Beclin 1 enhances proteasome inhibition-mediated cytotoxicity of thyroid cancer cells in macroautophagy-independent manner
    • Zhang HY, Du ZX, Meng X et al. Beclin 1 enhances proteasome inhibition-mediated cytotoxicity of thyroid cancer cells in macroautophagy-independent manner. J Clin Endocrinol MeTable. 2013;98:E217-226.
    • (2013) J Clin Endocrinol MeTable. , vol.98
    • Zhang, H.Y.1    Du, Z.X.2    Meng, X.3
  • 79
    • 48349087467 scopus 로고    scopus 로고
    • Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells
    • Wu WK, Wu YC, Yu L et al. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells. Biochem Biophys Res Commun. 2008;374:258-263.
    • (2008) Biochem Biophys Res Commun. , vol.374 , pp. 258-263
    • Wu, W.K.1    Wu, Y.C.2    Yu, L.3
  • 80
    • 67650445202 scopus 로고    scopus 로고
    • Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells
    • Wu WK, Volta V, Cho CH et al. Repression of protein translation and mTOR signaling by proteasome inhibitor in colon cancer cells. Biochem Biophys Res Commun. 2009;386:598-601.
    • (2009) Biochem Biophys Res Commun. , vol.386 , pp. 598-601
    • Wu, W.K.1    Volta, V.2    Cho, C.H.3
  • 81
    • 77953230805 scopus 로고    scopus 로고
    • Macroautophagy and ERK phosphorylation counteract the antiproliferative effect of proteasome inhibitor in gastric cancer cells
    • Wu WK, Cho CH, Lee CW et al. Macroautophagy and ERK phosphorylation counteract the antiproliferative effect of proteasome inhibitor in gastric cancer cells. Autophagy. 2010;6:228-238.
    • (2010) Autophagy. , vol.6 , pp. 228-238
    • Wu, W.K.1    Cho, C.H.2    Lee, C.W.3
  • 82
    • 79958290302 scopus 로고    scopus 로고
    • Novel cell-and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies
    • Shen D, Coleman J, Chan E et al. Novel cell-and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys. 2011;60:173-185.
    • (2011) Cell Biochem Biophys. , vol.60 , pp. 173-185
    • Shen, D.1    Coleman, J.2    Chan, E.3
  • 83
    • 84878431591 scopus 로고    scopus 로고
    • The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells
    • Xiong R, Siegel D, Ross D. The activation sequence of cellular protein handling systems after proteasomal inhibition in dopaminergic cells. Chem Biol Interact. 2013;204:116-124.
    • (2013) Chem Biol Interact. , vol.204 , pp. 116-124
    • Xiong, R.1    Siegel, D.2    Ross, D.3
  • 84
    • 75149175502 scopus 로고    scopus 로고
    • Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells
    • Zhu K, Dunner K, Jr., McConkey DJ. Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene. 2010;29:451-462.
    • (2010) Oncogene. , vol.29 , pp. 451-462
    • Zhu, K.1    Dunner Jr., K.2    McConkey, D.J.3
  • 85
    • 84877607073 scopus 로고    scopus 로고
    • Adaptive changes in autophagy after UPS impairment in Parkinson's disease
    • Shen YF, Tang Y, Zhang XJ et al. Adaptive changes in autophagy after UPS impairment in Parkinson's disease. Acta Pharmacol Sin. 2013;34:667-673.
    • (2013) Acta Pharmacol Sin. , vol.34 , pp. 667-673
    • Shen, Y.F.1    Tang, Y.2    Zhang, X.J.3
  • 86
    • 67650999673 scopus 로고    scopus 로고
    • Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model
    • Gimenez-Xavier P, Francisco R, Santidrian AF et al. Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model. Neurotoxicology. 2009;30:658-665.
    • (2009) Neurotoxicology. , vol.30 , pp. 658-665
    • Gimenez-Xavier, P.1    Francisco, R.2    Santidrian, A.F.3
  • 87
    • 84882574643 scopus 로고    scopus 로고
    • Marchantin M: A novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells
    • Jiang H, Sun J, Xu Q et al. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells. Cell Death Dis. 2013;4:e761.
    • (2013) Cell Death Dis. , vol.4
    • Jiang, H.1    Sun, J.2    Xu, Q.3
  • 88
    • 79958700761 scopus 로고    scopus 로고
    • Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells
    • Filippi-Chiela EC, Villodre ES, Zamin LL et al. Autophagy interplay with apoptosis and cell cycle regulation in the growth inhibiting effect of resveratrol in glioma cells. PLoS One. 2011;6:e20849.
    • (2011) PLoS One. , vol.6
    • Filippi-Chiela, E.C.1    Villodre, E.S.2    Zamin, L.L.3
  • 89
    • 84858750402 scopus 로고    scopus 로고
    • Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway
    • Chakraborty A, Bodipati N, Demonacos MK et al. Long term induction by pterostilbene results in autophagy and cellular differentiation in MCF-7 cells via ROS dependent pathway. Mol Cell Endocrinol. 2012;355:25-40.
    • (2012) Mol Cell Endocrinol. , vol.355 , pp. 25-40
    • Chakraborty, A.1    Bodipati, N.2    Demonacos, M.K.3
  • 90
    • 84863012684 scopus 로고    scopus 로고
    • Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells
    • Wang Y, Ding L, Wang X et al. Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells. Am J Transl Res. 2012;4:44-51.
    • (2012) Am J Transl Res. , vol.4 , pp. 44-51
    • Wang, Y.1    Ding, L.2    Wang, X.3
  • 91
    • 84891302858 scopus 로고    scopus 로고
    • A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells
    • Hsieh MJ, Lin CW, Yang SF et al. A combination of pterostilbene with autophagy inhibitors exerts efficient apoptotic characteristics in both chemosensitive and chemoresistant lung cancer cells. Toxicol Sci. 2014;137:65-75.
    • (2014) Toxicol Sci. , vol.137 , pp. 65-75
    • Hsieh, M.J.1    Lin, C.W.2    Yang, S.F.3
  • 92
    • 84888260102 scopus 로고    scopus 로고
    • Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells
    • Siedlecka-Kroplewska K, Jozwik A, Boguslawski W et al. Pterostilbene induces accumulation of autophagic vacuoles followed by cell death in HL60 human leukemia cells. J Physiol Pharmacol. 2013;64:545-556.
    • (2013) J Physiol Pharmacol. , vol.64 , pp. 545-556
    • Siedlecka-Kroplewska, K.1    Jozwik, A.2    Boguslawski, W.3
  • 94
    • 79551553480 scopus 로고    scopus 로고
    • Dissecting the dynamic turnover of GFP-LC3 in the autolysosome
    • Ni HM, Bockus A, Wozniak AL et al. Dissecting the dynamic turnover of GFP-LC3 in the autolysosome. Autophagy. 2011;7:188-204.
    • (2011) Autophagy. , vol.7 , pp. 188-204
    • Ni, H.M.1    Bockus, A.2    Wozniak, A.L.3
  • 95
    • 77649185396 scopus 로고    scopus 로고
    • Bortezomib induces autophagic death in proliferating human endothelial cells
    • Belloni D, Veschini L, Foglieni C et al. Bortezomib induces autophagic death in proliferating human endothelial cells. Exp Cell Res. 2010;316:1010-1018.
    • (2010) Exp Cell Res. , vol.316 , pp. 1010-1018
    • Belloni, D.1    Veschini, L.2    Foglieni, C.3
  • 96
    • 77952671749 scopus 로고    scopus 로고
    • Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma
    • Archer CR, Koomoa DL, Mitsunaga EM et al. Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma. Biochem Pharmacol. 2010;80:170-178.
    • (2010) Biochem Pharmacol. , vol.80 , pp. 170-178
    • Archer, C.R.1    Koomoa, D.L.2    Mitsunaga, E.M.3
  • 97
    • 84857627775 scopus 로고    scopus 로고
    • Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity
    • Klappan AK, Hones S, Mylonas I et al. Proteasome inhibition by quercetin triggers macroautophagy and blocks mTOR activity. Histochem Cell Biol. 2012;137:25-36.
    • (2012) Histochem Cell Biol. , vol.137 , pp. 25-36
    • Klappan, A.K.1    Hones, S.2    Mylonas, I.3
  • 98
    • 84883282553 scopus 로고    scopus 로고
    • Role of intracellular calcium in proteasome inhibitor-induced endoplasmic reticulum stress, autophagy, and cell death
    • Williams JA, Hou Y, Ni HM et al. Role of intracellular calcium in proteasome inhibitor-induced endoplasmic reticulum stress, autophagy, and cell death. Pharm Res. 2013;30:2279-2289.
    • (2013) Pharm Res. , vol.30 , pp. 2279-2289
    • Williams, J.A.1    Hou, Y.2    Ni, H.M.3
  • 99
    • 84865957147 scopus 로고    scopus 로고
    • Resveratrol-mediated downregulation of Rictor attenuates autophagic process and suppresses UV-induced skin carcinogenesis
    • Back JH, Zhu Y, Calabro A et al. Resveratrol-mediated downregulation of Rictor attenuates autophagic process and suppresses UV-induced skin carcinogenesis. Photochem Photobiol. 2012;88:1165-1172.
    • (2012) Photochem Photobiol. , vol.88 , pp. 1165-1172
    • Back, J.H.1    Zhu, Y.2    Calabro, A.3
  • 100
    • 77953229918 scopus 로고    scopus 로고
    • Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy
    • Wu WK, Sakamoto KM, Milani M et al. Macroautophagy modulates cellular response to proteasome inhibitors in cancer therapy. Drug Resist Updat. 2010;13:87-92.
    • (2010) Drug Resist Updat. , vol.13 , pp. 87-92
    • Wu, W.K.1    Sakamoto, K.M.2    Milani, M.3
  • 101
    • 84856297871 scopus 로고    scopus 로고
    • Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies
    • Davies C, Tournier C. Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans. 2012;40:85-89.
    • (2012) Biochem Soc Trans. , vol.40 , pp. 85-89
    • Davies, C.1    Tournier, C.2
  • 102
    • 84857216258 scopus 로고    scopus 로고
    • Role of the JNK pathway in human diseases
    • Sabapathy K. Role of the JNK pathway in human diseases. Prog Mol Biol Transl Sci. 2012;106:145-169.
    • (2012) Prog Mol Biol Transl Sci. , vol.106 , pp. 145-169
    • Sabapathy, K.1
  • 103
    • 31444449462 scopus 로고    scopus 로고
    • Role of the unfolded protein response in cell death
    • Kim R, Emi M, Tanabe K et al. Role of the unfolded protein response in cell death. Apoptosis. 2006;11:5-13.
    • (2006) Apoptosis. , vol.11 , pp. 5-13
    • Kim, R.1    Emi, M.2    Tanabe, K.3
  • 104
    • 84863900963 scopus 로고    scopus 로고
    • New insights into translational regulation in the endoplasmic reticulum unfolded protein response
    • Pavitt GD, Ron D. New insights into translational regulation in the endoplasmic reticulum unfolded protein response. Cold Spring Harb Perspect Biol. 2012;4:a012278.
    • (2012) Cold Spring Harb Perspect Biol. , vol.4
    • Pavitt, G.D.1    Ron, D.2
  • 105
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y, Pattingre S, Sinha S et al. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 2008;30:678-688.
    • (2008) Mol Cell. , vol.30 , pp. 678-688
    • Wei, Y.1    Pattingre, S.2    Sinha, S.3
  • 106
    • 0033209608 scopus 로고    scopus 로고
    • Potent antitumor agent proteasome inhibitors: A novel trigger for Bcl2 phosphorylation to induce apoptosis
    • You SA, Basu A, Haldar S. Potent antitumor agent proteasome inhibitors: a novel trigger for Bcl2 phosphorylation to induce apoptosis. Int J Oncol. 1999;15:625-628.
    • (1999) Int J Oncol. , vol.15 , pp. 625-628
    • You, S.A.1    Basu, A.2    Haldar, S.3
  • 107
    • 0036726532 scopus 로고    scopus 로고
    • Signal-induced site specific phosphorylation targets Bcl2 to the proteasome pathway
    • Basu A, Haldar S. Signal-induced site specific phosphorylation targets Bcl2 to the proteasome pathway. Int J Oncol. 2002;21:597-601.
    • (2002) Int J Oncol. , vol.21 , pp. 597-601
    • Basu, A.1    Haldar, S.2
  • 108
    • 17144389838 scopus 로고    scopus 로고
    • Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition
    • Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J Biol Chem. 2005;280:14189-14202.
    • (2005) J Biol Chem. , vol.280 , pp. 14189-14202
    • Jiang, H.Y.1    Wek, R.C.2
  • 109
    • 69549135927 scopus 로고    scopus 로고
    • Hepatic CYP3A suppression by high concentrations of proteasomal inhibitors: A consequence of endoplasmic reticulum (ER) stress induction, activation of RNA-dependent protein kinase-like ER-bound eukaryotic initiation factor 2alpha (eIF2alpha)-kinase (PERK) and general control nonderepressible-2 eIF2alpha kinase (GCN2), and global translational shutoff
    • Acharya P, Engel JC, Correia MA. Hepatic CYP3A suppression by high concentrations of proteasomal inhibitors: a consequence of endoplasmic reticulum (ER) stress induction, activation of RNA-dependent protein kinase-like ER-bound eukaryotic initiation factor 2alpha (eIF2alpha)-kinase (PERK) and general control nonderepressible-2 eIF2alpha kinase (GCN2), and global translational shutoff. Mol Pharmacol. 2009;76:503-515.
    • (2009) Mol Pharmacol. , vol.76 , pp. 503-515
    • Acharya, P.1    Engel, J.C.2    Correia, M.A.3
  • 110
    • 74049104138 scopus 로고    scopus 로고
    • Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition
    • Gavilan MP, Pintado C, Gavilan E et al. Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell. 2009;8:654-665.
    • (2009) Aging Cell. , vol.8 , pp. 654-665
    • Gavilan, M.P.1    Pintado, C.2    Gavilan, E.3
  • 111
    • 74949118681 scopus 로고    scopus 로고
    • The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5
    • Rouschop KM, van den Beucken T, Dubois L et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 2010;120:127-141.
    • (2010) J Clin Invest. , vol.120 , pp. 127-141
    • Rouschop, K.M.1    van den Beucken, T.2    Dubois, L.3
  • 112
    • 77953552589 scopus 로고    scopus 로고
    • Novel combination of celecoxib and proteasome inhibitor MG132 provides synergistic antiproliferative and proapoptotic effects in human liver tumor cells
    • Cusimano A, Azzolina A, Iovanna JL et al. Novel combination of celecoxib and proteasome inhibitor MG132 provides synergistic antiproliferative and proapoptotic effects in human liver tumor cells. Cell Cycle. 2010;9:1399-1410.
    • (2010) Cell Cycle. , vol.9 , pp. 1399-1410
    • Cusimano, A.1    Azzolina, A.2    Iovanna, J.L.3
  • 113
    • 84862969851 scopus 로고    scopus 로고
    • Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition
    • Hu J, Dang N, Menu E et al. Activation of ATF4 mediates unwanted Mcl-1 accumulation by proteasome inhibition. Blood. 2012;119:826-837.
    • (2012) Blood. , vol.119 , pp. 826-837
    • Hu, J.1    Dang, N.2    Menu, E.3
  • 114
    • 79957801753 scopus 로고    scopus 로고
    • Proteasome inhibitor treatment in alcoholic liver disease
    • Bardag-Gorce F. Proteasome inhibitor treatment in alcoholic liver disease. World J Gastroenterol. 2011;17:2558-2562.
    • (2011) World J Gastroenterol. , vol.17 , pp. 2558-2562
    • Bardag-Gorce, F.1
  • 115
    • 77953726485 scopus 로고    scopus 로고
    • Autophagy impairment stimulates PS1 expression and gamma-secretase activity
    • Ohta K, Mizuno A, Ueda M et al. Autophagy impairment stimulates PS1 expression and gamma-secretase activity. Autophagy. 2010;6:345-352.
    • (2010) Autophagy. , vol.6 , pp. 345-352
    • Ohta, K.1    Mizuno, A.2    Ueda, M.3
  • 116
    • 77955269643 scopus 로고    scopus 로고
    • Stabilization of ATF4 protein is required for the regulation of epithelial-mesenchymal transition of the avian neural crest
    • Suzuki T, Osumi N, Wakamatsu Y. Stabilization of ATF4 protein is required for the regulation of epithelial-mesenchymal transition of the avian neural crest. Dev Biol. 2010;344:658-668.
    • (2010) Dev Biol. , vol.344 , pp. 658-668
    • Suzuki, T.1    Osumi, N.2    Wakamatsu, Y.3
  • 117
    • 66249085237 scopus 로고    scopus 로고
    • The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib
    • Milani M, Rzymski T, Mellor HR et al. The role of ATF4 stabilization and autophagy in resistance of breast cancer cells treated with Bortezomib. Cancer Res. 2009;69:4415-4423.
    • (2009) Cancer Res. , vol.69 , pp. 4415-4423
    • Milani, M.1    Rzymski, T.2    Mellor, H.R.3
  • 118
    • 0342467925 scopus 로고    scopus 로고
    • ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase
    • Lassot I, Segeral E, Berlioz-Torrent C et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase. Mol Cell Biol. 2001;21:2192-2202.
    • (2001) Mol Cell Biol. , vol.21 , pp. 2192-2202
    • Lassot, I.1    Segeral, E.2    Berlioz-Torrent, C.3
  • 119
    • 77957819681 scopus 로고    scopus 로고
    • The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients
    • Martelli AM, Evangelisti C, Chiarini F et al. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget. 2010;1:89-103.
    • (2010) Oncotarget. , vol.1 , pp. 89-103
    • Martelli, A.M.1    Evangelisti, C.2    Chiarini, F.3
  • 120
    • 59249088869 scopus 로고    scopus 로고
    • Monitoring mammalian target of rapamycin (mTOR) activity
    • Ikenoue T, Hong S, Inoki K. Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol. 2009;452:165-180.
    • (2009) Methods Enzymol. , vol.452 , pp. 165-180
    • Ikenoue, T.1    Hong, S.2    Inoki, K.3
  • 121
    • 40549123676 scopus 로고    scopus 로고
    • mTORC1 signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase
    • Ghosh P, Wu M, Zhang H et al. mTORC1 signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase. Cell Cycle. 2008;7:373-381.
    • (2008) Cell Cycle. , vol.7 , pp. 373-381
    • Ghosh, P.1    Wu, M.2    Zhang, H.3
  • 122
    • 84887999522 scopus 로고    scopus 로고
    • Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation
    • Bruning A, Rahmeh M, Friese K. Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation. Mol Oncol. 2013;7:1012-1018.
    • (2013) Mol Oncol. , vol.7 , pp. 1012-1018
    • Bruning, A.1    Rahmeh, M.2    Friese, K.3
  • 123
    • 84874945405 scopus 로고    scopus 로고
    • Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death
    • Ben-Sahra I, Dirat B, Laurent K et al. Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death Differ. 2013;20:611-619.
    • (2013) Cell Death Differ. , vol.20 , pp. 611-619
    • Ben-Sahra, I.1    Dirat, B.2    Laurent, K.3
  • 124
    • 66849111716 scopus 로고    scopus 로고
    • Stimulation of autophagy by the p53 target gene Sestrin2
    • Maiuri MC, Malik SA, Morselli E et al. Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle. 2009;8:1571-1576.
    • (2009) Cell Cycle. , vol.8 , pp. 1571-1576
    • Maiuri, M.C.1    Malik, S.A.2    Morselli, E.3
  • 125
    • 15444369226 scopus 로고    scopus 로고
    • Intracellular inhibitory effects of Velcade correlate with morphoproteomic expression of phosphorylated-nuclear factor-kappaB and p53 in breast cancer cell lines
    • Lun M, Zhang PL, Siegelmann-Danieli N et al. Intracellular inhibitory effects of Velcade correlate with morphoproteomic expression of phosphorylated-nuclear factor-kappaB and p53 in breast cancer cell lines. Ann Clin Lab Sci. 2005;35:15-24.
    • (2005) Ann Clin Lab Sci. , vol.35 , pp. 15-24
    • Lun, M.1    Zhang, P.L.2    Siegelmann-Danieli, N.3
  • 126
    • 67650267785 scopus 로고    scopus 로고
    • An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity
    • Du Y, Yang D, Li L et al. An insight into the mechanistic role of p53-mediated autophagy induction in response to proteasomal inhibition-induced neurotoxicity. Autophagy. 2009;5:663-675.
    • (2009) Autophagy. , vol.5 , pp. 663-675
    • Du, Y.1    Yang, D.2    Li, L.3
  • 127
    • 84867612825 scopus 로고    scopus 로고
    • Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells
    • Zhang XY, Wu XQ, Deng R et al. Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal. 2013;25:150-158.
    • (2013) Cell Signal. , vol.25 , pp. 150-158
    • Zhang, X.Y.1    Wu, X.Q.2    Deng, R.3
  • 128
    • 84876810634 scopus 로고    scopus 로고
    • Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells
    • Zhang L, Cui L, Zhou G et al. Pterostilbene, a natural small-molecular compound, promotes cytoprotective macroautophagy in vascular endothelial cells. J Nutr Biochem. 2013;24:903-911.
    • (2013) J Nutr Biochem. , vol.24 , pp. 903-911
    • Zhang, L.1    Cui, L.2    Zhou, G.3
  • 129
    • 0034578389 scopus 로고    scopus 로고
    • Aggresomes, inclusion bodies and protein aggregation
    • Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol. 2000;10:524-530.
    • (2000) Trends Cell Biol. , vol.10 , pp. 524-530
    • Kopito, R.R.1
  • 130
    • 0034805395 scopus 로고    scopus 로고
    • Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells
    • Kuusisto E, Suuronen T, Salminen A. Ubiquitin-binding protein p62 expression is induced during apoptosis and proteasomal inhibition in neuronal cells. Biochem Biophys Res Commun. 2001;280:223-228.
    • (2001) Biochem Biophys Res Commun. , vol.280 , pp. 223-228
    • Kuusisto, E.1    Suuronen, T.2    Salminen, A.3
  • 131
    • 79959364986 scopus 로고    scopus 로고
    • Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: Association with sequestosome 1/p62
    • Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem. 2011;286:22426-22440.
    • (2011) J Biol Chem. , vol.286 , pp. 22426-22440
    • Myeku, N.1    Figueiredo-Pereira, M.E.2
  • 132
    • 84880843826 scopus 로고    scopus 로고
    • Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/ p62 during proteasomal inhibition in human retinal pigment epithelial cells
    • Viiri J, Amadio M, Marchesi N et al. Autophagy activation clears ELAVL1/HuR-mediated accumulation of SQSTM1/ p62 during proteasomal inhibition in human retinal pigment epithelial cells. PLoS One. 2013;8:e69563.
    • (2013) PLoS One. , vol.8
    • Viiri, J.1    Amadio, M.2    Marchesi, N.3
  • 133
    • 65249119754 scopus 로고    scopus 로고
    • p62 degradation by autophagy: Another way for cancer cells to survive under hypoxia
    • Jaakkola PM, Pursiheimo JP. p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy. 2009;5:410-412.
    • (2009) Autophagy. , vol.5 , pp. 410-412
    • Jaakkola, P.M.1    Pursiheimo, J.P.2
  • 134
    • 0346020435 scopus 로고    scopus 로고
    • The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress
    • Kawaguchi Y, Kovacs JJ, McLaurin A et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell. 2003;115:727-738.
    • (2003) Cell. , vol.115 , pp. 727-738
    • Kawaguchi, Y.1    Kovacs, J.J.2    McLaurin, A.3
  • 135
    • 34250183177 scopus 로고    scopus 로고
    • HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
    • Pandey UB, Nie Z, Batlevi Y et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447:859-863.
    • (2007) Nature. , vol.447 , pp. 859-863
    • Pandey, U.B.1    Nie, Z.2    Batlevi, Y.3
  • 136
    • 84868639366 scopus 로고    scopus 로고
    • Histone deacetylase 6 (HDAC6) plays a crucial role in p38MAPK-dependent induction of heme oxygenase-1 (HO-1) in response to proteasome inhibition
    • Kastle M, Woschee E, Grune T. Histone deacetylase 6 (HDAC6) plays a crucial role in p38MAPK-dependent induction of heme oxygenase-1 (HO-1) in response to proteasome inhibition. Free Radic Biol Med. 2012;53:2092-2101.
    • (2012) Free Radic Biol Med. , vol.53 , pp. 2092-2101
    • Kastle, M.1    Woschee, E.2    Grune, T.3
  • 137
    • 79959463520 scopus 로고    scopus 로고
    • Regulation of HSF1 function in the heat stress response: Implications in aging and disease
    • Anckar J, Sistonen L. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem. 2011;80:1089-1115.
    • (2011) Annu Rev Biochem. , vol.80 , pp. 1089-1115
    • Anckar, J.1    Sistonen, L.2
  • 138
    • 34548416641 scopus 로고    scopus 로고
    • HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates
    • Boyault C, Zhang Y, Fritah S et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates. Genes Dev. 2007;21:2172-2181.
    • (2007) Genes Dev. , vol.21 , pp. 2172-2181
    • Boyault, C.1    Zhang, Y.2    Fritah, S.3
  • 139
    • 10744228410 scopus 로고    scopus 로고
    • BAG3 protein regulates stress-induced apoptosis in normal and neoplastic leukocytes
    • Bonelli P, Petrella A, Rosati A et al. BAG3 protein regulates stress-induced apoptosis in normal and neoplastic leukocytes. Leukemia. 2004;18:358-360.
    • (2004) Leukemia. , vol.18 , pp. 358-360
    • Bonelli, P.1    Petrella, A.2    Rosati, A.3
  • 140
    • 79551609332 scopus 로고    scopus 로고
    • BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins
    • Gamerdinger M, Kaya AM, Wolfrum U et al. BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep. 2011;12:149-156.
    • (2011) EMBO Rep. , vol.12 , pp. 149-156
    • Gamerdinger, M.1    Kaya, A.M.2    Wolfrum, U.3
  • 141
    • 79959939343 scopus 로고    scopus 로고
    • BAG3 and friends: Co-chaperones in selective autophagy during aging and disease
    • Behl C. BAG3 and friends: co-chaperones in selective autophagy during aging and disease. Autophagy. 2011;7:795-798.
    • (2011) Autophagy. , vol.7 , pp. 795-798
    • Behl, C.1
  • 142
    • 84897984423 scopus 로고    scopus 로고
    • BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways
    • DOI:10.1038/onc.2013.110. [Epub ahead of print]
    • Rapino F, Jung M, Fulda S. BAG3 induction is required to mitigate proteotoxicity via selective autophagy following inhibition of constitutive protein degradation pathways. Oncogene. 2013. DOI:10.1038/onc.2013.110. [Epub ahead of print].
    • (2013) Oncogene.
    • Rapino, F.1    Jung, M.2    Fulda, S.3
  • 143
    • 84880915641 scopus 로고    scopus 로고
    • BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells
    • Liu BQ, Du ZX, Zong ZH et al. BAG3-dependent noncanonical autophagy induced by proteasome inhibition in HepG2 cells. Autophagy. 2013;9:905-916.
    • (2013) Autophagy. , vol.9 , pp. 905-916
    • Liu, B.Q.1    Du, Z.X.2    Zong, Z.H.3
  • 144
    • 78650637670 scopus 로고    scopus 로고
    • Effects of proteasome inhibitors on rat renal fibrosis in vitro and in vivo
    • Sakairi T, Hiromura K, Takahashi S et al. Effects of proteasome inhibitors on rat renal fibrosis in vitro and in vivo. Nephrology (Carlton). 2011;16:76-86.
    • (2011) Nephrology (Carlton). , vol.16 , pp. 76-86
    • Sakairi, T.1    Hiromura, K.2    Takahashi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.