메뉴 건너뛰기




Volumn 24, Issue 2, 2014, Pages 118-127

Changing appetites: The adaptive advantages of fuel choice

Author keywords

Biosynthesis; Metabolism; Mitochondria; Nutrients; Stress responses; Substrate supply

Indexed keywords

2 OXOGLUTARIC ACID; 3 HYDROXY 3 METHYLGLUTARYL COENZYME A; 3 HYDROXYBUTYRIC ACID; ACETOACETIC ACID; ACETYL COENZYME A; ACYL COENZYME A; ACYLCARNITINE; AMINO ACID; CARBON; CITRIC ACID; FATTY ACID; FUMARIC ACID; GLUCOSE; GLUTAMINE; HYDROXYMETHYLGLUTARYL COENZYME A REDUCTASE KINASE; ISOCITRIC ACID; KETONE; KETONE BODY; MALIC ACID; OXALOACETIC ACID; PYRUVIC ACID; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE; SUCCINIC ACID;

EID: 84892977418     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2013.07.010     Document Type: Review
Times cited : (44)

References (96)
  • 1
    • 73949121249 scopus 로고    scopus 로고
    • The hematopoietic stem cell niche: Low in oxygen but a nice place to be
    • Eliasson P., Jönsson J-I. The hematopoietic stem cell niche: Low in oxygen but a nice place to be. J. Cell. Physiol. 2010, 222:17-22.
    • (2010) J. Cell. Physiol. , vol.222 , pp. 17-22
    • Eliasson, P.1    Jönsson, J.-I.2
  • 2
    • 78650589408 scopus 로고    scopus 로고
    • Energy metabolism in adult neural stem cell fate
    • Rafalski V.A., Brunet A. Energy metabolism in adult neural stem cell fate. Prog. Neurobiol. 2011, 93:182-203.
    • (2011) Prog. Neurobiol. , vol.93 , pp. 182-203
    • Rafalski, V.A.1    Brunet, A.2
  • 3
    • 84868347607 scopus 로고    scopus 로고
    • Metabolic plasticity in stem cell homeostasis and differentiation
    • Folmes C.D., et al. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2012, 11:596-606.
    • (2012) Cell Stem Cell , vol.11 , pp. 596-606
    • Folmes, C.D.1
  • 4
    • 79960945131 scopus 로고    scopus 로고
    • Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
    • Folmes C.D., et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 2011, 14:264-271.
    • (2011) Cell Metab. , vol.14 , pp. 264-271
    • Folmes, C.D.1
  • 5
    • 33744908287 scopus 로고    scopus 로고
    • Differentiation-related changes in mitochondrial properties as indicators of stem cell competence
    • Lonergan T., et al. Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J. Cell. Physiol. 2006, 208:149-153.
    • (2006) J. Cell. Physiol. , vol.208 , pp. 149-153
    • Lonergan, T.1
  • 6
    • 79959221064 scopus 로고    scopus 로고
    • Energy metabolism in human pluripotent stem cells and their differentiated counterparts
    • Varum S., et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE 2011, 6:e20914.
    • (2011) PLoS ONE , vol.6
    • Varum, S.1
  • 7
    • 49249086654 scopus 로고    scopus 로고
    • Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells
    • Chen C-T., et al. Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells 2008, 26:960-968.
    • (2008) Stem Cells , vol.26 , pp. 960-968
    • Chen, C.-T.1
  • 8
    • 84868632060 scopus 로고    scopus 로고
    • A PML-PPAR-[delta] pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
    • Ito K., et al. A PML-PPAR-[delta] pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat. Med. 2012, 18:1350-1358.
    • (2012) Nat. Med. , vol.18 , pp. 1350-1358
    • Ito, K.1
  • 9
    • 77956205122 scopus 로고    scopus 로고
    • The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche
    • Simsek T., et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 2010, 7:380-390.
    • (2010) Cell Stem Cell , vol.7 , pp. 380-390
    • Simsek, T.1
  • 10
    • 84860531487 scopus 로고    scopus 로고
    • HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition
    • Zhou W., et al. HIF1alpha induced switch from bivalent to exclusively glycolytic metabolism during ESC-to-EpiSC/hESC transition. EMBO J. 2012, 31:2103-2116.
    • (2012) EMBO J. , vol.31 , pp. 2103-2116
    • Zhou, W.1
  • 11
    • 67749140110 scopus 로고    scopus 로고
    • Dependence of mouse embryonic stem cells on threonine catabolism
    • Wang J., et al. Dependence of mouse embryonic stem cells on threonine catabolism. Science 2009, 325:435-439.
    • (2009) Science , vol.325 , pp. 435-439
    • Wang, J.1
  • 12
    • 80053139819 scopus 로고    scopus 로고
    • Targeted killing of a mammalian cell based upon its specialized metabolic state
    • Alexander P.B., et al. Targeted killing of a mammalian cell based upon its specialized metabolic state. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:15828-15833.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 15828-15833
    • Alexander, P.B.1
  • 13
    • 84872160110 scopus 로고    scopus 로고
    • Influence of threonine metabolism on S-adenosylmethionine and histone methylation
    • Shyh-Chang N., et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science 2013, 339:222-226.
    • (2013) Science , vol.339 , pp. 222-226
    • Shyh-Chang, N.1
  • 14
    • 84875494365 scopus 로고    scopus 로고
    • Metabolic regulation of T lymphocytes
    • MacIver N.J., et al. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 2013, 31:259-283.
    • (2013) Annu. Rev. Immunol. , vol.31 , pp. 259-283
    • MacIver, N.J.1
  • 15
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek R.D., et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 2011, 186:3299-3303.
    • (2011) J. Immunol. , vol.186 , pp. 3299-3303
    • Michalek, R.D.1
  • 16
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe G.M., et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 2011, 12:295-303.
    • (2011) Nat. Immunol. , vol.12 , pp. 295-303
    • Delgoffe, G.M.1
  • 17
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
    • van der Windt G.J., et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012, 36:68-78.
    • (2012) Immunity , vol.36 , pp. 68-78
    • van der Windt, G.J.1
  • 18
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • Lunt S.Y., Vander Heiden M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27:441-464.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 19
    • 80053922625 scopus 로고    scopus 로고
    • Metabolic flux and the regulation of mammalian cell growth
    • Locasale J.W., Cantley L.C. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 2011, 14:443-451.
    • (2011) Cell Metab. , vol.14 , pp. 443-451
    • Locasale, J.W.1    Cantley, L.C.2
  • 20
    • 84872169944 scopus 로고    scopus 로고
    • Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis
    • Knobloch M., et al. Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 2013, 493:226-230.
    • (2013) Nature , vol.493 , pp. 226-230
    • Knobloch, M.1
  • 21
    • 73349109163 scopus 로고    scopus 로고
    • The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression
    • Gnoni G.V., et al. The mitochondrial citrate carrier: metabolic role and regulation of its activity and expression. IUBMB Life 2009, 61:987-994.
    • (2009) IUBMB Life , vol.61 , pp. 987-994
    • Gnoni, G.V.1
  • 22
    • 84867595989 scopus 로고    scopus 로고
    • Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
    • Caro P., et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 2012, 22:547-560.
    • (2012) Cancer Cell , vol.22 , pp. 547-560
    • Caro, P.1
  • 23
    • 84862016091 scopus 로고    scopus 로고
    • Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo
    • Marin-Valencia I., et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 2012, 15:827-837.
    • (2012) Cell Metab. , vol.15 , pp. 827-837
    • Marin-Valencia, I.1
  • 24
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo C.M., et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 2012, 481:380-384.
    • (2012) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1
  • 25
    • 83755178091 scopus 로고    scopus 로고
    • Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability
    • Wise D.R., et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of alpha-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:19611-19616.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 19611-19616
    • Wise, D.R.1
  • 26
    • 84855987831 scopus 로고    scopus 로고
    • Reductive carboxylation supports growth in tumour cells with defective mitochondria
    • Mullen A.R., et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 2012, 481:385-388.
    • (2012) Nature , vol.481 , pp. 385-388
    • Mullen, A.R.1
  • 27
    • 77955616558 scopus 로고    scopus 로고
    • Compartmentalization of mammalian folate-mediated one-carbon metabolism
    • Tibbetts A.S., Appling D.R. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 2010, 30:57-81.
    • (2010) Annu. Rev. Nutr. , vol.30 , pp. 57-81
    • Tibbetts, A.S.1    Appling, D.R.2
  • 28
    • 84861420588 scopus 로고    scopus 로고
    • Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation
    • Jain M., et al. Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336:1040-1044.
    • (2012) Science , vol.336 , pp. 1040-1044
    • Jain, M.1
  • 29
    • 84872905650 scopus 로고    scopus 로고
    • Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells
    • Maddocks O.D., et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature 2013, 493:542-546.
    • (2013) Nature , vol.493 , pp. 542-546
    • Maddocks, O.D.1
  • 30
    • 80051923932 scopus 로고    scopus 로고
    • Functional genomics reveal that the serine synthesis pathway is essential in breast cancer
    • Possemato R., et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 2011, 476:346-350.
    • (2011) Nature , vol.476 , pp. 346-350
    • Possemato, R.1
  • 31
    • 80052258995 scopus 로고    scopus 로고
    • Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis
    • Locasale J.W., et al. Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nat. Genet. 2011, 43:869-874.
    • (2011) Nat. Genet. , vol.43 , pp. 869-874
    • Locasale, J.W.1
  • 32
    • 84869082905 scopus 로고    scopus 로고
    • Serine is a natural ligand and allosteric activator of pyruvate kinase M2
    • Chaneton B., et al. Serine is a natural ligand and allosteric activator of pyruvate kinase M2. Nature 2012, 491:458-462.
    • (2012) Nature , vol.491 , pp. 458-462
    • Chaneton, B.1
  • 33
    • 84860793042 scopus 로고    scopus 로고
    • Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation
    • Ye J., et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:6904-6909.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 6904-6909
    • Ye, J.1
  • 34
    • 78149378853 scopus 로고    scopus 로고
    • Quiescent fibroblasts exhibit high metabolic activity
    • Lemons J.M., et al. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol. 2010, 8:e1000514.
    • (2010) PLoS Biol. , vol.8
    • Lemons, J.M.1
  • 35
    • 79959396928 scopus 로고    scopus 로고
    • Glucose regulates cyclin D2 expression in quiescent and replicating pancreatic beta-cells through glycolysis and calcium channels
    • Salpeter S.J., et al. Glucose regulates cyclin D2 expression in quiescent and replicating pancreatic beta-cells through glycolysis and calcium channels. Endocrinology 2011, 152:2589-2598.
    • (2011) Endocrinology , vol.152 , pp. 2589-2598
    • Salpeter, S.J.1
  • 36
    • 84864390297 scopus 로고    scopus 로고
    • ChREBP mediates glucose-stimulated pancreatic beta-cell proliferation
    • Metukuri M.R., et al. ChREBP mediates glucose-stimulated pancreatic beta-cell proliferation. Diabetes 2012, 61:2004-2015.
    • (2012) Diabetes , vol.61 , pp. 2004-2015
    • Metukuri, M.R.1
  • 37
    • 84863938650 scopus 로고    scopus 로고
    • Target metabolomics revealed complementary roles of hexose- and pentose-phosphates in the regulation of carbohydrate-dependent gene expression
    • Diaz-Moralli S., et al. Target metabolomics revealed complementary roles of hexose- and pentose-phosphates in the regulation of carbohydrate-dependent gene expression. Am. J. Physiol. Endocrinol. Metab. 2012, 303:E234-E242.
    • (2012) Am. J. Physiol. Endocrinol. Metab. , vol.303
    • Diaz-Moralli, S.1
  • 38
    • 84858327557 scopus 로고    scopus 로고
    • Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes
    • Arden C., et al. Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes. Biochem. J. 2012, 443:111-123.
    • (2012) Biochem. J. , vol.443 , pp. 111-123
    • Arden, C.1
  • 39
    • 79959473762 scopus 로고    scopus 로고
    • O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver
    • Guinez C., et al. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011, 60:1399-1413.
    • (2011) Diabetes , vol.60 , pp. 1399-1413
    • Guinez, C.1
  • 40
    • 77956562845 scopus 로고    scopus 로고
    • Glucose and aging control the quiescence period that follows pancreatic beta cell replication
    • Salpeter S.J., et al. Glucose and aging control the quiescence period that follows pancreatic beta cell replication. Development 2010, 137:3205-3213.
    • (2010) Development , vol.137 , pp. 3205-3213
    • Salpeter, S.J.1
  • 41
    • 84864748956 scopus 로고    scopus 로고
    • Fulfilling the metabolic requirements for cell proliferation
    • Moncada S., et al. Fulfilling the metabolic requirements for cell proliferation. Biochem. J. 2012, 446:1-7.
    • (2012) Biochem. J. , vol.446 , pp. 1-7
    • Moncada, S.1
  • 42
    • 84865959001 scopus 로고    scopus 로고
    • A metabolic prosurvival role for PML in breast cancer
    • Carracedo A., et al. A metabolic prosurvival role for PML in breast cancer. J. Clin. Investig. 2012, 122:3088-3100.
    • (2012) J. Clin. Investig. , vol.122 , pp. 3088-3100
    • Carracedo, A.1
  • 43
    • 79956326256 scopus 로고    scopus 로고
    • Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
    • Zaugg K., et al. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress. Genes Dev. 2011, 25:1041-1051.
    • (2011) Genes Dev. , vol.25 , pp. 1041-1051
    • Zaugg, K.1
  • 44
    • 74949089659 scopus 로고    scopus 로고
    • Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
    • Samudio I., et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J. Clin. Investig. 2010, 120:142-156.
    • (2010) J. Clin. Investig. , vol.120 , pp. 142-156
    • Samudio, I.1
  • 45
    • 81255157465 scopus 로고    scopus 로고
    • Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
    • Nieman K.M., et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17:1498-1503.
    • (2011) Nat. Med. , vol.17 , pp. 1498-1503
    • Nieman, K.M.1
  • 46
    • 79955601028 scopus 로고    scopus 로고
    • Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
    • Pike L.S., et al. Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells. Biochim. Biophys. Acta 2011, 1807:726-734.
    • (2011) Biochim. Biophys. Acta , vol.1807 , pp. 726-734
    • Pike, L.S.1
  • 47
    • 69949101473 scopus 로고    scopus 로고
    • Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
    • Schafer Z.T., et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 2009, 461:109-113.
    • (2009) Nature , vol.461 , pp. 109-113
    • Schafer, Z.T.1
  • 48
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon S-M., et al. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 2012, 485:661-665.
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.-M.1
  • 49
    • 82755166890 scopus 로고    scopus 로고
    • Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses
    • Anastasiou D., et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011, 334:1278-1283.
    • (2011) Science , vol.334 , pp. 1278-1283
    • Anastasiou, D.1
  • 50
    • 79952280229 scopus 로고    scopus 로고
    • P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
    • Jiang P., et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol. 2011, 13:310-316.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 310-316
    • Jiang, P.1
  • 51
    • 79551580561 scopus 로고    scopus 로고
    • ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair
    • Cosentino C., et al. ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair. EMBO J. 2011, 30:546-555.
    • (2011) EMBO J. , vol.30 , pp. 546-555
    • Cosentino, C.1
  • 52
    • 84876359638 scopus 로고    scopus 로고
    • SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
    • Jeong, Seung M., et al. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013, 23:450-463.
    • (2013) Cancer Cell , vol.23 , pp. 450-463
    • Jeong1    Seung, M.2
  • 53
    • 0036793525 scopus 로고    scopus 로고
    • Characterization of a novel metabolic strategy used by drug-resistant tumor cells
    • Harper M.E., et al. Characterization of a novel metabolic strategy used by drug-resistant tumor cells. FASEB J. 2002, 16:1550-1557.
    • (2002) FASEB J. , vol.16 , pp. 1550-1557
    • Harper, M.E.1
  • 54
    • 84863244462 scopus 로고    scopus 로고
    • Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway
    • Ashrafian H., et al. Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab. 2012, 15:361-371.
    • (2012) Cell Metab. , vol.15 , pp. 361-371
    • Ashrafian, H.1
  • 55
    • 80054767730 scopus 로고    scopus 로고
    • Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling
    • Adam J., et al. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 2011, 20:524-537.
    • (2011) Cancer Cell , vol.20 , pp. 524-537
    • Adam, J.1
  • 56
    • 0041914649 scopus 로고    scopus 로고
    • Assessing the efficacy of antiepileptic treatments: the ketogenic diet
    • Thiele E.A. Assessing the efficacy of antiepileptic treatments: the ketogenic diet. Epilepsia 2003, 44(Suppl. 7):26-29.
    • (2003) Epilepsia , vol.44 , Issue.SUPPL. 7 , pp. 26-29
    • Thiele, E.A.1
  • 57
    • 84871718480 scopus 로고    scopus 로고
    • The ketogenic diet: metabolic influences on brain excitability and epilepsy
    • Lutas A., Yellen G. The ketogenic diet: metabolic influences on brain excitability and epilepsy. Trends Neurosci. 2013, 36:32-40.
    • (2013) Trends Neurosci. , vol.36 , pp. 32-40
    • Lutas, A.1    Yellen, G.2
  • 58
    • 84872166360 scopus 로고    scopus 로고
    • Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor
    • Shimazu T., et al. Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 2013, 339:211-214.
    • (2013) Science , vol.339 , pp. 211-214
    • Shimazu, T.1
  • 59
    • 48249143179 scopus 로고    scopus 로고
    • The ketogenic diet increases mitochondrial glutathione levels
    • Jarrett S.G., et al. The ketogenic diet increases mitochondrial glutathione levels. J. Neurochem. 2008, 106:1044-1051.
    • (2008) J. Neurochem. , vol.106 , pp. 1044-1051
    • Jarrett, S.G.1
  • 60
    • 33746848935 scopus 로고    scopus 로고
    • Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet
    • Bough K.J., et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann. Neurol. 2006, 60:223-235.
    • (2006) Ann. Neurol. , vol.60 , pp. 223-235
    • Bough, K.J.1
  • 61
    • 33750443292 scopus 로고    scopus 로고
    • 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure
    • Garriga-Canut M., et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat. Neurosci. 2006, 9:1382-1387.
    • (2006) Nat. Neurosci. , vol.9 , pp. 1382-1387
    • Garriga-Canut, M.1
  • 62
    • 84861440823 scopus 로고    scopus 로고
    • BAD-dependent regulation of fuel metabolism and KATP channel activity confers resistance to epileptic seizures
    • Giménez-Cassina A., et al. BAD-dependent regulation of fuel metabolism and KATP channel activity confers resistance to epileptic seizures. Neuron 2012, 74:719-730.
    • (2012) Neuron , vol.74 , pp. 719-730
    • Giménez-Cassina, A.1
  • 63
    • 0031714313 scopus 로고    scopus 로고
    • Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes
    • Blázquez C., et al. Role of carnitine palmitoyltransferase I in the control of ketogenesis in primary cultures of rat astrocytes. J. Neurochem. 1998, 71:1597-1606.
    • (1998) J. Neurochem. , vol.71 , pp. 1597-1606
    • Blázquez, C.1
  • 64
    • 78649413837 scopus 로고    scopus 로고
    • Mitochondrial fusion and fission in cell life and death
    • Westermann B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 2010, 11:872-884.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 872-884
    • Westermann, B.1
  • 65
    • 84875906572 scopus 로고    scopus 로고
    • Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure
    • Liesa M., Shirihai O.S. Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 2013, 17:491-506.
    • (2013) Cell Metab. , vol.17 , pp. 491-506
    • Liesa, M.1    Shirihai, O.S.2
  • 66
    • 38549110110 scopus 로고    scopus 로고
    • Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
    • Twig G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008, 27:433-446.
    • (2008) EMBO J. , vol.27 , pp. 433-446
    • Twig, G.1
  • 67
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes L.C., et al. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13:589-598.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 589-598
    • Gomes, L.C.1
  • 68
    • 70349650451 scopus 로고    scopus 로고
    • Mitochondrial networking protects beta-cells from nutrient-induced apoptosis
    • Molina A.J., et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 2009, 58:2303-2315.
    • (2009) Diabetes , vol.58 , pp. 2303-2315
    • Molina, A.J.1
  • 69
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:10190-10195.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 10190-10195
    • Rambold, A.S.1
  • 70
    • 0842325793 scopus 로고    scopus 로고
    • Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells
    • Rossignol R., et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 2004, 64:985-993.
    • (2004) Cancer Res. , vol.64 , pp. 985-993
    • Rossignol, R.1
  • 71
    • 80455135722 scopus 로고    scopus 로고
    • Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria
    • Wang H., et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 2011, 52:2159-2168.
    • (2011) J. Lipid Res. , vol.52 , pp. 2159-2168
    • Wang, H.1
  • 72
    • 79959622187 scopus 로고    scopus 로고
    • Muscle-type 6-phosphofructo-1-kinase and aldolase associate conferring catalytic advantages for both enzymes
    • Marcondes M.C., et al. Muscle-type 6-phosphofructo-1-kinase and aldolase associate conferring catalytic advantages for both enzymes. IUBMB Life 2011, 63:435-445.
    • (2011) IUBMB Life , vol.63 , pp. 435-445
    • Marcondes, M.C.1
  • 73
    • 33845536286 scopus 로고    scopus 로고
    • Glucokinase regulatory network in pancreatic β-cells and Liver
    • Baltrusch S., Tiedge M. Glucokinase regulatory network in pancreatic β-cells and Liver. Diabetes 2006, 55:S55-S64.
    • (2006) Diabetes , vol.55
    • Baltrusch, S.1    Tiedge, M.2
  • 74
    • 49649099805 scopus 로고    scopus 로고
    • Glucokinase and molecular aspects of liver glycogen metabolism
    • Agius L. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 2008, 414:1-18.
    • (2008) Biochem. J. , vol.414 , pp. 1-18
    • Agius, L.1
  • 75
    • 0041357164 scopus 로고    scopus 로고
    • BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis
    • Danial N.N., et al. BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 2003, 424:952-956.
    • (2003) Nature , vol.424 , pp. 952-956
    • Danial, N.N.1
  • 76
    • 38949140180 scopus 로고    scopus 로고
    • Dual role of proapoptotic BAD in insulin secretion and beta cell survival
    • Danial N.N., et al. Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nat. Med. 2008, 14:144-153.
    • (2008) Nat. Med. , vol.14 , pp. 144-153
    • Danial, N.N.1
  • 77
    • 83455179198 scopus 로고    scopus 로고
    • Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria
    • Genda E.N., et al. Co-compartmentalization of the astroglial glutamate transporter, GLT-1, with glycolytic enzymes and mitochondria. J. Neurosci. 2011, 31:18275-18288.
    • (2011) J. Neurosci. , vol.31 , pp. 18275-18288
    • Genda, E.N.1
  • 78
    • 84862878915 scopus 로고    scopus 로고
    • Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing
    • Hall C.N., et al. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 2012, 32:8940-8951.
    • (2012) J. Neurosci. , vol.32 , pp. 8940-8951
    • Hall, C.N.1
  • 79
    • 84873323723 scopus 로고    scopus 로고
    • Vesicular glycolysis provides on-board energy for fast axonal transport
    • Zala D., et al. Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 2013, 152:479-491.
    • (2013) Cell , vol.152 , pp. 479-491
    • Zala, D.1
  • 80
    • 80052800016 scopus 로고    scopus 로고
    • The creatine kinase system and pleiotropic effects of creatine
    • Wallimann T., et al. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011, 40:1271-1296.
    • (2011) Amino Acids , vol.40 , pp. 1271-1296
    • Wallimann, T.1
  • 81
    • 0019881026 scopus 로고
    • Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide
    • Thomas A.P., Halestrap A.P. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide. Biochem. J. 1981, 196:471-479.
    • (1981) Biochem. J. , vol.196 , pp. 471-479
    • Thomas, A.P.1    Halestrap, A.P.2
  • 82
    • 84863552418 scopus 로고    scopus 로고
    • A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
    • Bricker D.K., et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 2012, 337:96-100.
    • (2012) Science , vol.337 , pp. 96-100
    • Bricker, D.K.1
  • 83
    • 84863553135 scopus 로고    scopus 로고
    • Identification and functional expression of the mitochondrial pyruvate carrier
    • Herzig S., et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337:93-96.
    • (2012) Science , vol.337 , pp. 93-96
    • Herzig, S.1
  • 84
    • 79951962628 scopus 로고    scopus 로고
    • Mitochondrial metabolite transport
    • Palmieri F., Pierri C.L. Mitochondrial metabolite transport. Essays Biochem. 2010, 47:37-52.
    • (2010) Essays Biochem. , vol.47 , pp. 37-52
    • Palmieri, F.1    Pierri, C.L.2
  • 85
    • 84875858252 scopus 로고    scopus 로고
    • Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier
    • Divakaruni A.S., et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5422-5427.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5422-5427
    • Divakaruni, A.S.1
  • 87
    • 79954571354 scopus 로고    scopus 로고
    • The interplay between mitochondrial dynamics and mitophagy
    • Twig G., Shirihai O.S. The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 2011, 14:1939-1951.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 1939-1951
    • Twig, G.1    Shirihai, O.S.2
  • 88
    • 84876531457 scopus 로고    scopus 로고
    • PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria
    • Chen Y., Dorn G.W. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 2013, 340:471-475.
    • (2013) Science , vol.340 , pp. 471-475
    • Chen, Y.1    Dorn, G.W.2
  • 89
    • 84868575932 scopus 로고    scopus 로고
    • Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism
    • Narendra D., et al. Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. Cold Spring Harb. Perspect. Biol. 2012, 4:1-11.
    • (2012) Cold Spring Harb. Perspect. Biol. , vol.4 , pp. 1-11
    • Narendra, D.1
  • 90
    • 84880807019 scopus 로고    scopus 로고
    • Mutations in the intellectual disability gene ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy
    • Haddad D.M., et al. Mutations in the intellectual disability gene ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy. Mol. Cell 2013, 50:831-843.
    • (2013) Mol. Cell , vol.50 , pp. 831-843
    • Haddad, D.M.1
  • 91
    • 84877578621 scopus 로고    scopus 로고
    • Rheb regulates mitophagy induced by mitochondrial energetic status
    • Melser S., et al. Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 2013, 17:719-730.
    • (2013) Cell Metab. , vol.17 , pp. 719-730
    • Melser, S.1
  • 92
    • 84862789618 scopus 로고    scopus 로고
    • Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells
    • Liu L., et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 2012, 14:177-185.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 177-185
    • Liu, L.1
  • 93
    • 84864015441 scopus 로고    scopus 로고
    • BNip3 regulates mitochondrial function and lipid metabolism in the liver
    • Glick D., et al. BNip3 regulates mitochondrial function and lipid metabolism in the liver. Mol. Cell. Biol. 2012, 32:2570-2584.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 2570-2584
    • Glick, D.1
  • 94
    • 79960402453 scopus 로고    scopus 로고
    • Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex
    • Lee K., et al. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J. Biol. Chem. 2011, 286:25655-25662.
    • (2011) J. Biol. Chem. , vol.286 , pp. 25655-25662
    • Lee, K.1
  • 95
    • 0035881548 scopus 로고    scopus 로고
    • Rat liver mitochondrial contact sites and carnitine palmitoyltransferase-I
    • Hoppel C., et al. Rat liver mitochondrial contact sites and carnitine palmitoyltransferase-I. Arch. Biochem. Biophys. 2001, 392:321-325.
    • (2001) Arch. Biochem. Biophys. , vol.392 , pp. 321-325
    • Hoppel, C.1
  • 96
    • 84860505850 scopus 로고    scopus 로고
    • Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice
    • Quiros P.M., et al. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J. 2012, 31:2117-2133.
    • (2012) EMBO J. , vol.31 , pp. 2117-2133
    • Quiros, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.