-
1
-
-
0034598762
-
Early identification of refractory epilepsy
-
Kwan P., Brodie M. Early identification of refractory epilepsy. N. Engl. J. Med. 2000, 342:314-319.
-
(2000)
N. Engl. J. Med.
, vol.342
, pp. 314-319
-
-
Kwan, P.1
Brodie, M.2
-
2
-
-
65549152475
-
A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy
-
Neal E., et al. A randomized trial of classical and medium-chain triglyceride ketogenic diets in the treatment of childhood epilepsy. Epilepsia 2009, 50:1109-1126.
-
(2009)
Epilepsia
, vol.50
, pp. 1109-1126
-
-
Neal, E.1
-
3
-
-
0001434053
-
The ketogenic diet in epilepsy
-
Peterman M. The ketogenic diet in epilepsy. J. Am. Med. Assoc. 1925, 84:1979-1983.
-
(1925)
J. Am. Med. Assoc.
, vol.84
, pp. 1979-1983
-
-
Peterman, M.1
-
4
-
-
0017954660
-
Chronic ketosis and cerebral metabolism
-
DeVivo D., et al. Chronic ketosis and cerebral metabolism. Ann. Neurol. 1978, 3:331-337.
-
(1978)
Ann. Neurol.
, vol.3
, pp. 331-337
-
-
DeVivo, D.1
-
5
-
-
0008797454
-
Factors influencing experimentally produced convulsions
-
Keith H. Factors influencing experimentally produced convulsions. Arch. Neurol. Psychiatry 1933, 29:148-154.
-
(1933)
Arch. Neurol. Psychiatry
, vol.29
, pp. 148-154
-
-
Keith, H.1
-
6
-
-
0036214170
-
Acetoacetate, acetone, and dibenzylamine (a contaminant in l-(+)-beta-hydroxybutyrate) exhibit direct anticonvulsant actions in vivo
-
Rho J., et al. Acetoacetate, acetone, and dibenzylamine (a contaminant in l-(+)-beta-hydroxybutyrate) exhibit direct anticonvulsant actions in vivo. Epilepsia 2002, 43:358-361.
-
(2002)
Epilepsia
, vol.43
, pp. 358-361
-
-
Rho, J.1
-
7
-
-
0041843792
-
Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet
-
Likhodii S., et al. Anticonvulsant properties of acetone, a brain ketone elevated by the ketogenic diet. Ann. Neurol. 2003, 54:219-226.
-
(2003)
Ann. Neurol.
, vol.54
, pp. 219-226
-
-
Likhodii, S.1
-
8
-
-
0032738404
-
Path analysis shows that increasing ketogenic ratio, but not beta-hydroxybutyrate, elevates seizure threshold in the rat
-
Bough K., et al. Path analysis shows that increasing ketogenic ratio, but not beta-hydroxybutyrate, elevates seizure threshold in the rat. Dev. Neurosci. 1999, 21:400-406.
-
(1999)
Dev. Neurosci.
, vol.21
, pp. 400-406
-
-
Bough, K.1
-
9
-
-
0033400976
-
Higher ketogenic diet ratios confer protection from seizures without neurotoxicity
-
Bough K., et al. Higher ketogenic diet ratios confer protection from seizures without neurotoxicity. Epilepsy Res. 2000, 38:15-25.
-
(2000)
Epilepsy Res.
, vol.38
, pp. 15-25
-
-
Bough, K.1
-
10
-
-
0033756270
-
Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet
-
Likhodii S., et al. Dietary fat, ketosis, and seizure resistance in rats on the ketogenic diet. Epilepsia 2000, 41:1400-1410.
-
(2000)
Epilepsia
, vol.41
, pp. 1400-1410
-
-
Likhodii, S.1
-
11
-
-
0035033819
-
Lipid and fatty acid profiles in rats consuming different high-fat ketogenic diets
-
Dell C., et al. Lipid and fatty acid profiles in rats consuming different high-fat ketogenic diets. Lipids 2001, 36:373-378.
-
(2001)
Lipids
, vol.36
, pp. 373-378
-
-
Dell, C.1
-
12
-
-
0034484802
-
The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones
-
Gilbert D., et al. The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J. Child Neurol. 2000, 15:787-790.
-
(2000)
J. Child Neurol.
, vol.15
, pp. 787-790
-
-
Gilbert, D.1
-
13
-
-
73749084917
-
Blood beta-hydroxybutyrate correlates better with seizure reduction due to ketogenic diet than do ketones in the urine
-
van Delft R., et al. Blood beta-hydroxybutyrate correlates better with seizure reduction due to ketogenic diet than do ketones in the urine. Seizure 2010, 19:36-39.
-
(2010)
Seizure
, vol.19
, pp. 36-39
-
-
van Delft, R.1
-
14
-
-
77957307251
-
Metabolic control of vesicular glutamate transport and release
-
Juge N., et al. Metabolic control of vesicular glutamate transport and release. Neuron 2010, 68:99-211.
-
(2010)
Neuron
, vol.68
, pp. 99-211
-
-
Juge, N.1
-
15
-
-
0343775830
-
Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission
-
Thio L., et al. Ketone bodies do not directly alter excitatory or inhibitory hippocampal synaptic transmission. Neurology 2000, 54:325-331.
-
(2000)
Neurology
, vol.54
, pp. 325-331
-
-
Thio, L.1
-
16
-
-
77950924405
-
Chronic in vitro ketosis is neuroprotective but not anti-convulsant
-
Samoilova M., et al. Chronic in vitro ketosis is neuroprotective but not anti-convulsant. J. Neurochem. 2010, 113:826-861.
-
(2010)
J. Neurochem.
, vol.113
, pp. 826-861
-
-
Samoilova, M.1
-
17
-
-
38449086860
-
The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect
-
Yudkoff M., et al. The ketogenic diet and brain metabolism of amino acids: relationship to the anticonvulsant effect. Annu. Rev. Nutr. 2007, 27:415-430.
-
(2007)
Annu. Rev. Nutr.
, vol.27
, pp. 415-430
-
-
Yudkoff, M.1
-
18
-
-
0035888276
-
Brain amino acid metabolism and ketosis
-
Yudkoff M., et al. Brain amino acid metabolism and ketosis. J. Neurosci. Res. 2001, 66:272-281.
-
(2001)
J. Neurosci. Res.
, vol.66
, pp. 272-281
-
-
Yudkoff, M.1
-
19
-
-
0020840916
-
Effects of ketosis on glucose flux in children and adults
-
Haymond M., et al. Effects of ketosis on glucose flux in children and adults. Am. J. Physiol. 1983, 245:E373-E378.
-
(1983)
Am. J. Physiol.
, vol.245
-
-
Haymond, M.1
-
20
-
-
0018573622
-
Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes
-
Paul R., et al. Vascular smooth muscle: aerobic glycolysis linked to sodium and potassium transport processes. Science 1979, 206:1414-1416.
-
(1979)
Science
, vol.206
, pp. 1414-1416
-
-
Paul, R.1
-
21
-
-
0019847313
-
Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes
-
Mercer R., Dunham P. Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J. Gen. Physiol. 1981, 78:547-568.
-
(1981)
J. Gen. Physiol.
, vol.78
, pp. 547-568
-
-
Mercer, R.1
Dunham, P.2
-
22
-
-
0032418263
-
ATP channels in basolateral membrane of Necturus enterocytes
-
ATP channels in basolateral membrane of Necturus enterocytes. Am. J. Physiol. 1998, 275:C1653-C1659.
-
(1998)
Am. J. Physiol.
, vol.275
-
-
Dubinsky, W.P.1
-
23
-
-
0035839499
-
+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump
-
+-ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J. Biol. Chem. 2001, 276:30407-30413.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30407-30413
-
-
Lu, M.1
-
24
-
-
70349648500
-
++ pumps in human red blood cell ghosts
-
++ pumps in human red blood cell ghosts. J. Gen. Physiol. 2009, 134:351-361.
-
(2009)
J. Gen. Physiol.
, vol.134
, pp. 351-361
-
-
Hoffman, J.F.1
-
25
-
-
0017390388
-
Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts
-
Proverbio F., Hoffman J. Membrane compartmentalized ATP and its preferential use by the Na,K-ATPase of human red cell ghosts. J. Gen. Physiol. 1977, 69:605-632.
-
(1977)
J. Gen. Physiol.
, vol.69
, pp. 605-632
-
-
Proverbio, F.1
Hoffman, J.2
-
26
-
-
0035890174
-
ATP channels in rhythmically active neurons
-
ATP channels in rhythmically active neurons. J. Physiol. 2001, 537:69-81.
-
(2001)
J. Physiol.
, vol.537
, pp. 69-81
-
-
Haller, M.1
-
27
-
-
79958290778
-
ATP channel opening in response to action potential firing in mouse dentate granule neurons
-
ATP channel opening in response to action potential firing in mouse dentate granule neurons. J. Neurosci. 2011, 31:8689-8696.
-
(2011)
J. Neurosci.
, vol.31
, pp. 8689-8696
-
-
Tanner, G.1
-
29
-
-
78650530898
-
ATP channels: hypoglycaemia and hyperglycaemia
-
ATP channels: hypoglycaemia and hyperglycaemia. Rev. Endocr. Metab. Disord. 2010, 11:157-163.
-
(2010)
Rev. Endocr. Metab. Disord.
, vol.11
, pp. 157-163
-
-
Bennett, K.1
-
30
-
-
34548604499
-
Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity
-
Parton L., et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 2007, 449:228-260.
-
(2007)
Nature
, vol.449
, pp. 228-260
-
-
Parton, L.1
-
31
-
-
78049433920
-
ATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis
-
ATP channels, is modulated by UCP2, and regulates peripheral glucose homeostasis. Cell Metab. 2010, 12:545-597.
-
(2010)
Cell Metab.
, vol.12
, pp. 545-597
-
-
Kong, D.1
-
32
-
-
0031026364
-
ATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain
-
ATP channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in rodent brain. FEBS Lett. 1997, 401:59-64.
-
(1997)
FEBS Lett.
, vol.401
, pp. 59-64
-
-
Karschin, C.1
-
33
-
-
0032517821
-
+ channel in rat brain
-
+ channel in rat brain. Brain Res. 1998, 814:41-54.
-
(1998)
Brain Res.
, vol.814
, pp. 41-54
-
-
Dunn-Meynell, A.1
-
34
-
-
0033556338
-
Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus
-
Zawar C., et al. Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J. Physiol. 1999, 514(Pt 2):327-341.
-
(1999)
J. Physiol.
, vol.514
, Issue.PART 2
, pp. 327-341
-
-
Zawar, C.1
-
35
-
-
55349124023
-
ATP channels in the mechanism of the ketogenic diet
-
ATP channels in the mechanism of the ketogenic diet. Epilepsia 2008, 49(Suppl. 8):80-82.
-
(2008)
Epilepsia
, vol.49
, Issue.SUPPL. 8
, pp. 80-82
-
-
Yellen, G.1
-
36
-
-
34147189503
-
ATP channels
-
ATP channels. J. Neurosci. 2007, 27:3618-3643.
-
(2007)
J. Neurosci.
, vol.27
, pp. 3618-3643
-
-
Ma, W.1
-
37
-
-
0028123843
-
Endogenous control of epilepsy: the nigral inhibitory system
-
Depaulis A., et al. Endogenous control of epilepsy: the nigral inhibitory system. Prog. Neurobiol. 1994, 42:33-52.
-
(1994)
Prog. Neurobiol.
, vol.42
, pp. 33-52
-
-
Depaulis, A.1
-
38
-
-
0033961835
-
ATP channels in inspiratory brainstem neurones and their hypoxic activation: involvement of metabotropic receptors, G-proteins and cytoskeleton
-
ATP channels in inspiratory brainstem neurones and their hypoxic activation: involvement of metabotropic receptors, G-proteins and cytoskeleton. Brain Res. 2000, 853:60-67.
-
(2000)
Brain Res.
, vol.853
, pp. 60-67
-
-
Mironov, S.1
Richter, D.2
-
39
-
-
77949687475
-
Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channels
-
Li D-P., et al. Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channels. J. Neurochem. 2010, 113:530-542.
-
(2010)
J. Neurochem.
, vol.113
, pp. 530-542
-
-
Li, D.-P.1
-
40
-
-
77949698466
-
ATP channels
-
ATP channels. J. Neurosci. 2010, 30:3886-3981.
-
(2010)
J. Neurosci.
, vol.30
, pp. 3886-3981
-
-
Kawamura, M.1
-
41
-
-
0019837565
-
The role of adenosine and its nucleotides in central synaptic transmission
-
Phillis J., Wu P. The role of adenosine and its nucleotides in central synaptic transmission. Prog. Neurobiol. 1981, 16:187-239.
-
(1981)
Prog. Neurobiol.
, vol.16
, pp. 187-239
-
-
Phillis, J.1
Wu, P.2
-
42
-
-
44549083390
-
Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?
-
Masino S., Geiger J. Are purines mediators of the anticonvulsant/neuroprotective effects of ketogenic diets?. Trends Neurosci. 2008, 31:273-281.
-
(2008)
Trends Neurosci.
, vol.31
, pp. 273-281
-
-
Masino, S.1
Geiger, J.2
-
43
-
-
26044440838
-
Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation
-
Fedele D., et al. Astrogliosis in epilepsy leads to overexpression of adenosine kinase, resulting in seizure aggravation. Brain 2005, 128:2383-2395.
-
(2005)
Brain
, vol.128
, pp. 2383-2395
-
-
Fedele, D.1
-
44
-
-
79959957820
-
1 receptors
-
1 receptors. J. Clin. Invest. 2011, 121:2679-2762.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 2679-2762
-
-
Masino, S.1
-
45
-
-
0017143254
-
Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy
-
Huttenlocher P. Ketonemia and seizures: metabolic and anticonvulsant effects of two ketogenic diets in childhood epilepsy. Pediatr. Res. 1976, 10:536-540.
-
(1976)
Pediatr. Res.
, vol.10
, pp. 536-540
-
-
Huttenlocher, P.1
-
46
-
-
33645078170
-
Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy
-
Pfeifer H., Thiele E. Low-glycemic-index treatment: a liberalized ketogenic diet for treatment of intractable epilepsy. Neurology 2005, 65:1810-1812.
-
(2005)
Neurology
, vol.65
, pp. 1810-1812
-
-
Pfeifer, H.1
Thiele, E.2
-
47
-
-
75949105922
-
The BCL-2 family reunion
-
Chipuk J., et al. The BCL-2 family reunion. Mol. Cell 2010, 37:299-310.
-
(2010)
Mol. Cell
, vol.37
, pp. 299-310
-
-
Chipuk, J.1
-
48
-
-
68149107692
-
BAD: undertaker by night, candyman by day
-
Danial N.N. BAD: undertaker by night, candyman by day. Oncogene 2008, 27(Suppl. 1):S53-S70.
-
(2008)
Oncogene
, vol.27
, Issue.SUPPL. 1
-
-
Danial, N.N.1
-
49
-
-
84861440823
-
ATP channel activity confers resistance to epileptic seizures
-
ATP channel activity confers resistance to epileptic seizures. Neuron 2012, 74:719-749.
-
(2012)
Neuron
, vol.74
, pp. 719-749
-
-
Giménez-Cassina, A.1
-
50
-
-
28044450874
-
BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures
-
Brenner R., et al. BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat. Neurosci. 2005, 8:1752-1759.
-
(2005)
Nat. Neurosci.
, vol.8
, pp. 1752-1759
-
-
Brenner, R.1
-
51
-
-
0032770526
-
Chronic epileptogenic cellular alterations in the limbic system after status epilepticus
-
discussion S40-S41
-
Coulter D. Chronic epileptogenic cellular alterations in the limbic system after status epilepticus. Epilepsia 1999, 40(Suppl. 1):S23-S33. discussion S40-S41.
-
(1999)
Epilepsia
, vol.40
, Issue.SUPPL. 1
-
-
Coulter, D.1
-
52
-
-
0027026647
-
The dentate gyrus as a regulated gate for the propagation of epileptiform activity
-
Heinemann U., et al. The dentate gyrus as a regulated gate for the propagation of epileptiform activity. Epilepsy Res. Suppl. 1992, 7:273-280.
-
(1992)
Epilepsy Res. Suppl.
, vol.7
, pp. 273-280
-
-
Heinemann, U.1
-
53
-
-
34548209899
-
The dentate gyrus as a filter or gate: a look back and a look ahead
-
Hsu D. The dentate gyrus as a filter or gate: a look back and a look ahead. Prog. Brain Res. 2007, 163:601-613.
-
(2007)
Prog. Brain Res.
, vol.163
, pp. 601-613
-
-
Hsu, D.1
-
54
-
-
0006653250
-
The effect of 2-deoxyglucose on the metabolism of glucose, fructose, and galactose by rat diaphragm
-
Nakada H., Wick A. The effect of 2-deoxyglucose on the metabolism of glucose, fructose, and galactose by rat diaphragm. J. Biol. Chem. 1956, 222:671-676.
-
(1956)
J. Biol. Chem.
, vol.222
, pp. 671-676
-
-
Nakada, H.1
Wick, A.2
-
55
-
-
0000904661
-
Localization of the primary metabolic block produced by 2-deoxyglucose
-
Wick A., et al. Localization of the primary metabolic block produced by 2-deoxyglucose. J. Biol. Chem. 1957, 224:963-969.
-
(1957)
J. Biol. Chem.
, vol.224
, pp. 963-969
-
-
Wick, A.1
-
56
-
-
33750443292
-
2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure
-
Garriga-Canut M., et al. 2-Deoxy-D-glucose reduces epilepsy progression by NRSF-CtBP-dependent metabolic regulation of chromatin structure. Nat. Neurosci. 2006, 9:1382-1389.
-
(2006)
Nat. Neurosci.
, vol.9
, pp. 1382-1389
-
-
Garriga-Canut, M.1
-
57
-
-
3242704193
-
Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model
-
He X-P., et al. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron 2004, 43:31-42.
-
(2004)
Neuron
, vol.43
, pp. 31-42
-
-
He, X.-P.1
-
58
-
-
78650395905
-
Temporal lobe epilepsy and the BDNF receptor, TrkB
-
McNamara J.O., Scharfman H.E. Temporal lobe epilepsy and the BDNF receptor, TrkB. Epilepsia 2010, 51:46.
-
(2010)
Epilepsia
, vol.51
, pp. 46
-
-
McNamara, J.O.1
Scharfman, H.E.2
-
59
-
-
80052553383
-
Neuron-restrictive silencer factor is not required for the antiepileptic effect of the ketogenic diet
-
Hu X-L., et al. Neuron-restrictive silencer factor is not required for the antiepileptic effect of the ketogenic diet. Epilepsia 2011, 52:1609-1625.
-
(2011)
Epilepsia
, vol.52
, pp. 1609-1625
-
-
Hu, X.-L.1
-
60
-
-
0029145377
-
Energy metabolism in hypoxic astrocytes: protective mechanism of fructose-1,6-bisphosphate
-
Kelleher J., et al. Energy metabolism in hypoxic astrocytes: protective mechanism of fructose-1,6-bisphosphate. Neurochem. Res. 1995, 20:785-792.
-
(1995)
Neurochem. Res.
, vol.20
, pp. 785-792
-
-
Kelleher, J.1
-
61
-
-
35948960395
-
Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats
-
Lian X-Y., et al. Fructose-1,6-bisphosphate has anticonvulsant activity in models of acute seizures in adult rats. J. Neurosci. 2007, 27:12007-12018.
-
(2007)
J. Neurosci.
, vol.27
, pp. 12007-12018
-
-
Lian, X.-Y.1
-
62
-
-
55349134212
-
Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate
-
Stringer J., Xu K. Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate. Epilepsia 2008, 49(Suppl. 8):101-103.
-
(2008)
Epilepsia
, vol.49
, Issue.SUPPL. 8
, pp. 101-103
-
-
Stringer, J.1
Xu, K.2
-
63
-
-
34248221175
-
Ketone bodies are protective against oxidative stress in neocortical neurons
-
Kim D.Y., et al. Ketone bodies are protective against oxidative stress in neocortical neurons. J. Neurochem. 2007, 101:1316-1326.
-
(2007)
J. Neurochem.
, vol.101
, pp. 1316-1326
-
-
Kim, D.Y.1
-
64
-
-
33846852428
-
Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation
-
Maalouf M., et al. Ketones inhibit mitochondrial production of reactive oxygen species production following glutamate excitotoxicity by increasing NADH oxidation. Neuroscience 2007, 145:256-264.
-
(2007)
Neuroscience
, vol.145
, pp. 256-264
-
-
Maalouf, M.1
-
65
-
-
48249143179
-
The ketogenic diet increases mitochondrial glutathione levels
-
Jarrett S., et al. The ketogenic diet increases mitochondrial glutathione levels. J. Neurochem. 2008, 106:1044-1051.
-
(2008)
J. Neurochem.
, vol.106
, pp. 1044-1051
-
-
Jarrett, S.1
-
66
-
-
77953304142
-
Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors
-
Kim D.Y., et al. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J. Neurochem. 2010, 114:130-141.
-
(2010)
J. Neurochem.
, vol.114
, pp. 130-141
-
-
Kim, D.Y.1
-
67
-
-
1642289587
-
The ketogenic diet increases mitochondrial uncoupling protein levels and activity
-
Sullivan P., et al. The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Ann. Neurol. 2004, 55:576-656.
-
(2004)
Ann. Neurol.
, vol.55
, pp. 576-656
-
-
Sullivan, P.1
-
69
-
-
0038305724
-
Calorie restriction and ketogenic diet diminish neuronal excitability in rat dentate gyrus in vivo
-
Bough K., et al. Calorie restriction and ketogenic diet diminish neuronal excitability in rat dentate gyrus in vivo. Epilepsia 2003, 44:752-760.
-
(2003)
Epilepsia
, vol.44
, pp. 752-760
-
-
Bough, K.1
-
70
-
-
79952570329
-
The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway
-
McDaniel S.S., et al. The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia 2011, 52:e7-e11.
-
(2011)
Epilepsia
, vol.52
-
-
McDaniel, S.S.1
-
71
-
-
0001544644
-
The effects of ketonemia on the course of epilepsy
-
Wilder R.M. The effects of ketonemia on the course of epilepsy. Mayo Clin. Proc. 1921, 2:307-308.
-
(1921)
Mayo Clin. Proc.
, vol.2
, pp. 307-308
-
-
Wilder, R.M.1
-
72
-
-
0009685810
-
Cause and treatment of epilepsy
-
Conklin H.W. Cause and treatment of epilepsy. J. Am. Osteopath. Assoc. 1922, 26:11-14.
-
(1922)
J. Am. Osteopath. Assoc.
, vol.26
, pp. 11-14
-
-
Conklin, H.W.1
-
73
-
-
12144267518
-
The use of diet in the treatment of epilepsy
-
Bailey E.E., et al. The use of diet in the treatment of epilepsy. Epilepsy Behav. 2005, 6:4-8.
-
(2005)
Epilepsy Behav.
, vol.6
, pp. 4-8
-
-
Bailey, E.E.1
-
74
-
-
84866054022
-
Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes
-
Pong A., et al. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia 2012, 53:1503-1510.
-
(2012)
Epilepsia
, vol.53
, pp. 1503-1510
-
-
Pong, A.1
-
75
-
-
0347364663
-
Efficacy of the Atkins diet as therapy for intractable epilepsy
-
Kossoff E., et al. Efficacy of the Atkins diet as therapy for intractable epilepsy. Neurology 2003, 61:1789-1791.
-
(2003)
Neurology
, vol.61
, pp. 1789-1791
-
-
Kossoff, E.1
-
76
-
-
33645326867
-
A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy
-
Kossoff E., et al. A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy. Epilepsia 2006, 47:421-424.
-
(2006)
Epilepsia
, vol.47
, pp. 421-424
-
-
Kossoff, E.1
-
77
-
-
38649134514
-
A prospective study of the modified Atkins diet for intractable epilepsy in adults
-
Kossoff E., et al. A prospective study of the modified Atkins diet for intractable epilepsy in adults. Epilepsia 2008, 49:316-319.
-
(2008)
Epilepsia
, vol.49
, pp. 316-319
-
-
Kossoff, E.1
-
78
-
-
65549104388
-
Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy
-
Muzykewicz D., et al. Efficacy, safety, and tolerability of the low glycemic index treatment in pediatric epilepsy. Epilepsia 2009, 50:1118-1126.
-
(2009)
Epilepsia
, vol.50
, pp. 1118-1126
-
-
Muzykewicz, D.1
-
79
-
-
0034784359
-
An energy budget for signaling in the grey matter of the brain
-
Attwell D., Laughlin S. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 2001, 21:1133-1178.
-
(2001)
J. Cereb. Blood Flow Metab.
, vol.21
, pp. 1133-1178
-
-
Attwell, D.1
Laughlin, S.2
-
80
-
-
84863426424
-
Updated energy budgets for neural computation in the neocortex and cerebellum
-
Howarth C., et al. Updated energy budgets for neural computation in the neocortex and cerebellum. J. Cereb. Blood Flow Metab. 2012, 32:1222-1232.
-
(2012)
J. Cereb. Blood Flow Metab.
, vol.32
, pp. 1222-1232
-
-
Howarth, C.1
-
81
-
-
77953912359
-
Calcium clearance and its energy requirements in cerebellar neurons
-
Ivannikov M., et al. Calcium clearance and its energy requirements in cerebellar neurons. Cell Calcium 2010, 47:507-520.
-
(2010)
Cell Calcium
, vol.47
, pp. 507-520
-
-
Ivannikov, M.1
-
82
-
-
0024727596
-
2+ uptake in smooth muscle plasma membrane vesicles by an endogenous glycolytic cascade
-
2+ uptake in smooth muscle plasma membrane vesicles by an endogenous glycolytic cascade. FASEB J. 1989, 3:2298-2301.
-
(1989)
FASEB J.
, vol.3
, pp. 2298-2301
-
-
Paul, R.1
-
83
-
-
0029849945
-
Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis
-
James J., et al. Linkage of aerobic glycolysis to sodium-potassium transport in rat skeletal muscle. Implications for increased muscle lactate production in sepsis. J. Clin. Invest. 1996, 98:2388-2397.
-
(1996)
J. Clin. Invest.
, vol.98
, pp. 2388-2397
-
-
James, J.1
-
84
-
-
34547823399
-
Activity-dependent regulation of energy metabolism by astrocytes: an update
-
Pellerin L., et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 2007, 55:1251-1262.
-
(2007)
Glia
, vol.55
, pp. 1251-1262
-
-
Pellerin, L.1
-
85
-
-
0030931102
-
A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor
-
Hu Y., Wilson G. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J. Neurochem. 1997, 69:1484-1490.
-
(1997)
J. Neurochem.
, vol.69
, pp. 1484-1490
-
-
Hu, Y.1
Wilson, G.2
-
86
-
-
29144469081
-
Lactate: the ultimate cerebral oxidative energy substrate?
-
Schurr A. Lactate: the ultimate cerebral oxidative energy substrate?. J. Cereb. Blood Flow Metab. 2006, 26:142-152.
-
(2006)
J. Cereb. Blood Flow Metab.
, vol.26
, pp. 142-152
-
-
Schurr, A.1
-
87
-
-
70349957926
-
The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study
-
Gallagher C., et al. The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 2009, 132:2839-2849.
-
(2009)
Brain
, vol.132
, pp. 2839-2849
-
-
Gallagher, C.1
-
88
-
-
67349095741
-
Blood lactate is an important energy source for the human brain
-
van Hall G., et al. Blood lactate is an important energy source for the human brain. J. Cereb. Blood Flow Metab. 2009, 29:1121-1129.
-
(2009)
J. Cereb. Blood Flow Metab.
, vol.29
, pp. 1121-1129
-
-
van Hall, G.1
-
89
-
-
77958528666
-
The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy
-
Boumezbeur F., et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 2010, 30:13983-13991.
-
(2010)
J. Neurosci.
, vol.30
, pp. 13983-13991
-
-
Boumezbeur, F.1
-
90
-
-
84861881239
-
Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices
-
Ivanov A., et al. Lactate effectively covers energy demands during neuronal network activity in neonatal hippocampal slices. Front. Neuroenergetics 2011, 3:2.
-
(2011)
Front. Neuroenergetics
, vol.3
, pp. 2
-
-
Ivanov, A.1
-
91
-
-
0036636041
-
An anticonvulsant profile of the ketogenic diet in the rat
-
Bough K., et al. An anticonvulsant profile of the ketogenic diet in the rat. Epilepsy Res. 2002, 50:313-325.
-
(2002)
Epilepsy Res.
, vol.50
, pp. 313-325
-
-
Bough, K.1
-
92
-
-
53249156234
-
Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models
-
Samala R., et al. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models. Epilepsy Res. 2008, 81:119-127.
-
(2008)
Epilepsy Res.
, vol.81
, pp. 119-127
-
-
Samala, R.1
-
93
-
-
0014139879
-
Brain metabolism during fasting
-
Owen O., et al. Brain metabolism during fasting. J. Clin. Invest. 1967, 46:1589-1595.
-
(1967)
J. Clin. Invest.
, vol.46
, pp. 1589-1595
-
-
Owen, O.1
-
94
-
-
0015950390
-
Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats
-
Ruderman N., et al. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats. Biochem. J. 1974, 138:1-10.
-
(1974)
Biochem. J.
, vol.138
, pp. 1-10
-
-
Ruderman, N.1
-
95
-
-
84867525468
-
Contribution of brain glucose and ketone bodies to oxidative metabolism
-
Zhang Y., et al. Contribution of brain glucose and ketone bodies to oxidative metabolism. Adv. Exp. Med. Biol. 2013, 765:365-370.
-
(2013)
Adv. Exp. Med. Biol.
, vol.765
, pp. 365-370
-
-
Zhang, Y.1
-
96
-
-
58449109701
-
Maintaining network activity in submerged hippocampal slices: importance of oxygen supply
-
Hájos N., et al. Maintaining network activity in submerged hippocampal slices: importance of oxygen supply. Eur. J. Neurosci. 2009, 29:319-327.
-
(2009)
Eur. J. Neurosci.
, vol.29
, pp. 319-327
-
-
Hájos, N.1
-
97
-
-
84857076245
-
Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain
-
Tantama M., et al. Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. Prog. Brain Res. 2012, 196:235-263.
-
(2012)
Prog. Brain Res.
, vol.196
, pp. 235-263
-
-
Tantama, M.1
-
98
-
-
0035346949
-
Is there an astrocyte-neuron ketone body shuttle?
-
Guzmán M., Blázquez C. Is there an astrocyte-neuron ketone body shuttle?. Trends Endocrinol. Metab. 2001, 12:169-173.
-
(2001)
Trends Endocrinol. Metab.
, vol.12
, pp. 169-173
-
-
Guzmán, M.1
Blázquez, C.2
|