-
1
-
-
63449098455
-
A low-voltage processor for sensing applications with picowatt standby mode
-
Apr.
-
S. Hanson et al., "A low-voltage processor for sensing applications with picowatt standby mode," IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1145-1155, Apr. 2009.
-
(2009)
IEEE J. Solid-State Circuits
, vol.44
, Issue.4
, pp. 1145-1155
-
-
Hanson, S.1
-
5
-
-
34548820198
-
A 0.13 μm 2.125 MB 23.5 ns embedded flash with 2 GB/s read throughput for automotive microcontrollers
-
C. Deml, M. Jankowski, and C. Thalmaier, "A 0.13 μm 2.125 MB 23.5 ns embedded flash with 2 GB/s read throughput for automotive microcontrollers," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007, pp. 478-479.
-
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2007
, pp. 478-479
-
-
Deml, C.1
Jankowski, M.2
Thalmaier, C.3
-
7
-
-
0033712805
-
A 60 ns access 32 kByte 3-transistor flash for low power embedded applications
-
T. Ikehashi et al., "A 60 ns access 32 kByte 3-transistor flash for low power embedded applications," in IEEE Symp. VLSI Circuits Dig., 2000, pp. 162-165.
-
IEEE Symp. VLSI Circuits Dig., 2000
, pp. 162-165
-
-
Ikehashi, T.1
-
9
-
-
50249187802
-
A 15 ns 4 Mb NVSRAM in 0.13 μm SONOS technology
-
M. Fliesler, D. Still, and J. Hwang, "A 15 ns 4 Mb NVSRAM in 0.13 μm SONOS technology," in Proc. IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW), 2008, pp. 83-86.
-
Proc. IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW), 2008
, pp. 83-86
-
-
Fliesler, M.1
Still, D.2
Hwang, J.3
-
10
-
-
70350000396
-
16 Mb split gate flash memory with improved process window
-
J. Yater et al., "16 Mb split gate flash memory with improved process window," in Proc. IEEE Int. Memory Workshop (IMW), 2009, pp. 1-2.
-
Proc. IEEE Int. Memory Workshop (IMW), 2009
, pp. 1-2
-
-
Yater, J.1
-
12
-
-
84876517910
-
40 nm embedded SG-MONOS flash macros for automotive with 160 MHz random access for code and endurance over 10 M cycles for data
-
T. Kono et al., "40 nm embedded SG-MONOS flash macros for automotive with 160 MHz random access for code and endurance over 10 M cycles for data," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2013, pp. 212-213.
-
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2013
, pp. 212-213
-
-
Kono, T.1
-
13
-
-
0033681432
-
1.25 volt, low cost, embedded flash memory for low density applications
-
R. McPartland and R. Singh, "1.25 volt, low cost, embedded flash memory for low density applications," in IEEE Symp. VLSI Circuits Dig., 2000, pp. 158-161.
-
IEEE Symp. VLSI Circuits Dig., 2000
, pp. 158-161
-
-
McPartland, R.1
Singh, R.2
-
14
-
-
0034825932
-
CMOS process compatible IE-flash (inverse gate electrode flash) technology for system-on a chip
-
S. Shukuri, K. Yanagisawa, and K. Ishibashi, "CMOS process compatible IE-flash (inverse gate electrode flash) technology for system-on a chip," in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2001, pp. 179-182.
-
Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2001
, pp. 179-182
-
-
Shukuri, S.1
Yanagisawa, K.2
Ishibashi, K.3
-
15
-
-
0036564734
-
A system LSI memory redundancy technique using an IE-flash (inverse-gate-electrode flash) programming circuit
-
May
-
M. Yamaoka et al., "A system LSI memory redundancy technique using an IE-flash (inverse-gate-electrode flash) programming circuit," IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 599-604, May 2002.
-
(2002)
IEEE J. Solid-State Circuits
, vol.37
, Issue.5
, pp. 599-604
-
-
Yamaoka, M.1
-
17
-
-
78751490060
-
A PND (PMOS-NMOS-depletion MOS) type single poly gate non-volatilememory cell design with a differential cell architecture in a pure CMOS logic process for a system LSI
-
May
-
Y. Yamamoto et al., "A PND (PMOS-NMOS-depletion MOS) type single poly gate non-volatilememory cell design with a differential cell architecture in a pure CMOS logic process for a system LSI," IEICE Trans. Electron., vol. E90-C, no. 5, pp. 1129-1137, May 2007.
-
(2007)
IEICE Trans. Electron.
, vol.E90-C
, Issue.5
, pp. 1129-1137
-
-
Yamamoto, Y.1
-
18
-
-
84892972656
-
Nonvolatile semiconductor memory device
-
US Patent 7,755,941, Jul. 13
-
Y. Yamamoto et al., "Nonvolatile semiconductor memory device," US Patent 7,755,941, Jul. 13, 2010.
-
(2010)
-
-
Yamamoto, Y.1
-
19
-
-
57149137492
-
Floating-gate nonvolatile memory with ultrathin 5 nm tunnel oxide
-
Dec.
-
Y. Ma et al., "Floating-gate nonvolatile memory with ultrathin 5 nm tunnel oxide," IEEE Trans. Electron Devices, vol. 55, no. 12, pp. 3476-3481, Dec. 2008.
-
(2008)
IEEE Trans. Electron Devices
, vol.55
, Issue.12
, pp. 3476-3481
-
-
Ma, Y.1
-
20
-
-
84886104647
-
PFET nonvolatile memory
-
US Patent 7,221,596, May 22
-
A. Pesavento, F. Bernard, and J. Hyde, "PFET nonvolatile memory," US Patent 7,221,596, May 22, 2007.
-
(2007)
-
-
Pesavento, A.1
Bernard, F.2
Hyde, J.3
-
21
-
-
74049101107
-
An ultra low power non-volatilememory in standard CMOS process for passive RFID tags
-
P. Feng, Y. Li, and N. Wu, "An ultra low power non-volatilememory in standard CMOS process for passive RFID tags," in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2009, pp. 713-716.
-
Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2009
, pp. 713-716
-
-
Feng, P.1
Li, Y.2
Wu, N.3
-
22
-
-
84892654920
-
Single polysilicon layer non-volatile memory and operating method thereof
-
US Patent 8,199,578, Jun. 12
-
H. Chen et al., "Single polysilicon layer non-volatile memory and operating method thereof," US Patent 8,199,578, Jun. 12, 2012.
-
(2012)
-
-
Chen, H.1
-
24
-
-
84866618592
-
A logic-compatible embedded flash memory featuring a multi-story high voltage switch and a selective refresh scheme
-
S. Song, K. Chun, and C. H. Kim, "A logic-compatible embedded flash memory featuring a multi-story high voltage switch and a selective refresh scheme," in IEEE Symp. VLSI Circuits Dig., 2012, pp. 130-131.
-
IEEE Symp. VLSI Circuits Dig., 2012
, pp. 130-131
-
-
Song, S.1
Chun, K.2
Kim, C.H.3
-
25
-
-
0030291637
-
2 3.3 V only 128 Mb multilevel NAND flash memory for mass storage applications
-
Nov.
-
2 3.3 V only 128 Mb multilevel NAND flash memory for mass storage applications," IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1575-1583, Nov. 1996.
-
(1996)
IEEE J. Solid-State Circuits
, vol.31
, Issue.11
, pp. 1575-1583
-
-
Jung, T.1
-
26
-
-
0029404872
-
A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme
-
Nov.
-
K. Suh et al., "A 3.3 V 32 Mb NAND flash memory with incremental step pulse programming scheme," IEEE J. Solid-State Circuits, vol. 30, no. 11, pp. 1149-1156, Nov. 1995.
-
(1995)
IEEE J. Solid-State Circuits
, vol.30
, Issue.11
, pp. 1149-1156
-
-
Suh, K.1
-
27
-
-
84860667742
-
Bitline-capacitance-cancelation sensing scheme with 11 ns read latency and maximum read throughput of 2.9 GB/s in 65 nm embedded flash for automotive
-
M. Jefremow et al., "Bitline-capacitance-cancelation sensing scheme with 11 ns read latency and maximum read throughput of 2.9 GB/s in 65 nm embedded flash for automotive," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 428-429.
-
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012
, pp. 428-429
-
-
Jefremow, M.1
-
28
-
-
0032028335
-
A high-efficiency CMOS voltage doubler
-
Mar.
-
P. Favrat, P. Deval, and M. Declercq, "A high-efficiency CMOS voltage doubler," IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 410-416, Mar. 1998.
-
(1998)
IEEE J. Solid-State Circuits
, vol.33
, Issue.3
, pp. 410-416
-
-
Favrat, P.1
Deval, P.2
Declercq, M.3
-
29
-
-
0038718671
-
Power efficient charge pump in deep submicron standard CMOS technology
-
Jun.
-
R. Pelliconi et al., "Power efficient charge pump in deep submicron standard CMOS technology," IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1068-1071, Jun. 2003.
-
(2003)
IEEE J. Solid-State Circuits
, vol.38
, Issue.6
, pp. 1068-1071
-
-
Pelliconi, R.1
-
31
-
-
3342973263
-
Relaxation of interface states and positive charge in thin gate oxide after Fowler-Nordheim stress
-
Apr.
-
A. Hdiy, G. Salace, and C. Petit, "Relaxation of interface states and positive charge in thin gate oxide after Fowler-Nordheim stress," AIP J. Appl. Phys., vol. 73, no. 7, pp. 3569-3570, Apr. 1993.
-
(1993)
AIP J. Appl. Phys.
, vol.73
, Issue.7
, pp. 3569-3570
-
-
Hdiy, A.1
Salace, G.2
Petit, C.3
-
32
-
-
0032097823
-
Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a flash EEPROM
-
Jun.
-
Y. Park and D. Schroder, "Degradation of thin tunnel gate oxide under constant Fowler-Nordheim current stress for a flash EEPROM," IEEE Trans. Electron Devices, vol. 45, no. 6, pp. 1361-1368, Jun. 1998.
-
(1998)
IEEE Trans. Electron Devices
, vol.45
, Issue.6
, pp. 1361-1368
-
-
Park, Y.1
Schroder, D.2
-
33
-
-
0033360385
-
Detailed observation of small leak current in flash memories with thin tunnel oxides
-
May
-
Y. Manabe et al., "Detailed observation of small leak current in flash memories with thin tunnel oxides," IEEE Trans. Semicond. Manufact., vol. 12, no. 2, pp. 170-174, May 1999.
-
(1999)
IEEE Trans. Semicond. Manufact.
, vol.12
, Issue.2
, pp. 170-174
-
-
Manabe, Y.1
-
34
-
-
3142773890
-
Introduction to flash memory
-
Apr.
-
R. Bez et al., "Introduction to flash memory," Proc. IEEE, vol. 91, no. 4, Apr. 2003.
-
(2003)
Proc. IEEE
, vol.91
, Issue.4
-
-
Bez, R.1
-
35
-
-
2342522065
-
Effects of interface trap generation and annihilation on the data retention characteristics of flash memory cells
-
Mar.
-
J. Lee et al., "Effects of interface trap generation and annihilation on the data retention characteristics of flash memory cells," IEEE Trans. Device Mat. Rel., vol. 4, no. 1, pp. 110-117, Mar. 2004.
-
(2004)
IEEE Trans. Device Mat. Rel.
, vol.4
, Issue.1
, pp. 110-117
-
-
Lee, J.1
-
36
-
-
11144248077
-
Flash EEPROM threshold instabilities due to charge trapping during program/erase cycling
-
Sep.
-
N. Mielke et al., "Flash EEPROM threshold instabilities due to charge trapping during program/erase cycling," IEEE Trans. Device Mat. Rel., vol. 4, no. 3, pp. 335-344, Sep. 2004.
-
(2004)
IEEE Trans. Device Mat. Rel.
, vol.4
, Issue.3
, pp. 335-344
-
-
Mielke, N.1
-
37
-
-
84872085405
-
Quasi-nonvolatile SSD: Trading flash memory nonvolatility to improve storage system performance for enterprise applications
-
Y. Pan et al., "Quasi-nonvolatile SSD: Trading flash memory nonvolatility to improve storage system performance for enterprise applications," in Proc. IEEE Int. Symp. High Performance Comput. Architecture (HPCA), 2012, pp. 1-10.
-
Proc. IEEE Int. Symp. High Performance Comput. Architecture (HPCA), 2012
, pp. 1-10
-
-
Pan, Y.1
-
38
-
-
79960012990
-
A first study on self-healing solid-state drives
-
Q. Wu, G. Dong, and T. Zhang, "A first study on self-healing solid-state drives," in Proc. IEEE Int. Memory Workshop (IMW), 2011, pp. 1-4.
-
Proc. IEEE Int. Memory Workshop (IMW), 2011
, pp. 1-4
-
-
Wu, Q.1
Dong, G.2
Zhang, T.3
-
40
-
-
84860676678
-
Over-10x-extended-lifetime 76%-reduced-error Solid-State Drives (SSDs) with error-prediction LDPC architecture and error-recovery scheme
-
S. Tanakamaru, Y. Yanagihara, and K. Takeuchi, "Over-10x-extended- lifetime 76%-reduced-error Solid-State Drives (SSDs) with error-prediction LDPC architecture and error-recovery scheme," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012, pp. 424-425.
-
IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2012
, pp. 424-425
-
-
Tanakamaru, S.1
Yanagihara, Y.2
Takeuchi, K.3
-
41
-
-
0027840454
-
A new self-data-refresh scheme for a sector erasable 16 Mb flash EEPROM
-
A. Umezawa et al., "A new self-data-refresh scheme for a sector erasable 16 Mb flash EEPROM," in IEEE Symp. VLSI Circuits Dig., 1993, pp. 99-100.
-
IEEE Symp. VLSI Circuits Dig., 1993
, pp. 99-100
-
-
Umezawa, A.1
|