메뉴 건너뛰기




Volumn 41, Issue 2, 2008, Pages 662-671

Fingerprint classification using one-vs-all support vector machines dynamically ordered with nai{dotless}̈ve Bayes classifiers

Author keywords

Dynamic classification; FingerCode; Fingerprint classification; Nai dotless ve Bayes classifier; Pseudo ridges; Singularity; Support vector machine

Indexed keywords

COMPUTATIONAL EFFICIENCY; DATABASE SYSTEMS; FEATURE EXTRACTION; IMAGE ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 34848849013     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.07.004     Document Type: Article
Times cited : (114)

References (31)
  • 1
    • 2442610447 scopus 로고    scopus 로고
    • Fingerprint classification: a review
    • Yager N., and Amin A. Fingerprint classification: a review. Pattern Anal. Appl. 7 1 (2004) 77-93
    • (2004) Pattern Anal. Appl. , vol.7 , Issue.1 , pp. 77-93
    • Yager, N.1    Amin, A.2
  • 4
    • 0035481424 scopus 로고    scopus 로고
    • A combination fingerprint classifier
    • Senior A. A combination fingerprint classifier. IEEE Trans. Pattern Anal. Mach. Intell. 23 10 (2001) 1165-1174
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.10 , pp. 1165-1174
    • Senior, A.1
  • 5
    • 0030104477 scopus 로고    scopus 로고
    • Fingerprint classification
    • Karu K., and Jain A. Fingerprint classification. Pattern Recognition 29 3 (1996) 389-404
    • (1996) Pattern Recognition , vol.29 , Issue.3 , pp. 389-404
    • Karu, K.1    Jain, A.2
  • 6
    • 12344322746 scopus 로고    scopus 로고
    • Fingerprint classification based on extraction and analysis of singularities and pseudo ridges
    • Zhang Q., and Yan H. Fingerprint classification based on extraction and analysis of singularities and pseudo ridges. Pattern Recognition 37 11 (2004) 2233-2243
    • (2004) Pattern Recognition , vol.37 , Issue.11 , pp. 2233-2243
    • Zhang, Q.1    Yan, H.2
  • 7
    • 0034801232 scopus 로고    scopus 로고
    • Fingerprints classification using artificial neural networks: a combined structural and statistical approach
    • Nagaty K. Fingerprints classification using artificial neural networks: a combined structural and statistical approach. Neural Networks 14 9 (2001) 1293-1305
    • (2001) Neural Networks , vol.14 , Issue.9 , pp. 1293-1305
    • Nagaty, K.1
  • 9
    • 10644223477 scopus 로고    scopus 로고
    • Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis
    • Park C., and Park H. Fingerprint classification using fast Fourier transform and nonlinear discriminant analysis. Pattern Recognition 38 4 (2005) 495-503
    • (2005) Pattern Recognition , vol.38 , Issue.4 , pp. 495-503
    • Park, C.1    Park, H.2
  • 10
    • 0031235283 scopus 로고    scopus 로고
    • Geometric framework for fingerprint image classification
    • Chong M., Ngee T., Jun L., and Gay R. Geometric framework for fingerprint image classification. Pattern Recognition 30 9 (1997) 1475-1488
    • (1997) Pattern Recognition , vol.30 , Issue.9 , pp. 1475-1488
    • Chong, M.1    Ngee, T.2    Jun, L.3    Gay, R.4
  • 11
    • 0036604852 scopus 로고    scopus 로고
    • A new model for fingerprint classification by ridge distribution sequences
    • Chang J., and Fan K. A new model for fingerprint classification by ridge distribution sequences. Pattern Recognition 35 6 (2002) 1209-1223
    • (2002) Pattern Recognition , vol.35 , Issue.6 , pp. 1209-1223
    • Chang, J.1    Fan, K.2
  • 12
    • 0036487278 scopus 로고    scopus 로고
    • Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines
    • Yao Y., Marcialis G., Pontil M., Frasconi P., and Roli F. Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines. Pattern Recognition 36 2 (2003) 397-406
    • (2003) Pattern Recognition , vol.36 , Issue.2 , pp. 397-406
    • Yao, Y.1    Marcialis, G.2    Pontil, M.3    Frasconi, P.4    Roli, F.5
  • 13
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C., and Lin C. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Networks 13 2 (2002) 415-425
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.1    Lin, C.2
  • 14
    • 34848825414 scopus 로고    scopus 로고
    • C. Watson, C. Wilson, Fingerprint Database, National Institute of Standard and Technology, Special Database 4, FPDB, 1992.
  • 15
    • 0001849156 scopus 로고    scopus 로고
    • Multicategory classification by support vector machines
    • Bredensteiner E., and Bennett K. Multicategory classification by support vector machines. Comput. Optim. Appl. 12 1-3 (1999) 53-79
    • (1999) Comput. Optim. Appl. , vol.12 , Issue.1-3 , pp. 53-79
    • Bredensteiner, E.1    Bennett, K.2
  • 16
    • 0035503160 scopus 로고    scopus 로고
    • Support vector machines and the multiple hypothesis test problem
    • Sebald D., and Bucklew J. Support vector machines and the multiple hypothesis test problem. IEEE Trans. Signal Process. 49 11 (2001) 2865-2872
    • (2001) IEEE Trans. Signal Process. , vol.49 , Issue.11 , pp. 2865-2872
    • Sebald, D.1    Bucklew, J.2
  • 17
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu L., Krzyzak A., and Suen C. Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans. Syst. Man Cybern. 22 3 (1992) 418-435
    • (1992) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.3
  • 18
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., and Gabrys B. Classifier selection for majority voting. Inf. Fusion 6 1 (2005) 63-81
    • (2005) Inf. Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 19
    • 0000391037 scopus 로고    scopus 로고
    • Majority systems and the condorcet jury theorem
    • Boland P. Majority systems and the condorcet jury theorem. Statistician 38 (1998) 181-189
    • (1998) Statistician , vol.38 , pp. 181-189
    • Boland, P.1
  • 21
    • 0036472946 scopus 로고    scopus 로고
    • A theoretical study on six classifier fusion strategies
    • Kuncheva L. A theoretical study on six classifier fusion strategies. IEEE Trans. Pattern Anal. Mach. Intell. 24 2 (2002) 281-286
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.2 , pp. 281-286
    • Kuncheva, L.1
  • 22
    • 0036568032 scopus 로고    scopus 로고
    • On the learnability and design of output codes for multiclass problems
    • Crammer K., and Singer Y. On the learnability and design of output codes for multiclass problems. Mach. Learn. 47 2-3 (2002) 201-233
    • (2002) Mach. Learn. , vol.47 , Issue.2-3 , pp. 201-233
    • Crammer, K.1    Singer, Y.2
  • 24
    • 27244453282 scopus 로고    scopus 로고
    • The behavior knowledge space fusion method: analysis of generalization error and strategies for performance improvement
    • Raudys S., and Roli F. The behavior knowledge space fusion method: analysis of generalization error and strategies for performance improvement. Lect. Notes Comput. Sci. 2709 (2003) 55-64
    • (2003) Lect. Notes Comput. Sci. , vol.2709 , pp. 55-64
    • Raudys, S.1    Roli, F.2
  • 25
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: an experimental comparison
    • Kuncheva L., Bezdek J., and Duin R. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition 34 2 (2001) 299-314
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 299-314
    • Kuncheva, L.1    Bezdek, J.2    Duin, R.3
  • 26
    • 0035899791 scopus 로고    scopus 로고
    • Using measures of similarity and inclusion for multiple classifier fusion by decision templates
    • Kuncheva L. Using measures of similarity and inclusion for multiple classifier fusion by decision templates. Fuzzy Sets Syst. 122 3 (2001) 401-407
    • (2001) Fuzzy Sets Syst. , vol.122 , Issue.3 , pp. 401-407
    • Kuncheva, L.1
  • 27
    • 0022688781 scopus 로고
    • A robust layered control system for a mobile robot
    • Brooks R. A robust layered control system for a mobile robot. IEEE J. Robotics Autom. 2 1 (1986) 14-23
    • (1986) IEEE J. Robotics Autom. , vol.2 , Issue.1 , pp. 14-23
    • Brooks, R.1
  • 28
    • 0035325620 scopus 로고    scopus 로고
    • An improved nai{dotless}̈ve Bayesian classifier technique coupled with a novel input solution method
    • Liu J., Li B., and Dillon T. An improved nai{dotless}̈ve Bayesian classifier technique coupled with a novel input solution method. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 31 2 (2001) 249-256
    • (2001) IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. , vol.31 , Issue.2 , pp. 249-256
    • Liu, J.1    Li, B.2    Dillon, T.3
  • 29
    • 0035124121 scopus 로고    scopus 로고
    • Robust Bayes classifiers
    • Ramoni M., and Sebastiani P. Robust Bayes classifiers. Artif. Intell. 125 1-2 (2001) 209-226
    • (2001) Artif. Intell. , vol.125 , Issue.1-2 , pp. 209-226
    • Ramoni, M.1    Sebastiani, P.2
  • 30
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • Keerthi S., and Lin C.-J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 15 7 (2003) 1667-1689
    • (2003) Neural Comput. , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.1    Lin, C.-J.2
  • 31
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu T.-F., Lin C.-J., and Weng R. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5 (2004) 975-1005
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.