메뉴 건너뛰기




Volumn 5, Issue 2, 2002, Pages 121-135

Bagging, boosting and the random subspace method for linear classifiers

Author keywords

Bagging; Boosting; Combining classifiers; Linear classifiers; Random subspaces; Training sample size

Indexed keywords


EID: 0036080160     PISSN: 14337541     EISSN: None     Source Type: Journal    
DOI: 10.1007/s100440200011     Document Type: Article
Times cited : (451)

References (28)
  • 1
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • Krishnaiah PR, Kanal LN (eds) North-Holland, Amsterdam
    • Jain AK, Chandrasekaran B. Dimensionality and sample size considerations in pattern recognition practice. In: Krishnaiah PR, Kanal LN (eds) Handbook of Statistics, vol 2. North-Holland, Amsterdam, 1987; 835-855
    • (1987) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, B.2
  • 2
    • 84887916087 scopus 로고
    • Regularized discriminant analysis
    • Friedman JH. Regularized discriminant analysis. J Am Statistical Assoc 1989; 84: 165-175
    • (1989) J Am Statistical Assoc , vol.84 , pp. 165-175
    • Friedman, J.H.1
  • 3
    • 2342565172 scopus 로고    scopus 로고
    • The effects of adding noise during backpropagation training on a generalization performance
    • An G. The effects of adding noise during backpropagation training on a generalization performance. Neural Computation 1996; 8: 643-674
    • (1996) Neural Computation , vol.8 , pp. 643-674
    • An, G.1
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning J 1996; 24(2): 123-140
    • (1996) Machine Learning J , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0032139235 scopus 로고    scopus 로고
    • The Random subspace method for constructing decision forests
    • Ho TK. The Random subspace method for constructing decision forests. IEEE Trans Pattern Analysis and Machine Intelligence 1998; 20(8): 832-844
    • (1998) IEEE Trans Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 8
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire RE, Freund Y, Bartlett P, Lee W. Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Statistics 1998; 26(5): 1651-1686
    • (1998) Ann Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.4
  • 9
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • Breiman L. Arcing classifiers. Ann Statistics 1998; 26(3): 801-849
    • (1998) Ann Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 10
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich TG. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 2000; 40(2): 139-157
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 11
    • 0006001358 scopus 로고    scopus 로고
    • Random forests - Random features
    • University of California, Berkley
    • Breiman L. Random forests - random features. Technical Report 567, University of California, Berkley, 1999
    • (1999) Technical Report , vol.567
    • Breiman, L.1
  • 12
    • 0033556929 scopus 로고    scopus 로고
    • Boosted mixture of experts: An ensemble learning scheme
    • Avnimelech R, Intrator N. Boosted mixture of experts: an ensemble learning scheme. Neural Computation 1999; 11: 483-497
    • (1999) Neural Computation , vol.11 , pp. 483-497
    • Avnimelech, R.1    Intrator, N.2
  • 16
    • 84877781106 scopus 로고    scopus 로고
    • The role of combining rules in bagging and boosting
    • Ferri FJ, Inesta JM, Amin A, Pudil P (eds) Advances in Pattern Recognition (Proceedings Joint International Workshops SSPR'2000 and SPR'2000, Alicante, Spain, August/September 2000). Springer-Verlag, Berlin
    • Skurichina M, Duin RPW. The role of combining rules in bagging and boosting. In: Ferri FJ, Inesta JM, Amin A, Pudil P (eds) Advances in Pattern Recognition (Proceedings Joint International Workshops SSPR'2000 and SPR'2000, Alicante, Spain, August/September 2000). Lecture Notes in Computer Science, vol 1876. Springer-Verlag, Berlin, 2000; 631-640
    • (2000) Lecture Notes in Computer Science , vol.1876 , pp. 631-640
    • Skurichina, M.1    Duin, R.P.W.2
  • 17
    • 84867083312 scopus 로고    scopus 로고
    • Boosting in linear discriminant analysis
    • Kittler J, Roll F (eds) Multiple Classifier Systems (Proceedings First International Workshop MCS 2000, Cagliari, Italy). Springer-Verlag, Berlin
    • Skurichina M, Duin RPW. Boosting in linear discriminant analysis. In: Kittler J, Roll F (eds) Multiple Classifier Systems (Proceedings First International Workshop MCS 2000, Cagliari, Italy). Lecture Notes in Computer Science, vol 1857. Springer-Verlag, Berlin, 2000: 190-199
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 190-199
    • Skurichina, M.1    Duin, R.P.W.2
  • 18
    • 84867086266 scopus 로고    scopus 로고
    • Combining Fisher linear discriminants for dissimilarity representations
    • Kittler J, Roli F (eds) Multiple Classifier Systems (Proceedings First International Workshop MCS 2000, Cagliari, Italy). Springer-Verlag, Berlin
    • Pekalska E, Skurichina M, Duin RPW. Combining Fisher linear discriminants for dissimilarity representations. In: Kittler J, Roli F (eds) Multiple Classifier Systems (Proceedings First International Workshop MCS 2000, Cagliari, Italy). Lecture Notes in Computer Science, vol 1857. Springer-Verlag, Berlin, 2000; 117-126
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 117-126
    • Pekalska, E.1    Skurichina, M.2    Duin, R.P.W.3
  • 19
    • 84957007471 scopus 로고    scopus 로고
    • Bagging and the random subspace method for redundant feature spaces
    • Kittler J, Roli F (eds) Multiple Classifier Systems (Proceedings Second International Workshop MCS 2001, Cambridge, UK). Springer-Verlag, Berlin
    • Skurichina M, Duin RPW. Bagging and the random subspace method for redundant feature spaces. In: Kittler J, Roli F (eds) Multiple Classifier Systems (Proceedings Second International Workshop MCS 2001, Cambridge, UK). Lecture Notes in Computer Science, vol 2096. Springer-Verlag, Berlin, 2001; 1-10
    • (2001) Lecture Notes in Computer Science , vol.2096 , pp. 1-10
    • Skurichina, M.1    Duin, R.P.W.2
  • 21
    • 0019020917 scopus 로고
    • On dimensionality, sample size, classification error and complexity of classification algorithm in pattern recognition
    • Raudys Š, Pikelis V. On dimensionality, sample size, classification error and complexity of classification algorithm in pattern recognition. IEEE Trans Pattern Analysis and Machine Intelligence 1980; 2(3): 242-252
    • (1980) IEEE Trans Pattern Analysis and Machine Intelligence , vol.2 , Issue.3 , pp. 242-252
    • Raudys, Š.1    Pikelis, V.2
  • 22
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • Bauer E, Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting and variants. Machine Learning 1999; 36(1/2): 105-142
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 23
    • 0032042805 scopus 로고    scopus 로고
    • On expected classification error of the Fisher linear classifier with pseudo-inverse of the covariance matrix
    • Raudys Š, Duin RPW. On expected classification error of the Fisher linear classifier with pseudo-inverse of the covariance matrix. Pattern Recognition Letters 1998; 19(5-6): 385-392
    • (1998) Pattern Recognition Letters , vol.19 , Issue.5-6 , pp. 385-392
    • Raudys, Š.1    Duin, R.P.W.2
  • 24
  • 26
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of online learning and an application to boosting
    • Freund Y, Schapire RE. A decision-theoretic generalization of online learning and an application to boosting. J Computer and System Sciences 1997; 55(1): 119-139
    • (1997) J Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 28
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Irvine, Department of Information and Computer Science
    • Blake CL, Merz CJ. UCI Repository of machine learning databases, http://www.ics.uci.edu/~mlearn/MLRepository.html, University of California, Irvine, Department of Information and Computer Science, 1998
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.