메뉴 건너뛰기




Volumn 82, Issue 3, 2011, Pages 375-397

Feature-subspace aggregating: Ensembles for stable and unstable learners

Author keywords

Classifier ensembles; Global models; Local models; Model diversity; Stable learners; Unstable learners

Indexed keywords

CLASSIFIER ENSEMBLES; GLOBAL MODELS; LOCAL MODEL; STABLE LEARNERS; UNSTABLE LEARNERS;

EID: 79958861311     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-010-5224-5     Document Type: Article
Times cited : (44)

References (32)
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers (with discussion)
    • Breiman, L. (1998). Arcing classifiers (with discussion). Annals of Statistics, 26(3), 801-849.
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 9
    • 37249049777 scopus 로고    scopus 로고
    • Random feature subset selection for ensemble based classification of data with missing features
    • Berlin: Springer
    • DePasquale, J., & Polikar, O. (2007). Random feature subset selection for ensemble based classification of data with missing features. In Lecture notes in computer science: Vol. 4472. Multiple classifier systems (pp. 251-260). Berlin: Springer.
    • (2007) Lecture Notes in Computer Science: 4472. Multiple Classifier Systems , pp. 251-260
    • Depasquale, J.1    Polikar, O.2
  • 12
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions Pattern Analysis and Machine Intelligence, 20(8), 832-844. (Pubitemid 128741345)
    • (1998) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 17
    • 33745937896 scopus 로고    scopus 로고
    • A study of AdaBoost with SVM based weak learners
    • DOI 10.1109/IJCNN.2005.1555829, 1555829, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
    • Li, X.,Wang, L., & Sung, E. (2005). A study of AdaBoost with SVM based weak learners. In Proceedings of the international joint conference on neural networks (pp. 196-201). New York: IEEE Press. (Pubitemid 44055448)
    • (2005) Proceedings of the International Joint Conference on Neural Networks , vol.1 , pp. 196-201
    • Li, X.1    Wang, L.2    Sung, E.3
  • 20
    • 84944215019 scopus 로고    scopus 로고
    • Input Decimation Ensembles: Decorrelating through Dimensionality Reduction
    • Multiple Classifier Systems
    • Oza, N. C.,&Tumer, K. (2001). Input decimation ensembles: decorrelation through dimensionality reduction. In LNCS: Vol. 2096. Proceedings of the second international workshop on multiple classifier systems (pp. 238-247). Berlin: Springer. (Pubitemid 33303231)
    • (2001) Lecture Notes in Computer Science , Issue.2096 , pp. 238-247
    • Oza, N.C.1    Tumer, K.2
  • 23
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • DOI 10.1023/A:1007614523901
    • Schapire, R. E., & Singer, S. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37, 297-336. (Pubitemid 32210620)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 24
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao, D., Tang, X., Li, X., & Wu, X. (2006). Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7), 1088-1099.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 27
    • 14844351034 scopus 로고    scopus 로고
    • Not so naive Bayes: Aggregating one-dependence estimators
    • DOI 10.1007/s10994-005-4258-6
    • Webb, G. I., Boughton, J., & Wang, Z. (2005). Not so naive Bayes: averaged one-dependence estimators. Machine Learning, 58(1), 5-24. (Pubitemid 40356736)
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 5-24
    • Webb, G.I.1    Boughton, J.R.2    Wang, Z.3
  • 29
    • 35648962940 scopus 로고    scopus 로고
    • To select or to weigh: A comparative study of linear combination schemes for superparent-one-dependence estimators
    • DOI 10.1109/TKDE.2007.190650
    • Yang, Y., Webb, G. I., Cerquides, J., Korb, K., Boughton, J., & Ting, K. M. (2007). To select or to weigh: a comparative study of linear combination schemes for superparent-one-dependence ensembles. IEEE Transaction on Knowledge and Data Engineering, 19(12), 1652-1665. (Pubitemid 350025499)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.12 , pp. 1652-1665
    • Yang, Y.1    Webb, G.I.2    Cerquides, J.3    Korb, K.B.4    Boughton, J.5    Ting, K.M.6
  • 31
    • 0034301677 scopus 로고    scopus 로고
    • Lazy learning of Bayesian rules
    • Zheng, Z., & Webb, G. I. (2000). Lazy learning of Bayesian rules. Machine Learning, 41(1), 53-84.
    • (2000) Machine Learning , vol.41 , Issue.1 , pp. 53-84
    • Zheng, Z.1    Webb, G.I.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.