-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
July-August
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36:105-142, July-August 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0003408496
-
-
University of California, Irvine, Department of Information and Computer Sciences.
-
C. L. Blake and C. J. Merz. UCI repository of machine learning databases [http://www.ics.uci.edu/̃mlearn/MLRepository.html], 1998. University of California, Irvine, Department of Information and Computer Sciences.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Merz, C.J.2
-
3
-
-
0002051628
-
Empirical analysis of predictive algorithms for collaborative filtering
-
Madison, WI, July
-
J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, Madison, WI, July 1998.
-
(1998)
Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence
-
-
Breese, J.1
Heckerman, D.2
Kadie, C.3
-
4
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. Annals of Statistics, 26(3):801-849, 1998.
-
(1998)
Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
6
-
-
0024533068
-
Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases
-
C. L. Carter, C. Allen, and D. E. Henson. Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer, 63:181-187, 1989.
-
(1989)
Cancer
, vol.63
, pp. 181-187
-
-
Carter, C.L.1
Allen, C.2
Henson, D.E.3
-
12
-
-
0346457323
-
BOAT - Optimistic decision tree construction
-
Philadelphia, PA
-
J. Gehrke, V. Gantt, R. Ramakrishnana, and W.-Y. Lob. BOAT - Optimistic decision tree construction. In Proceedings of the 1999 SIGMOD Conference, Philadelphia, PA, 1999.
-
(1999)
Proceedings of the 1999 SIGMOD Conference
-
-
Gehrke, J.1
Gantt, V.2
Ramakrishnana, R.3
Lob, W.-Y.4
-
13
-
-
0013003957
-
Distributed learning on very large data sets
-
Aug
-
L. O. Hall, K. W. Bowyer, W. P. Kegelmeyer, T. E. Moore, and C. Chao. Distributed learning on very large data sets. In Workshop on Distributed and Parallel Knowledge Discovery (KDD-00), pages 79-84, Aug 2000.
-
(2000)
Workshop on Distributed and Parallel Knowledge Discovery (KDD-00)
, pp. 79-84
-
-
Hall, L.O.1
Bowyer, K.W.2
Kegelmeyer, W.P.3
Moore, T.E.4
Chao, C.5
-
14
-
-
0029372769
-
Methods for combining experts' probability assessments
-
R. A. Jacobs. Methods for combining experts' probability assessments. Neural Computation, 7:867-888, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 867-888
-
-
Jacobs, R.A.1
-
20
-
-
0025448521
-
The strength of weak learnability
-
R. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227, 1990.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.1
-
21
-
-
0000524365
-
Learning with ensembles: How overfitting can be useful
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors. MIT Press
-
P. Sollich and A. Krogh. Learning with ensembles: How overfitting can be useful. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8. MIT Press, 1996.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
-
-
Sollich, P.1
Krogh, A.2
-
22
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23:69-101, 1996.
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
|