메뉴 건너뛰기




Volumn 67, Issue 1, 2012, Pages 93-104

An assessment of the effectiveness of a random forest classifier for land-cover classification

Author keywords

Classification; Land cover; Landsat Thematic Mapper; Machine learning; Random forest; Remote sensing

Indexed keywords

ACCURATE MAPPING; AUXILIARY VARIABLES; BLACK BOXES; CLASSIFICATION ACCURACY; DATA SET SIZE; DIGITAL TERRAIN MODEL; KAPPA INDEX; KAPPA VALUES; LAND COVER; LAND COVER CLASSIFICATION; LANDSAT THEMATIC MAPPER; LANDSAT-5; MACHINE-LEARNING; MAPPING ACCURACY; MCNEMAR; MISSING VALUES; NOISE ADDITION; NON-PARAMETRIC; PATTERN RECOGNITION TECHNIQUES; RANDOM FOREST CLASSIFIER; RANDOM FORESTS; REMOTELY SENSED DATA; ROBUST CLASSIFICATION; SINGLE DECISION; SURVIVAL ANALYSIS; THEMATIC MAPPERS;

EID: 84855970934     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2011.11.002     Document Type: Article
Times cited : (2121)

References (86)
  • 1
    • 84855925462 scopus 로고    scopus 로고
    • The MODTRAN 2/3 Report and LOWTRAN 7 MODEL.
    • Abreu, L.W., Anderson, G.P., 1996. The MODTRAN 2/3 Report and LOWTRAN 7 MODEL.
    • (1996)
    • Abreu, L.W.1    Anderson, G.P.2
  • 4
    • 0034104554 scopus 로고    scopus 로고
    • The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean
    • Berberoglu S., Lloyd C.D., Atkinson P.M., Curran P.J. The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Computers and Geosciences 2000, 26(4):385-396.
    • (2000) Computers and Geosciences , vol.26 , Issue.4 , pp. 385-396
    • Berberoglu, S.1    Lloyd, C.D.2    Atkinson, P.M.3    Curran, P.J.4
  • 5
    • 84901402015 scopus 로고    scopus 로고
    • Exploiting MODTRAN radiation transport for atmospheric correction: the FLAASH algorithm
    • In: Fifth International Conference on Information Fusion, Annapolis.
    • Berk, A., Adler-Golden, S.M., 2002. Exploiting MODTRAN radiation transport for atmospheric correction: the FLAASH algorithm. In: Fifth International Conference on Information Fusion, Annapolis. pp. 798-803.
    • (2002) , pp. 798-803
    • Berk, A.1    Adler-Golden, S.M.2
  • 6
    • 33846454364 scopus 로고    scopus 로고
    • Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change
    • Betts R., Falloon P., Goldewijk K., Ramankutty N. Biogeophysical effects of land use on climate: model simulations of radiative forcing and large-scale temperature change. Agricultural and Forest Meteorology 2007, 142(2-4):216-233.
    • (2007) Agricultural and Forest Meteorology , vol.142 , Issue.2-4 , pp. 216-233
    • Betts, R.1    Falloon, P.2    Goldewijk, K.3    Ramankutty, N.4
  • 7
    • 45849092625 scopus 로고    scopus 로고
    • Forests and climate change: forcings, feedbacks, and the climate benefits of forests
    • Bonan, G., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320 (5882), 1444-1449.
    • (2008) Science , vol.320 , Issue.5882 , pp. 1444-1449
    • Bonan, G.1
  • 8
    • 0003802343 scopus 로고
    • Classification and Regression Trees
    • Chapman & Hall/CRC.
    • Breiman, L., 1984. Classification and Regression Trees. Chapman & Hall/CRC.
    • (1984)
    • Breiman, L.1
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24(2):123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 2001, 45(1):5-32.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 11
    • 84855923968 scopus 로고    scopus 로고
    • Random Forest. (accessed 10.04.10).
    • Breiman, L., Cutler, A., 2004. Random Forest. (accessed 10.04.10). http://www.stat.berkeley.edu/breiman/RandomForests/cc_home.htm.
    • (2004)
    • Breiman, L.1    Cutler, A.2
  • 13
    • 84979641887 scopus 로고    scopus 로고
    • IPM from space: using satellite imagery to construct regional crop maps for studying crop insect interaction
    • Brewster C.C., Allen J.C., Kropp D.D. IPM from space: using satellite imagery to construct regional crop maps for studying crop insect interaction. American Entomologist 1999, 45(2):105-117.
    • (1999) American Entomologist , vol.45 , Issue.2 , pp. 105-117
    • Brewster, C.C.1    Allen, J.C.2    Kropp, D.D.3
  • 15
    • 0028983453 scopus 로고
    • Multidate SAR/TM synergism for crop classification in western Canada
    • Brisco B., Brown R.J. Multidate SAR/TM synergism for crop classification in western Canada. Photogrammetric Engineering and Remote Sensing 1995, 61(8):1009-1014.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , Issue.8 , pp. 1009-1014
    • Brisco, B.1    Brown, R.J.2
  • 17
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton R. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 1991, 37(1):35-46.
    • (1991) Remote Sensing of Environment , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.1
  • 20
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan J.C.-W., Paelinckx D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment 2008, 112(6):2999-3011.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.-W.1    Paelinckx, D.2
  • 21
    • 72549084319 scopus 로고    scopus 로고
    • Random Forest characterization of upland vegetation and management burning from aerial imagery
    • Chapman D.S., Bonn A., Kunin W.E., Cornell S.J. Random Forest characterization of upland vegetation and management burning from aerial imagery. Journal of Biogeography 2010, 37(1):37-46.
    • (2010) Journal of Biogeography , vol.37 , Issue.1 , pp. 37-46
    • Chapman, D.S.1    Bonn, A.2    Kunin, W.E.3    Cornell, S.J.4
  • 22
    • 0034476942 scopus 로고    scopus 로고
    • Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data
    • DeFries R.S., Chan J.C.-W. Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sensing of Environment 2000, 74(3):503-515.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 503-515
    • DeFries, R.S.1    Chan, J.C.-W.2
  • 23
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization
    • Dietterich T.G. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Machine Learning 2000, 40(2):139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 24
    • 0033934331 scopus 로고    scopus 로고
    • Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation
    • Fearnside P.M. Global warming and tropical land-use change: greenhouse gas emissions from biomass burning, decomposition and soils in forest conversion, shifting cultivation and secondary vegetation. Climatic Change 2000, 46(1):115-158.
    • (2000) Climatic Change , vol.46 , Issue.1 , pp. 115-158
    • Fearnside, P.M.1
  • 26
    • 0029478734 scopus 로고
    • Land cover classification by an artificial neural network with ancillary information
    • Foody G.M. Land cover classification by an artificial neural network with ancillary information. International Journal of Geographical Information Systems 1995, 9(5):527-542.
    • (1995) International Journal of Geographical Information Systems , vol.9 , Issue.5 , pp. 527-542
    • Foody, G.M.1
  • 27
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: evaluating the statistical significance of differences in classification accuracy
    • Foody G.M. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering and Remote Sensing 2004, 70(5):627-633.
    • (2004) Photogrammetric Engineering and Remote Sensing , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 28
    • 70449338714 scopus 로고    scopus 로고
    • Sample size determination for image classification accuracy assessment and comparison
    • Foody G.M. Sample size determination for image classification accuracy assessment and comparison. International Journal of Remote Sensing 2009, 30(20):5273-5291.
    • (2009) International Journal of Remote Sensing , vol.30 , Issue.20 , pp. 5273-5291
    • Foody, G.M.1
  • 29
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • Foody G.M., Arora M.K. An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing 1997, 18(4):799-810.
    • (1997) International Journal of Remote Sensing , vol.18 , Issue.4 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 30
    • 0032467477 scopus 로고    scopus 로고
    • Predicting the distribution of shrub species in southern California from climate and terrain-derived variables
    • Franklin J. Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. Journal of Vegetation Science 1998, 9(5):733-748.
    • (1998) Journal of Vegetation Science , vol.9 , Issue.5 , pp. 733-748
    • Franklin, J.1
  • 31
    • 0036291817 scopus 로고    scopus 로고
    • Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas
    • Franklin S., Wulder M. Remote sensing methods in medium spatial resolution satellite data land cover classification of large areas. Progress in Physical Geography 2002, 26(2):173-205.
    • (2002) Progress in Physical Geography , vol.26 , Issue.2 , pp. 173-205
    • Franklin, S.1    Wulder, M.2
  • 33
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    • Friedl M., Brodley C., Strahler A. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing 2002, 37(2):969-977.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.2 , pp. 969-977
    • Friedl, M.1    Brodley, C.2    Strahler, A.3
  • 34
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • Friedl M.A., Brodley C.E. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 1997, 61(3):399-409.
    • (1997) Remote Sensing of Environment , vol.61 , Issue.3 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 35
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    • Friedl M.A., Brodley C.E., Strahler A.H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing 1999, 37(2):969-977.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , Issue.2 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 36
    • 79955448374 scopus 로고    scopus 로고
    • Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic
    • Ghimire B., Rogan J., Miller J. Contextual land-cover classification: incorporating spatial dependence in land-cover classification models using random forests and the Getis statistic. Remote Sensing Letters 2010, 1:45-54.
    • (2010) Remote Sensing Letters , vol.1 , pp. 45-54
    • Ghimire, B.1    Rogan, J.2    Miller, J.3
  • 37
    • 15944365217 scopus 로고    scopus 로고
    • Random forest classification of multisource remote sensing and geographic data, Igarss 2004
    • In: IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, 20-24 September.
    • Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R., 2004. Random forest classification of multisource remote sensing and geographic data, Igarss 2004. In: IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, 20-24 September. pp. 1049-1052.
    • (2004) , pp. 1049-1052
    • Gislason, P.O.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 39
    • 78650731656 scopus 로고    scopus 로고
    • Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests
    • Guo L., Chehata N., Mallet C., Boukir S. Relevance of airborne lidar and multispectral image data for urban scene classification using Random Forests. ISPRS Journal of Photogrammetry and Remote Sensing 2011, 66(1):56-66.
    • (2011) ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , Issue.1 , pp. 56-66
    • Guo, L.1    Chehata, N.2    Mallet, C.3    Boukir, S.4
  • 42
    • 0029667616 scopus 로고    scopus 로고
    • Classification trees: an alternative to traditional land cover classifiers
    • Hansen M., Dubayah R., Defries R. Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing 1996, 17(5):1075-1081.
    • (1996) International Journal of Remote Sensing , vol.17 , Issue.5 , pp. 1075-1081
    • Hansen, M.1    Dubayah, R.2    Defries, R.3
  • 43
    • 81455156636 scopus 로고    scopus 로고
    • Random Forests, The Elements of Statistical Learning
    • Springer, New York.
    • Hastie, T., Tibshirani, R., Friedman, J., 2009. Random Forests, The Elements of Statistical Learning. Springer, New York. pp. 587-604.
    • (2009) , pp. 587-604
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 47
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Advances in Neural Information Processing Systems
    • Krogh, A., Vedelsby, J., 1995. Neural network ensembles, cross validation, and active learning. Advances in Neural Information Processing Systems, 231-238.
    • (1995) , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 49
    • 77957768057 scopus 로고    scopus 로고
    • Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors
    • Latifi H., Nothdurft A., Koch B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83(4):395-407.
    • (2010) Forestry , vol.83 , Issue.4 , pp. 395-407
    • Latifi, H.1    Nothdurft, A.2    Koch, B.3
  • 50
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest)
    • Lawrence R., Wood S., Sheley R. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest). Remote Sensing of Environment 2006, 100(3):356-362.
    • (2006) Remote Sensing of Environment , vol.100 , Issue.3 , pp. 356-362
    • Lawrence, R.1    Wood, S.2    Sheley, R.3
  • 51
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A., Wiener M. Classification and regression by randomForest. R News 2002, 2(3):18-22.
    • (2002) R News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 52
    • 55449099294 scopus 로고    scopus 로고
    • Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms
    • Lippitt C.D., Li Z., Eastman J.R., Jones T.G. Mapping selective logging in mixed deciduous forest: a comparison of machine learning algorithms. Photogrammetric Engineering and Remote Sensing 2008, 74(10):1201-1211.
    • (2008) Photogrammetric Engineering and Remote Sensing , vol.74 , Issue.10 , pp. 1201-1211
    • Lippitt, C.D.1    Li, Z.2    Eastman, J.R.3    Jones, T.G.4
  • 53
    • 0032724134 scopus 로고    scopus 로고
    • Application of muti-temporal Lansat 5 TM imagery for wetland identification
    • Lunetta R.S., Balogh M. Application of muti-temporal Lansat 5 TM imagery for wetland identification. Photogrammetric Engineering and Remote Sensing 1999, 65(11):1303-1310.
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , Issue.11 , pp. 1303-1310
    • Lunetta, R.S.1    Balogh, M.2
  • 56
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas J.F., Flores J.J. The application of artificial neural networks to the analysis of remotely sensed data. International Journal of Remote Sensing 2008, 29(3):617-663.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.3 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 58
    • 0037202441 scopus 로고    scopus 로고
    • Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence
    • Miller J., Franklin J. Modeling the distribution of four vegetation alliances using generalized linear models and classification trees with spatial dependence. Ecological Modelling 2002, 157(2-3):227-247.
    • (2002) Ecological Modelling , vol.157 , Issue.2-3 , pp. 227-247
    • Miller, J.1    Franklin, J.2
  • 59
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • Mingers J. An empirical comparison of pruning methods for decision tree induction. Machine Learning 1989, 4(2):227-243.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 227-243
    • Mingers, J.1
  • 60
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision-tree induction
    • Mingers J. An empirical comparison of selection measures for decision-tree induction. Machine Learning 1989, 3(4):319-342.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 319-342
    • Mingers, J.1
  • 61
    • 84855944839 scopus 로고    scopus 로고
    • El sistema de información geográfica-ambiental de Andalucía. Del SINAMBA a la Red de Información Ambiental de Andalucía
    • Moreira-Madueño J.M. El sistema de información geográfica-ambiental de Andalucía. Del SINAMBA a la Red de Información Ambiental de Andalucía. Geofocus 2006, 6:4-10.
    • (2006) Geofocus , vol.6 , pp. 4-10
    • Moreira-Madueño, J.M.1
  • 66
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal M. Random forest classifier for remote sensing classification. International Journal of Remote Sensing 2005, 26(1):217-222.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.1 , pp. 217-222
    • Pal, M.1
  • 67
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • Pal M., Mather P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment 2003, 86(4):554-565.
    • (2003) Remote Sensing of Environment , vol.86 , Issue.4 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 68
    • 0029666682 scopus 로고    scopus 로고
    • The status of agricultural lands in Egypt: the use of multitemporal NDVI features derived from landsat TM
    • Pax-Lenney M., Woodcock C.E., Collins J.B., Hamdi H. The status of agricultural lands in Egypt: the use of multitemporal NDVI features derived from landsat TM. Remote Sensing of Environment 1996, 56(1):8-20.
    • (1996) Remote Sensing of Environment , vol.56 , Issue.1 , pp. 8-20
    • Pax-Lenney, M.1    Woodcock, C.E.2    Collins, J.B.3    Hamdi, H.4
  • 69
    • 0030615370 scopus 로고    scopus 로고
    • Monitoring agricultural lands in Egypt with multitemporal Landsat TM imagery: how many images are needed?
    • Pax-Lenney M., Woodcock C.E. Monitoring agricultural lands in Egypt with multitemporal Landsat TM imagery: how many images are needed?. Remote Sensing of Environment 1997, 59(3):522-529.
    • (1997) Remote Sensing of Environment , vol.59 , Issue.3 , pp. 522-529
    • Pax-Lenney, M.1    Woodcock, C.E.2
  • 71
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad A.M., Iverson L.R., Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 2006, 9(2):191-199.
    • (2006) Ecosystems , vol.9 , Issue.2 , pp. 191-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 73
    • 41249103454 scopus 로고    scopus 로고
    • Mapping land-cover modifications over large areas: a comparison of machine learning algorithms
    • Rogan J., Franklin J., Stow D., Miller J., Woodcock C., Roberts D. Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sensing of Environment 2008, 112(5):2272-2283.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2272-2283
    • Rogan, J.1    Franklin, J.2    Stow, D.3    Miller, J.4    Woodcock, C.5    Roberts, D.6
  • 74
  • 76
    • 0029256774 scopus 로고
    • Evaluating seasonal variability as an aid to cover-type mapping from Landsat Thematic Mapper data in the Northeast
    • Schriever J.R., Congalton R.G. Evaluating seasonal variability as an aid to cover-type mapping from Landsat Thematic Mapper data in the Northeast. Photogrammetric Engineering and Remote Sensing 1995, 61(3):321-327.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , Issue.3 , pp. 321-327
    • Schriever, J.R.1    Congalton, R.G.2
  • 77
    • 41249090031 scopus 로고    scopus 로고
    • Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
    • Sesnie S., Gessler P., Finegan B., Thessler S. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sensing of Environment 2008, 112(5):2145-2159.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.5 , pp. 2145-2159
    • Sesnie, S.1    Gessler, P.2    Finegan, B.3    Thessler, S.4
  • 78
    • 0034269712 scopus 로고    scopus 로고
    • The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest
    • Simard M., Saatchi S.S., De Grandi G. The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE Transactions on Geoscience and Remote Sensing 2000, 38(5):2310-2321.
    • (2000) IEEE Transactions on Geoscience and Remote Sensing , vol.38 , Issue.5 , pp. 2310-2321
    • Simard, M.1    Saatchi, S.S.2    De Grandi, G.3
  • 79
    • 0034482007 scopus 로고    scopus 로고
    • Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping
    • Steele B.M. Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping. Remote Sensing of Environment 2000, 74(3):545-556.
    • (2000) Remote Sensing of Environment , vol.74 , Issue.3 , pp. 545-556
    • Steele, B.M.1
  • 80
    • 38049134453 scopus 로고    scopus 로고
    • The emergence of land change science for global environmental change and sustainability
    • Turner B., Lambin E., Reenberg A. The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences 2007, 104(52):20666.
    • (2007) Proceedings of the National Academy of Sciences , vol.104 , Issue.52 , pp. 20666
    • Turner, B.1    Lambin, E.2    Reenberg, A.3
  • 81
    • 85152888693 scopus 로고
    • An incremental method for finding multivariate splits for decision trees
    • In: Proceedings of the Seventh International Conference on Machine Learning. Morgan Kaufmann, Austin, TX.
    • Utgoff, P.E., Brodley, C.E., 1990. An incremental method for finding multivariate splits for decision trees. In: Proceedings of the Seventh International Conference on Machine Learning. Morgan Kaufmann, Austin, TX. pp. 58-65.
    • (1990) , pp. 58-65
    • Utgoff, P.E.1    Brodley, C.E.2
  • 82
    • 69849104695 scopus 로고    scopus 로고
    • Classifier ensembles for land cover mapping using multitemporal SAR imagery
    • Waske B., Braun M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS Journal of Photogrammetry and Remote Sensing 2009, 64(5):450-457.
    • (2009) ISPRS Journal of Photogrammetry and Remote Sensing , vol.64 , Issue.5 , pp. 450-457
    • Waske, B.1    Braun, M.2
  • 83
    • 3242711291 scopus 로고    scopus 로고
    • Mapping regional land cover with MODIS data for biological conservation: examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil
    • Wessels K.J., De Fries R.S., Dempewolf J., Anderson L.O., Hansen A.J., Powell S.L., Moran E.F. Mapping regional land cover with MODIS data for biological conservation: examples from the Greater Yellowstone Ecosystem, USA and Pará State, Brazil. Remote Sensing of Environment 2004, 92(1):67-83.
    • (2004) Remote Sensing of Environment , vol.92 , Issue.1 , pp. 67-83
    • Wessels, K.J.1    De Fries, R.S.2    Dempewolf, J.3    Anderson, L.O.4    Hansen, A.J.5    Powell, S.L.6    Moran, E.F.7
  • 85
    • 0028978288 scopus 로고
    • Improved forest classification in the Northern Lake States using multi-temporal Landsat imagery
    • Wolter P.T., Mladenoff D.J., Host G.E. Improved forest classification in the Northern Lake States using multi-temporal Landsat imagery. Photogrammetric Engineering and Remote Sensing 1995, 61(9):1129-1143.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , Issue.9 , pp. 1129-1143
    • Wolter, P.T.1    Mladenoff, D.J.2    Host, G.E.3
  • 86
    • 25844488665 scopus 로고    scopus 로고
    • Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM+data
    • Yuan F., Bauer M.E., Heinert N.J., Holden G. Multi-level land cover mapping of the Twin Cities (Minnesota) metropolitan area with multi-seasonal Landsat TM/ETM+data. Geocarto International 2005, 20(2):5-14.
    • (2005) Geocarto International , vol.20 , Issue.2 , pp. 5-14
    • Yuan, F.1    Bauer, M.E.2    Heinert, N.J.3    Holden, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.