메뉴 건너뛰기




Volumn 30, Issue 1, 2007, Pages 114-132

Modeling intrusion detection system using hybrid intelligent systems

Author keywords

Decision trees; Ensemble approach; Hybrid intelligent system; Intrusion detection system; Support vector machines

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; COMPUTER SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS;

EID: 33750514606     PISSN: 10848045     EISSN: 10958592     Source Type: Journal    
DOI: 10.1016/j.jnca.2005.06.003     Document Type: Article
Times cited : (346)

References (39)
  • 1
    • 84902156141 scopus 로고    scopus 로고
    • Abraham A. In: Jose M., Alberto P., editors, Neuro-fuzzy systems: state-of-the-art modeling techniques, connectionist models of neurons, learning processes, and artificial intelligence, Lecture Notes in Computer Science, vol. 2084. Germany, Granada, Spain: Springer; 2001. p. 269-76.
  • 2
    • 23844458149 scopus 로고    scopus 로고
    • Intelligent systems: architectures and perspectives, recent advances in intelligent paradigms and applications
    • Abraham A., Jain L., and Kacprzyk J. (Eds), Springer, Germany [Chapter 1]
    • Abraham A. Intelligent systems: architectures and perspectives, recent advances in intelligent paradigms and applications. In: Abraham A., Jain L., and Kacprzyk J. (Eds). Studies in fuzziness and soft computing (2002), Springer, Germany 1-35 [Chapter 1]
    • (2002) Studies in fuzziness and soft computing , pp. 1-35
    • Abraham, A.1
  • 4
    • 33750503496 scopus 로고    scopus 로고
    • Anderson JP. Computer security threat monitoring and surveillance. Technical Report, Fort Washington, Pennsylvania: James P Anderson Co.; April 1980.
  • 5
    • 0142253852 scopus 로고    scopus 로고
    • ADAM: a testbed for exploring the use of data mining in intrusion detection
    • Barbara D., Couto J., Jajodia S., and Wu N. ADAM: a testbed for exploring the use of data mining in intrusion detection. SIGMOD Record 30 4 (2001) 15-24
    • (2001) SIGMOD Record , vol.30 , Issue.4 , pp. 15-24
    • Barbara, D.1    Couto, J.2    Jajodia, S.3    Wu, N.4
  • 11
    • 33750522110 scopus 로고    scopus 로고
    • Fox KL, Henning RR, Reed JH, Simonian R. A neural network approach towards Intrusion detection. In: Proceedings of the 13th national computer security conference, Washington, DC, October 1990. p. 125-34.
  • 12
    • 33750507025 scopus 로고    scopus 로고
    • Garvey TD, Lunt TF. Model based intrusion detection. In: Proceedings of the 14th national computer security conference, October 1991. p. 372-85.
  • 13
    • 33750527435 scopus 로고    scopus 로고
    • Grossman R, Kasif S, Moore R, Rocke D, Ullman J. Data Mining Research: Opportunities and Challenges, A Report of Three NSF Workshops on Mining Large, Massive, and Distributed Data, January 1998.
  • 14
    • 33750518670 scopus 로고    scopus 로고
    • Heady R, Luger G, Maccabe A, Servilla M. The architecture of a network level intrusion detection system. Technical Report, Department of Computer Science, University of New Mexico, August 1990.
  • 15
    • 33750496785 scopus 로고    scopus 로고
    • Hofmeyr SA, Forrest S. Immunity by design: an artificial immune system. In: Proceedings GECCO Conference, 1999.
  • 16
    • 33750510153 scopus 로고    scopus 로고
    • Ilgun K. USTAT: A real-time intrusion detection system for UNIX. Master thesis, University of California, Santa Barbara, November 1992.
  • 17
    • 33750530685 scopus 로고    scopus 로고
    • Joachims T. Making large-scale SVM learning practical. LS8-Report, University of Dortmund, LS VIII-Report, 1998.
  • 18
    • 33750510364 scopus 로고    scopus 로고
    • KDD cup 99 Intrusion detection data set. 〈http://kdd.ics.uci.edu/databases/kddcup99/kddcup.data_10_percent.gz〉
  • 19
    • 33750512849 scopus 로고    scopus 로고
    • Kumar S. Classification and detection of computer intrusions. PhD thesis, Department of Computer Science, Purdue University, August 1995.
  • 20
    • 33750514460 scopus 로고    scopus 로고
    • Kumar S, Spafford EH. An application of pattern matching in intrusion detection. Technical Report CSD-TR-94-013, Purdue University, 1994.
  • 21
    • 33750505070 scopus 로고    scopus 로고
    • Kumar S, Spafford EH. A software architecture to support misuse intrusion detection. In: Proceedings of the 18th national information security conference, 1995. p. 194-204.
  • 22
    • 33750509708 scopus 로고    scopus 로고
    • Lee W. A data mining framework for constructing features and models for intrusion detection systems. PhD thesis, Computer Science Department, Columbia University, June 1999.
  • 23
    • 85084163349 scopus 로고    scopus 로고
    • Lee W, Stolfo S. Data mining approaches for intrusion detection. In: Proceedings of the 7th USENIX security symposium, 1998.
  • 26
    • 33750505285 scopus 로고    scopus 로고
    • Lunt T, Tamaru A, Gilham F, Jagannathan R, Neumann P, Javitz H. A real-time intrusion detection expert system (IDES)-final technical report. Technical Report, Computer Science Laboratory, SRI International, Menlo Park, California, February 1992.
  • 27
    • 33750529419 scopus 로고    scopus 로고
    • MIT Lincoln Laboratory. 〈http://www.ll.mit.edu/IST/ideval/〉
  • 29
    • 9444267133 scopus 로고    scopus 로고
    • Mukkamala S, Sung AH, Abraham A. Modeling intrusion detection systems using linear genetic programming approach, The 17th international conference on industrial & engineering applications of artificial intelligence and expert systems, innovations in applied artificial intelligence. In: Robert O., Chunsheng Y., Moonis A., editors. Lecture Notes in Computer Science, vol. 3029. Germany: Springer; 2004a. p. 633-42.
  • 30
    • 8444224269 scopus 로고    scopus 로고
    • Mukkamala S, Sung AH, Abraham A, Ramos V. Intrusion detection systems using adaptive regression splines. In: Seruca I, Filipe J, Hammoudi S, Cordeiro J, editors. Proceedings of the 6th international conference on enterprise information systems, ICEIS'04, vol. 3, Portugal. 2004b. p. 26-33 [ISBN:972-8865-00-7].
  • 31
    • 33750530911 scopus 로고    scopus 로고
    • Porras PA. STAT: a state transition analysis tool for intrusion detection. Master's thesis, Computer Science Department, University of California, Santa Barbara, July 1992.
  • 32
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Machine Learning 1 (1986) 81-106
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 35
    • 3042595031 scopus 로고    scopus 로고
    • Shah K, Dave N, Chavan S, Mukherjee S, Abraham A, Sanyal S. Adaptive neuro-fuzzy intrusion detection system. IEEE International Conference on Information Technology: Coding and Computing (ITCC'04), vol. 1. USA: IEEE Computer Society; 2004. p. 70-4.
  • 37
    • 0007473204 scopus 로고    scopus 로고
    • An introduction to intrusion detection
    • Sundaram A. An introduction to intrusion detection. ACM Cross Roads 2 4 (1996)
    • (1996) ACM Cross Roads , vol.2 , Issue.4
    • Sundaram, A.1
  • 38
    • 0025548907 scopus 로고    scopus 로고
    • Teng HS, Chen K, Lu SC. Security audit trail analysis using inductively generated predictive rules. In: Proceedings of the 11th national conference on artificial intelligence applications. Piscataway, NJ: IEEE, IEEE Service Center; March 1990. p. 24-9.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.