메뉴 건너뛰기




Volumn 14, Issue 1, 2009, Pages 16-29

Detection of malicious code by applying machine learning classifiers on static features: A state-of-the-art survey

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; CLASSIFICATION ALGORITHM; CLASSIFICATION RESULTS; DETECTION ACCURACY; DETECTION METHODS; EXECUTABLE FILES; EXECUTABLES; FALSE POSITIVE; FEATURE SELECTION METHODS; IMBALANCE PROBLEM; INDIVIDUAL CLASSIFIERS; MACHINE-LEARNING; MALICIOUS CODES; MULTIPLE CLASSIFIERS; N-GRAMS; PORTABLE EXECUTABLE; RESEARCH ISSUES; STATIC FEATURES;

EID: 65749099969     PISSN: 13634127     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.istr.2009.03.003     Document Type: Article
Times cited : (277)

References (56)
  • 1
    • 18844362133 scopus 로고    scopus 로고
    • Abou-Assaleh T, Cercone N, Keselj V, Sweidan R. N-gram based detection of new malicious code. In: Proceedings of the 28th annual international computer software and applications conference; 2004
    • Abou-Assaleh T, Cercone N, Keselj V, Sweidan R. N-gram based detection of new malicious code. In: Proceedings of the 28th annual international computer software and applications conference; 2004.
  • 4
    • 0003637516 scopus 로고
    • Doctoral dissertation, Sydney: School of Computing Science, University of Technology;
    • Buntine W. A theory of learning classification rules. Doctoral dissertation, Sydney: School of Computing Science, University of Technology; 1990.
    • (1990) A theory of learning classification rules
    • Buntine, W.1
  • 6
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla N.V., Japkowicz N., and Kotcz A. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations Newsletter 6 1 (2004) 1-6
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 8
    • 85015191605 scopus 로고
    • Rule induction with CN2: Some recent improvements
    • session on learning;
    • Clark P, Boswell R. Rule induction with CN2: some recent improvements. In: Proc. of the European working session on learning; 1991. p. 151-63.
    • (1991) Proc. of the European working , pp. 151-163
    • Clark, P.1    Boswell, R.2
  • 9
    • 0000516376 scopus 로고
    • Upper and lower probabilities induced by multi-valued mapping
    • Dempster A. Upper and lower probabilities induced by multi-valued mapping. Annals of Mathematical Statistics 2 (1967) 325-339
    • (1967) Annals of Mathematical Statistics , vol.2 , pp. 325-339
    • Dempster, A.1
  • 10
    • 65749105726 scopus 로고    scopus 로고
    • Malware signature builder and detection for executable code
    • Patent application;
    • Dolev S, Tzachar N. Malware signature builder and detection for executable code. Patent application; 2008.
    • (2008)
    • Dolev, S.1    Tzachar, N.2
  • 11
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of simple Bayesian classifier under zero-one loss
    • Domingos P., and Pazzani M. On the optimality of simple Bayesian classifier under zero-one loss. Machine Learning 29 (1997) 103-130
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 12
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Dzeroski S., and Zenko B. Is combining classifiers with stacking better than selecting the best one?. Machine Learning 54 3 (2004) 255-273
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 16
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286 (1999) 531-537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 20
    • 34748865971 scopus 로고    scopus 로고
    • A feature selection and evaluation scheme for computer virus detection
    • Hong Kong;
    • Henchiri O, Japkowicz N. A feature selection and evaluation scheme for computer virus detection. In: Proceedings of ICDM-2006, Hong Kong; 2006. p. 891-95.
    • (2006) Proceedings of ICDM-2006 , pp. 891-895
    • Henchiri, O.1    Japkowicz, N.2
  • 21
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte R. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63-91
    • (1993) Machine Learning , vol.11 , pp. 63-91
    • Holte, R.1
  • 23
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • Schölkopf B., Burges C., and A.S. (Eds), MIT Press, Cambridge, MA
    • Joachims T. Making large-scale support vector machine learning practical. In: Schölkopf B., Burges C., and A.S. (Eds). Advances in kernel methods: support vector machines (1998), MIT Press, Cambridge, MA
    • (1998) Advances in kernel methods: support vector machines
    • Joachims, T.1
  • 24
    • 48349134267 scopus 로고    scopus 로고
    • Behavioral detection of malware: from a survey towards an established taxonomy
    • Jacob G., Debar H., and Filiol E. Behavioral detection of malware: from a survey towards an established taxonomy. Journal in Computer Virology 4 (2008) 251-266
    • (2008) Journal in Computer Virology , vol.4 , pp. 251-266
    • Jacob, G.1    Debar, H.2    Filiol, E.3
  • 28
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Kibler D.A. Instance-based learning algorithms. Machine Learning (1991) 37-66
    • (1991) Machine Learning , pp. 37-66
    • Kibler, D.A.1
  • 32
    • 33845768389 scopus 로고    scopus 로고
    • Learning to detect and classify malicious executables in the wild
    • Kolter J., and Maloof M. Learning to detect and classify malicious executables in the wild. Journal of Machine Learning Research 7 (2006) 2721-2744
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2721-2744
    • Kolter, J.1    Maloof, M.2
  • 34
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems (editorial)
    • Kuncheva L.I. Diversity in multiple classifier systems (editorial). Information Fusion 6 1 (2005) 3-4
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 3-4
    • Kuncheva, L.I.1
  • 36
  • 41
    • 65749113602 scopus 로고    scopus 로고
    • Moskovitch R, Nissim N, Elovici Y. Acquisition of malicious code using active learning. In: PinKDD; 2008c.
    • Moskovitch R, Nissim N, Elovici Y. Acquisition of malicious code using active learning. In: PinKDD; 2008c.
  • 44
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic, simulation of causal models
    • Pearl J. Evidential reasoning using stochastic, simulation of causal models. Artificial Intelligence 32 2 (1987) 245-258
    • (1987) Artificial Intelligence , vol.32 , Issue.2 , pp. 245-258
    • Pearl, J.1
  • 46
    • 65749105512 scopus 로고    scopus 로고
    • Roy N, McCallum A. Toward optimal active learning through sampling estimation of error reduction. In: ICML; 2001.
    • Roy N, McCallum A. Toward optimal active learning through sampling estimation of error reduction. In: ICML; 2001.
  • 52
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S., and Koller D. Support vector machine active learning with applications to text classification. Journal of Machine Learning Research 2 (2000) 45-66
    • (2000) Journal of Machine Learning Research , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 55
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.