-
1
-
-
0030789242
-
Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell
-
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730-7.
-
(1997)
Nat Med
, vol.3
, pp. 730-737
-
-
Bonnet, D.1
Dick, J.E.2
-
2
-
-
0035499267
-
Stem cells, cancer, and cancer stem cells
-
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105-11.
-
(2001)
Nature
, vol.414
, pp. 105-111
-
-
Reya, T.1
Morrison, S.J.2
Clarke, M.F.3
Weissman, I.L.4
-
3
-
-
80052270628
-
Molecular pathology of tumor-initiating cells: lessons from Philadelphia chromosome-positive leukemia
-
Naka K, Hoshii T, Tadokoro Y, Hirao A. Molecular pathology of tumor-initiating cells: lessons from Philadelphia chromosome-positive leukemia. Pathol Int 2011; 61: 501-8.
-
(2011)
Pathol Int
, vol.61
, pp. 501-508
-
-
Naka, K.1
Hoshii, T.2
Tadokoro, Y.3
Hirao, A.4
-
4
-
-
78651416188
-
Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia
-
Goardon N, Marchi E, Atzberger A et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138-52.
-
(2011)
Cancer Cell
, vol.19
, pp. 138-152
-
-
Goardon, N.1
Marchi, E.2
Atzberger, A.3
-
5
-
-
33746498580
-
Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9
-
Krivtsov AV, Twomey D, Feng Z et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818-22.
-
(2006)
Nature
, vol.442
, pp. 818-822
-
-
Krivtsov, A.V.1
Twomey, D.2
Feng, Z.3
-
6
-
-
58949102947
-
Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells
-
Somervaille TC, Matheny CJ, Spencer GJ et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129-40.
-
(2009)
Cell Stem Cell
, vol.4
, pp. 129-140
-
-
Somervaille, T.C.1
Matheny, C.J.2
Spencer, G.J.3
-
7
-
-
0346100567
-
Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors
-
Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029-35.
-
(2003)
Genes Dev
, vol.17
, pp. 3029-3035
-
-
Cozzio, A.1
Passegue, E.2
Ayton, P.M.3
Karsunky, H.4
Cleary, M.L.5
Weissman, I.L.6
-
8
-
-
67349217986
-
Molecular mechanisms of mTOR-mediated translational control
-
Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 2009; 10: 307-18.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 307-318
-
-
Ma, X.M.1
Blenis, J.2
-
9
-
-
84859778293
-
mTOR signaling in growth control and disease
-
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149: 274-93.
-
(2012)
Cell
, vol.149
, pp. 274-293
-
-
Laplante, M.1
Sabatini, D.M.2
-
10
-
-
80053916176
-
Metabolic regulation of hematopoietic stem cells in the hypoxic niche
-
Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell 2011; 9: 298-310.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 298-310
-
-
Suda, T.1
Takubo, K.2
Semenza, G.L.3
-
11
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki K, Li Y, Xu T, Guan KL. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 2003; 17: 1829-34.
-
(2003)
Genes Dev
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
Li, Y.2
Xu, T.3
Guan, K.L.4
-
12
-
-
0042701991
-
Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb
-
Tee AR, Manning BD, Roux PP, Cantley LC, Blenis J. Tuberous sclerosis complex gene products, Tuberin and Hamartin, control mTOR signaling by acting as a GTPase-activating protein complex toward Rheb. Curr Biol 2003; 13: 1259-68.
-
(2003)
Curr Biol
, vol.13
, pp. 1259-1268
-
-
Tee, A.R.1
Manning, B.D.2
Roux, P.P.3
Cantley, L.C.4
Blenis, J.5
-
13
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K, Polak P, Kim ML et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2007; 2: e1217.
-
(2007)
PLoS ONE
, vol.2
-
-
Thedieck, K.1
Polak, P.2
Kim, M.L.3
-
14
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316-23.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.H.5
-
15
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y, Thoreen CC, Peterson TR et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25: 903-15.
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
-
16
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007; 282: 20036-44.
-
(2007)
J Biol Chem
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence Jr, J.C.4
-
17
-
-
17444431201
-
Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis
-
Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 2005; 121: 179-93.
-
(2005)
Cell
, vol.121
, pp. 179-193
-
-
Ma, L.1
Chen, Z.2
Erdjument-Bromage, H.3
Tempst, P.4
Pandolfi, P.P.5
-
18
-
-
33748153690
-
TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth
-
Inoki K, Ouyang H, Zhu T et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955-68.
-
(2006)
Cell
, vol.126
, pp. 955-968
-
-
Inoki, K.1
Ouyang, H.2
Zhu, T.3
-
19
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115: 577-90.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
Zhu, T.2
Guan, K.L.3
-
20
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008; 30: 214-26.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
-
21
-
-
10044276783
-
Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
-
Brugarolas J, Lei K, Hurley RL et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18: 2893-904.
-
(2004)
Genes Dev
, vol.18
, pp. 2893-2904
-
-
Brugarolas, J.1
Lei, K.2
Hurley, R.L.3
-
22
-
-
38349056675
-
Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling
-
DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008; 22: 239-51.
-
(2008)
Genes Dev
, vol.22
, pp. 239-251
-
-
DeYoung, M.P.1
Horak, P.2
Sofer, A.3
Sgroi, D.4
Ellisen, L.W.5
-
23
-
-
48649085816
-
Regulation of TORC1 by Rag GTPases in nutrient response
-
Kim E, Goraksha-Hicks P, Li L, Neufeld TP, Guan KL. Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 2008; 10: 935-45.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 935-945
-
-
Kim, E.1
Goraksha-Hicks, P.2
Li, L.3
Neufeld, T.P.4
Guan, K.L.5
-
24
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y, Peterson TR, Shaul YD et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320: 1496-501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
Peterson, T.R.2
Shaul, Y.D.3
-
25
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010; 141: 290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
26
-
-
70450204007
-
An emerging role of mTOR in lipid biosynthesis
-
Laplante M, Sabatini DM. An emerging role of mTOR in lipid biosynthesis. Curr Biol 2009; 19: R1046-52.
-
(2009)
Curr Biol
, vol.19
-
-
Laplante, M.1
Sabatini, D.M.2
-
28
-
-
79961165137
-
mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway
-
Peterson TR, Sengupta SS, Harris TE et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 2011; 146: 408-20.
-
(2011)
Cell
, vol.146
, pp. 408-420
-
-
Peterson, T.R.1
Sengupta, S.S.2
Harris, T.E.3
-
29
-
-
76049099052
-
Direct control of mitochondrial function by mTOR
-
Ramanathan A, Schreiber SL. Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 2009; 106: 22229-32.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 22229-22232
-
-
Ramanathan, A.1
Schreiber, S.L.2
-
30
-
-
36749081539
-
mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007; 450: 736-40.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
Rodgers, J.T.2
Arlow, D.H.3
Vazquez, F.4
Mootha, V.K.5
Puigserver, P.6
-
31
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz JD, White E. Autophagy and metabolism. Science 2010; 330: 1344-8.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
White, E.2
-
32
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N, Hara T, Kaizuka T et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20: 1981-91.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
Hara, T.2
Kaizuka, T.3
-
33
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu PP, Kang SA, Rameseder J et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332: 1317-22.
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
-
34
-
-
79958696336
-
Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling
-
Yu Y, Yoon SO, Poulogiannis G et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332: 1322-6.
-
(2011)
Science
, vol.332
, pp. 1322-1326
-
-
Yu, Y.1
Yoon, S.O.2
Poulogiannis, G.3
-
35
-
-
79952293503
-
Activation of mTORC2 by association with the ribosome
-
Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011; 144: 757-68.
-
(2011)
Cell
, vol.144
, pp. 757-768
-
-
Zinzalla, V.1
Stracka, D.2
Oppliger, W.3
Hall, M.N.4
-
36
-
-
7944235758
-
Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive
-
Jacinto E, Loewith R, Schmidt A et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 2004; 6: 1122-8.
-
(2004)
Nat Cell Biol
, vol.6
, pp. 1122-1128
-
-
Jacinto, E.1
Loewith, R.2
Schmidt, A.3
-
37
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov DD, Ali SM, Kim DH et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004; 14: 1296-302.
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
-
38
-
-
33751348056
-
Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
-
Guertin DA, Stevens DM, Thoreen CC et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11: 859-71.
-
(2006)
Dev Cell
, vol.11
, pp. 859-871
-
-
Guertin, D.A.1
Stevens, D.M.2
Thoreen, C.C.3
-
39
-
-
33749076673
-
SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity
-
Jacinto E, Facchinetti V, Liu D et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127: 125-37.
-
(2006)
Cell
, vol.127
, pp. 125-137
-
-
Jacinto, E.1
Facchinetti, V.2
Liu, D.3
-
40
-
-
79955941129
-
Maintenance of genomic integrity in hematopoietic stem cells
-
Naka K, Hirao A. Maintenance of genomic integrity in hematopoietic stem cells. Int J Hematol 2011; 93: 434-9.
-
(2011)
Int J Hematol
, vol.93
, pp. 434-439
-
-
Naka, K.1
Hirao, A.2
-
41
-
-
33747613351
-
Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells
-
Yamazaki S, Iwama A, Takayanagi S et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. EMBO J 2006; 25: 3515-23.
-
(2006)
EMBO J
, vol.25
, pp. 3515-3523
-
-
Yamazaki, S.1
Iwama, A.2
Takayanagi, S.3
-
42
-
-
34249882777
-
Foxo3a is essential for maintenance of the hematopoietic stem cell pool
-
Miyamoto K, Araki KY, Naka K et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101-12.
-
(2007)
Cell Stem Cell
, vol.1
, pp. 101-112
-
-
Miyamoto, K.1
Araki, K.Y.2
Naka, K.3
-
43
-
-
33846419112
-
FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress
-
Tothova Z, Kollipara R, Huntly BJ et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128: 325-39.
-
(2007)
Cell
, vol.128
, pp. 325-339
-
-
Tothova, Z.1
Kollipara, R.2
Huntly, B.J.3
-
44
-
-
54449092731
-
Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells
-
Yalcin S, Zhang X, Luciano JP et al. Foxo3 is essential for the regulation of ataxia telangiectasia mutated and oxidative stress-mediated homeostasis of hematopoietic stem cells. J Biol Chem 2008; 283: 25692-705.
-
(2008)
J Biol Chem
, vol.283
, pp. 25692-25705
-
-
Yalcin, S.1
Zhang, X.2
Luciano, J.P.3
-
45
-
-
53349091768
-
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
-
Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Zheng P. TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 2008; 205: 2397-408.
-
(2008)
J Exp Med
, vol.205
, pp. 2397-2408
-
-
Chen, C.1
Liu, Y.2
Liu, R.3
Ikenoue, T.4
Guan, K.L.5
Zheng, P.6
-
46
-
-
58049196780
-
TORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization
-
Gan B, Sahin E, Jiang S et al. TORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc Natl Acad Sci USA 2008; 105: 19384-9.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 19384-19389
-
-
Gan, B.1
Sahin, E.2
Jiang, S.3
-
47
-
-
75549090275
-
mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells
-
Chen C, Liu Y, Zheng P. mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2009; 2: ra75.
-
(2009)
Sci Signal
, vol.2
-
-
Chen, C.1
Liu, Y.2
Zheng, P.3
-
48
-
-
84870866912
-
Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways
-
Huang J, Nguyen-McCarty M, Hexner EO, Danet-Desnoyers G, Klein PS. Maintenance of hematopoietic stem cells through regulation of Wnt and mTOR pathways. Nat Med 2012; 18: 1778-85.
-
(2012)
Nat Med
, vol.18
, pp. 1778-1785
-
-
Huang, J.1
Nguyen-McCarty, M.2
Hexner, E.O.3
Danet-Desnoyers, G.4
Klein, P.S.5
-
49
-
-
33646376411
-
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
-
Yilmaz OH, Valdez R, Theisen BK et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475-82.
-
(2006)
Nature
, vol.441
, pp. 475-482
-
-
Yilmaz, O.H.1
Valdez, R.2
Theisen, B.K.3
-
50
-
-
33646351002
-
PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention
-
Zhang J, Grindley JC, Yin T et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518-22.
-
(2006)
Nature
, vol.441
, pp. 518-522
-
-
Zhang, J.1
Grindley, J.C.2
Yin, T.3
-
51
-
-
78049496814
-
mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion
-
Lee JY, Nakada D, Yilmaz OH et al. mTOR activation induces tumor suppressors that inhibit leukemogenesis and deplete hematopoietic stem cells after Pten deletion. Cell Stem Cell 2010; 7: 593-605.
-
(2010)
Cell Stem Cell
, vol.7
, pp. 593-605
-
-
Lee, J.Y.1
Nakada, D.2
Yilmaz, O.H.3
-
52
-
-
84866064701
-
Temporal Changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression
-
Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison CG. Temporal Changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012; 11: 415-28.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 415-428
-
-
Magee, J.A.1
Ikenoue, T.2
Nakada, D.3
Lee, J.Y.4
Guan, K.L.5
Morrison, C.G.6
-
53
-
-
40049092283
-
Exploiting the mammalian target of rapamycin pathway in hematologic malignancies
-
Altman JK, Platanias LC. Exploiting the mammalian target of rapamycin pathway in hematologic malignancies. Curr Opin Hematol 2008; 15: 88-94.
-
(2008)
Curr Opin Hematol
, vol.15
, pp. 88-94
-
-
Altman, J.K.1
Platanias, L.C.2
-
54
-
-
66149164593
-
Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies
-
Teachey DT, Grupp SA, Brown VI. Mammalian target of rapamycin inhibitors and their potential role in therapy in leukaemia and other haematological malignancies. Br J Haematol 2009; 145: 569-80.
-
(2009)
Br J Haematol
, vol.145
, pp. 569-580
-
-
Teachey, D.T.1
Grupp, S.A.2
Brown, V.I.3
-
55
-
-
70149087158
-
High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia
-
Gutierrez A, Sanda T, Grebliunaite R et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114: 647-50.
-
(2009)
Blood
, vol.114
, pp. 647-650
-
-
Gutierrez, A.1
Sanda, T.2
Grebliunaite, R.3
-
56
-
-
33646023695
-
Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
-
Sarbassov DD, Ali SM, Sengupta S et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22: 159-68.
-
(2006)
Mol Cell
, vol.22
, pp. 159-168
-
-
Sarbassov, D.D.1
Ali, S.M.2
Sengupta, S.3
-
57
-
-
84866082606
-
mTOR complex 1 Plays critical roles in hematopoiesis and pten-loss-evoked leukemogenesis
-
Kalaitzidis D, Sykes SM, Wang Z et al. mTOR complex 1 Plays critical roles in hematopoiesis and pten-loss-evoked leukemogenesis. Cell Stem Cell 2012; 11: 429-39.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 429-439
-
-
Kalaitzidis, D.1
Sykes, S.M.2
Wang, Z.3
-
58
-
-
33746800144
-
Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin
-
Phung TL, Ziv K, Dabydeen D et al. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell 2006; 10: 159-70.
-
(2006)
Cancer Cell
, vol.10
, pp. 159-170
-
-
Phung, T.L.1
Ziv, K.2
Dabydeen, D.3
-
59
-
-
33749002279
-
Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies
-
Yee KW, Zeng Z, Konopleva M et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2006; 12: 5165-73.
-
(2006)
Clin Cancer Res
, vol.12
, pp. 5165-5173
-
-
Yee, K.W.1
Zeng, Z.2
Konopleva, M.3
-
60
-
-
70350726344
-
A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia
-
Perl AE, Kasner MT, Tsai DE et al. A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 2009; 15: 6732-9.
-
(2009)
Clin Cancer Res
, vol.15
, pp. 6732-6739
-
-
Perl, A.E.1
Kasner, M.T.2
Tsai, D.E.3
-
61
-
-
77951450222
-
The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation
-
Zent CS, LaPlant BR, Johnston PB et al. The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer 2010; 116: 2201-7.
-
(2010)
Cancer
, vol.116
, pp. 2201-2207
-
-
Zent, C.S.1
LaPlant, B.R.2
Johnston, P.B.3
-
62
-
-
51449096670
-
A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies
-
Rizzieri DA, Feldman E, Dipersio JF et al. A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 2008; 14: 2756-62.
-
(2008)
Clin Cancer Res
, vol.14
, pp. 2756-2762
-
-
Rizzieri, D.A.1
Feldman, E.2
Dipersio, J.F.3
-
63
-
-
15044340650
-
Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins
-
Wang X, Beugnet A, Murakami M, Yamanaka S, Proud CG. Distinct signaling events downstream of mTOR cooperate to mediate the effects of amino acids and insulin on initiation factor 4E-binding proteins. Mol Cell Biol 2005; 25: 2558-72.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2558-2572
-
-
Wang, X.1
Beugnet, A.2
Murakami, M.3
Yamanaka, S.4
Proud, C.G.5
-
64
-
-
56249147509
-
Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation
-
Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 2008; 105: 17414-9.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 17414-17419
-
-
Choo, A.Y.1
Yoon, S.O.2
Kim, S.G.3
Roux, P.P.4
Blenis, J.5
-
65
-
-
76349104427
-
Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor
-
Janes MR, Limon JJ, So L et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med 2010; 16: 205-13.
-
(2010)
Nat Med
, vol.16
, pp. 205-213
-
-
Janes, M.R.1
Limon, J.J.2
So, L.3
-
66
-
-
77955443001
-
Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells
-
Carayol N, Vakana E, Sassano A et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci USA 2010; 107: 12469-74.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12469-12474
-
-
Carayol, N.1
Vakana, E.2
Sassano, A.3
-
67
-
-
84861833364
-
mTORC1 is essential for leukemia propagation but not stem cell self-renewal
-
Hoshii T, Tadokoro Y, Naka K et al. mTORC1 is essential for leukemia propagation but not stem cell self-renewal. J Clin Invest 2012; 122: 2114-29.
-
(2012)
J Clin Invest
, vol.122
, pp. 2114-2129
-
-
Hoshii, T.1
Tadokoro, Y.2
Naka, K.3
|