메뉴 건너뛰기




Volumn , Issue , 2014, Pages 1-298

Conformal Prediction for Reliable Machine Learning: Theory, Adaptations and Applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84880086948     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/C2012-0-00234-7     Document Type: Book
Times cited : (287)

References (396)
  • 5
    • 70349865189 scopus 로고    scopus 로고
    • The computational geometry of comparing shapes
    • Springer, Berlin, S. Albers, H. Alt, S. Näher (Eds.) Efficient algorithms
    • Alt H. The computational geometry of comparing shapes. Lecture notes in computer science 2009, vol. 5760:235-248. Springer, Berlin. S. Albers, H. Alt, S. Näher (Eds.).
    • (2009) Lecture notes in computer science , vol.5760 , pp. 235-248
    • Alt, H.1
  • 8
    • 84886567160 scopus 로고    scopus 로고
    • University of California, Irvine, school of information and computer sciences
    • Bache K, Lichman M UCI machine learning repository 2013, University of California, Irvine, school of information and computer sciences. http://archive.ics.uci.edu/ml.
    • (2013) UCI machine learning repository
    • Bache, K.1    Lichman, M.2
  • 9
    • 33846098197 scopus 로고    scopus 로고
    • Bayesian neural networks for internet traffic classification
    • Auld T., Moore A.W., Gull S. Bayesian neural networks for internet traffic classification. IEEE Trans Neural Netw 2007, 18:223-239.
    • (2007) IEEE Trans Neural Netw , vol.18 , pp. 223-239
    • Auld, T.1    Moore, A.W.2    Gull, S.3
  • 10
    • 84928016636 scopus 로고    scopus 로고
    • The base-rate fallacy and the difficulty of intrusion detection
    • Axelsson S. The base-rate fallacy and the difficulty of intrusion detection. ACM Trans Inf Syst Secur 2000, 3(3):185-205.
    • (2000) ACM Trans Inf Syst Secur , vol.3 , Issue.3 , pp. 185-205
    • Axelsson, S.1
  • 15
    • 0001471775 scopus 로고
    • Unsupervised learning
    • Barlow H.B. Unsupervised learning. Neural Commun 1989, 1:295-311.
    • (1989) Neural Commun , vol.1 , pp. 295-311
    • Barlow, H.B.1
  • 20
    • 33644631583 scopus 로고    scopus 로고
    • Qualified predictions for microarray and proteomics pattern diagnostics with confidence machines
    • Bellotti T., Luo Z., Gammerman A., Van Delft F.W., Saha V. Qualified predictions for microarray and proteomics pattern diagnostics with confidence machines. Int J Neural Syst 2005, 15:247-258.
    • (2005) Int J Neural Syst , vol.15 , pp. 247-258
    • Bellotti, T.1    Luo, Z.2    Gammerman, A.3    Van Delft, F.W.4    Saha, V.5
  • 22
    • 56349130760 scopus 로고    scopus 로고
    • Support vector machines for credit scoring and discovery of significant features
    • Bellotti T., Crook J. Support vector machines for credit scoring and discovery of significant features. Expert Syst Appl 2009, 36:3302-3308.
    • (2009) Expert Syst Appl , vol.36 , pp. 3302-3308
    • Bellotti, T.1    Crook, J.2
  • 24
    • 33644631583 scopus 로고    scopus 로고
    • Qualified predictions for microarray and proteomics pattern diagnostics with confidence machines
    • Bellotti T., Luo Z., Gammerman A., van Delft F.W., Saha V. Qualified predictions for microarray and proteomics pattern diagnostics with confidence machines. Int J Neural Syst 2005, 15:1-12.
    • (2005) Int J Neural Syst , vol.15 , pp. 1-12
    • Bellotti, T.1    Luo, Z.2    Gammerman, A.3    van Delft, F.W.4    Saha, V.5
  • 25
    • 17844368912 scopus 로고    scopus 로고
    • Tutorial: using confidence curves in medical research
    • Bender R., Berg G., Zeeb H. Tutorial: using confidence curves in medical research. Biomed J 2005, 47:237-247.
    • (2005) Biomed J , vol.47 , pp. 237-247
    • Bender, R.1    Berg, G.2    Zeeb, H.3
  • 26
    • 85013920595 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc Ser B 1995, 57:289-300.
    • (1995) J Roy Stat Soc Ser B , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 30
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A., Langley P. Selection of relevant features and examples in machine learning. Artif Intell 1997, 97:245-271.
    • (1997) Artif Intell , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 36
    • 54249164497 scopus 로고    scopus 로고
    • Estimation of individual prediction reliability using the local sensitivity analysis
    • Bosnić Z., Kononenko I. Estimation of individual prediction reliability using the local sensitivity analysis. Appl Intell 2007, 29:187-203.
    • (2007) Appl Intell , vol.29 , pp. 187-203
    • Bosnić, Z.1    Kononenko, I.2
  • 37
    • 54349094489 scopus 로고    scopus 로고
    • Comparison of approaches for estimating reliability of individual regression predictions
    • Bosnić Z., Kononenko I. Comparison of approaches for estimating reliability of individual regression predictions. Data Knowl Eng 2008, 67:504-516.
    • (2008) Data Knowl Eng , vol.67 , pp. 504-516
    • Bosnić, Z.1    Kononenko, I.2
  • 38
    • 85013927227 scopus 로고    scopus 로고
    • Correcting streaming predictions of an electricity load forecast system using a prediction reliability estimate
    • Bosnić Z., Rodrigues P.P., Kononenko I., Gama J. Correcting streaming predictions of an electricity load forecast system using a prediction reliability estimate. Man Mach Interact 2011, 2:343-350.
    • (2011) Man Mach Interact , vol.2 , pp. 343-350
    • Bosnić, Z.1    Rodrigues, P.P.2    Kononenko, I.3    Gama, J.4
  • 40
    • 54249164497 scopus 로고    scopus 로고
    • Estimation of individual prediction reliability using the local sensitivity analysis
    • Bosnič Z., Kononenko I. Estimation of individual prediction reliability using the local sensitivity analysis. Appl Intell 2008, 29(3):187-203.
    • (2008) Appl Intell , vol.29 , Issue.3 , pp. 187-203
    • Bosnič, Z.1    Kononenko, I.2
  • 49
    • 0033738981 scopus 로고    scopus 로고
    • The inference of identity in forensic speaker recognition
    • Champod C., Meuwly D. The inference of identity in forensic speaker recognition. Speech Commun 2000, 31:193-203.
    • (2000) Speech Commun , vol.31 , pp. 193-203
    • Champod, C.1    Meuwly, D.2
  • 54
    • 33749445935 scopus 로고    scopus 로고
    • Active learning for image retrieval with Co-SVM
    • Cheng J., Wang K. Active learning for image retrieval with Co-SVM. Pattern recognition 2007.
    • (2007) Pattern recognition
    • Cheng, J.1    Wang, K.2
  • 56
    • 7444250934 scopus 로고    scopus 로고
    • Fast and light boosting for adaptive mining of data streams
    • Springer, H. Dai, R. Srikant, C. Zhang (Eds.) PAKDD
    • Chu F., Zaniolo C. Fast and light boosting for adaptive mining of data streams. Lecture notes in computer science 2004, vol. 3056:282-292. Springer. H. Dai, R. Srikant, C. Zhang (Eds.).
    • (2004) Lecture notes in computer science , vol.3056 , pp. 282-292
    • Chu, F.1    Zaniolo, C.2
  • 58
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • Cohn D., Atlas L., Ladner R. Improving generalization with active learning. Mach learn 1994, 15(2):201-221.
    • (1994) Mach learn , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 60
    • 56049127187 scopus 로고    scopus 로고
    • Credal model averaging: an extension of bayesian model averaging to imprecise probabilities
    • Springer
    • Corani G., Zaffalon M. Credal model averaging: an extension of bayesian model averaging to imprecise probabilities. Machine learning and knowledge discovery in databases 2008, 257-271. Springer.
    • (2008) Machine learning and knowledge discovery in databases , pp. 257-271
    • Corani, G.1    Zaffalon, M.2
  • 61
    • 84875986861 scopus 로고    scopus 로고
    • Multiscale internet traffic forecasting using neural networks and time series methods
    • Cortez P., Rio M., Rocha M., Sousa P. Multiscale internet traffic forecasting using neural networks and time series methods. Expert Syst 2012, 29(2):143-155.
    • (2012) Expert Syst , vol.29 , Issue.2 , pp. 143-155
    • Cortez, P.1    Rio, M.2    Rocha, M.3    Sousa, P.4
  • 62
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T.M., Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967, 13:21-27.
    • (1967) IEEE Trans Inf Theory , vol.13 , pp. 21-27
    • Cover, T.M.1    Hart, P.2
  • 65
    • 84902232573 scopus 로고    scopus 로고
    • thesis]. Royal Holloway, UK: Department of Computer Science, University of London
    • Dashevskiy M. Prediction with performance guarantees [Ph.D. thesis]. Royal Holloway, UK: Department of Computer Science, University of London; 2010.
    • (2010) Prediction with performance guarantees [Ph.D
    • Dashevskiy, M.1
  • 66
    • 67249156692 scopus 로고    scopus 로고
    • Network traffic demand prediction with confidence
    • Dashevskiy M., Luo Z. Network traffic demand prediction with confidence. GLOBECOM 2008, 1453-1457.
    • (2008) GLOBECOM , pp. 1453-1457
    • Dashevskiy, M.1    Luo, Z.2
  • 67
    • 56549096036 scopus 로고    scopus 로고
    • Reliable probabilistic classification and its application to internet traffic
    • Springer, Fourth international conference on intelligent computing
    • Dashevskiy M., Luo Z. Reliable probabilistic classification and its application to internet traffic. Lecture notes in computer science 2008, vol. 5226:380-388. Springer.
    • (2008) Lecture notes in computer science , vol.5226 , pp. 380-388
    • Dashevskiy, M.1    Luo, Z.2
  • 69
    • 84870868965 scopus 로고    scopus 로고
    • Reliable probabilistic classification of internet traffic
    • Dashevskiy M., Luo Z. Reliable probabilistic classification of internet traffic. Int J Inf Acquisition 2009, 6(2):133-146.
    • (2009) Int J Inf Acquisition , vol.6 , Issue.2 , pp. 133-146
    • Dashevskiy, M.1    Luo, Z.2
  • 70
    • 80053254828 scopus 로고    scopus 로고
    • Time series prediction with performance guarantee
    • Dashevskiy M., Luo Z. Time series prediction with performance guarantee. IET Commun 2011, 5:1044-1051.
    • (2011) IET Commun , vol.5 , pp. 1044-1051
    • Dashevskiy, M.1    Luo, Z.2
  • 76
    • 85013924461 scopus 로고    scopus 로고
    • Confidence machine and its application to medical diagnosis
    • Devetyarov D., Nouretdinov I., Gammerman A. Confidence machine and its application to medical diagnosis. BIOCOMP 2009, 448-454.
    • (2009) BIOCOMP , pp. 448-454
    • Devetyarov, D.1    Nouretdinov, I.2    Gammerman, A.3
  • 77
  • 78
    • 0003171807 scopus 로고
    • On the consistency of Bayes estimates (with discussion)
    • Diaconis P., Freedman D. On the consistency of Bayes estimates (with discussion). Ann Stat 1986, 14:1-67.
    • (1986) Ann Stat , vol.14 , pp. 1-67
    • Diaconis, P.1    Freedman, D.2
  • 79
    • 84902232578 scopus 로고    scopus 로고
    • October 2012. New York Times; October 2012.
    • Diacu F. Is failure to predict a crime? October 2012. New York Times; October 2012. http://www.nytimes.com/2012/10/27/opinion/a-failed-earthquake-prediction-a-crime.html.
    • Is failure to predict a crime?
    • Diacu, F.1
  • 80
    • 0018750969 scopus 로고
    • Analysis of probability as an aid in the clinical diagnosis of coronary artery disease
    • Diamond G.A., Forester J.S. Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. New Eng J Med 1979, 300:3-50.
    • (1979) New Eng J Med , vol.300 , pp. 3-50
    • Diamond, G.A.1    Forester, J.S.2
  • 86
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • Džeroski S., Ženko B. Is combining classifiers with stacking better than selecting the best one?. Mach Learn 2004, 54(3):255-273.
    • (2004) Mach Learn , vol.54 , Issue.3 , pp. 255-273
    • Džeroski, S.1    Ženko, B.2
  • 87
    • 0031731695 scopus 로고    scopus 로고
    • Representation is representation of similarity
    • Edelman S. Representation is representation of similarity. Behav Brain Sci 1998, 21:449-498.
    • (1998) Behav Brain Sci , vol.21 , pp. 449-498
    • Edelman, S.1
  • 91
    • 84902232571 scopus 로고    scopus 로고
    • Proceedings of the 13th European conference on machine learning (ECML 2002), Helsinki, Finland, August 19-23
    • Springer, London, T. Elomaa, H. Mannila, H. Toivonen (Eds.)
    • Proceedings of the 13th European conference on machine learning (ECML 2002), Helsinki, Finland, August 19-23. Lecture notes in computer science 2002, vol. 2430. Springer, London. T. Elomaa, H. Mannila, H. Toivonen (Eds.).
    • (2002) Lecture notes in computer science , vol.2430
  • 95
    • 67650713589 scopus 로고    scopus 로고
    • Support vector machines for TCP traffic classification
    • Este A., Gringoli F., Salgarelli L. Support vector machines for TCP traffic classification. Comput Netw 2009, 53(14):2476-2490.
    • (2009) Comput Netw , vol.53 , Issue.14 , pp. 2476-2490
    • Este, A.1    Gringoli, F.2    Salgarelli, L.3
  • 96
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • [special issue: ROC analysis in pattern recognition]
    • Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett 2006, 27(8):861-874. [special issue: ROC analysis in pattern recognition].
    • (2006) Pattern Recogn Lett , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 99
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • Fleuret F. Fast binary feature selection with conditional mutual information. J Mach Learn Res 2004, 5:1531-1555.
    • (2004) J Mach Learn Res , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 100
    • 84902232566 scopus 로고    scopus 로고
    • UCI machine learning repository
    • Frank A, Asuncion A. UCI machine learning repository; 2010.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 101
    • 0242403850 scopus 로고
    • Sequentially determined statistically equivalent blocks
    • Fraser D.A.S. Sequentially determined statistically equivalent blocks. Ann Math Stat 1951, 22:372-381.
    • (1951) Ann Math Stat , vol.22 , pp. 372-381
    • Fraser, D.A.S.1
  • 102
    • 0002692762 scopus 로고
    • Nonparametric tolerance regions
    • Fraser D.A.S. Nonparametric tolerance regions. Ann Math Stat 1953, 24:44-55.
    • (1953) Ann Math Stat , vol.24 , pp. 44-55
    • Fraser, D.A.S.1
  • 104
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • Freund Y., Sebastian Seung H., Shamir E., Tishby N. Selective sampling using the query by committee algorithm. Mach learn 1997, 28(2-3):133-168.
    • (1997) Mach learn , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Sebastian Seung, H.2    Shamir, E.3    Tishby, N.4
  • 106
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., Schapire R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 1997, 55:119-139.
    • (1997) J Comput Syst Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 107
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman F.H., Hastie T., Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann Stat 2005, 28:337-407.
    • (2005) Ann Stat , vol.28 , pp. 337-407
    • Friedman, F.H.1    Hastie, T.2    Tibshirani, R.3
  • 108
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann Stat 2001, 29:1189-1232.
    • (2001) Ann Stat , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 109
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman J.H. Stochastic gradient boosting. Comput Stat Data Anal 2002, 38:367-378.
    • (2002) Comput Stat Data Anal , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 110
    • 0000012198 scopus 로고    scopus 로고
    • Selective sampling for example-based word sense disambiguation
    • Fujii A., Tokunaga T., Inui K., Tanaka H. Selective sampling for example-based word sense disambiguation. Comput Linguist 1998, 24(4):573-597.
    • (1998) Comput Linguist , vol.24 , Issue.4 , pp. 573-597
    • Fujii, A.1    Tokunaga, T.2    Inui, K.3    Tanaka, H.4
  • 111
    • 0031223555 scopus 로고    scopus 로고
    • Recent advances in speaker recognition
    • Furui S. Recent advances in speaker recognition. Pattern Recogn Lett 1997, 18:859-872.
    • (1997) Pattern Recogn Lett , vol.18 , pp. 859-872
    • Furui, S.1
  • 113
    • 65549161444 scopus 로고    scopus 로고
    • Serum proteomic abnormality predating screen detection of ovarian cancer
    • Gammerman A., Vovk V., Burford B., Nouretdinov I., Luo Z., Chervonenkis A., et al. Serum proteomic abnormality predating screen detection of ovarian cancer. Comput J 2009, 52(3):326-333.
    • (2009) Comput J , vol.52 , Issue.3 , pp. 326-333
    • Gammerman, A.1    Vovk, V.2    Burford, B.3    Nouretdinov, I.4    Luo, Z.5    Chervonenkis, A.6
  • 114
    • 33947281129 scopus 로고    scopus 로고
    • Hedging predictions in machine learning: the second Computer Journal lecture
    • Gammerman A., Vovk V. Hedging predictions in machine learning: the second Computer Journal lecture. Comput J 2007, 50:151-163.
    • (2007) Comput J , vol.50 , pp. 151-163
    • Gammerman, A.1    Vovk, V.2
  • 117
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • Giacinto G., Roli F. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recogn 2001, 34:1879-1881.
    • (2001) Pattern Recogn , vol.34 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 118
    • 0036896227 scopus 로고    scopus 로고
    • On choosing and bounding probability metrics
    • Gibbs A.L., Su F.E. On choosing and bounding probability metrics. Int Stat Rev 2002, 70(3):419-435.
    • (2002) Int Stat Rev , vol.70 , Issue.3 , pp. 419-435
    • Gibbs, A.L.1    Su, F.E.2
  • 119
    • 0001736564 scopus 로고
    • A Bayes approach to a quality control model
    • Girshik M.A., Rubin H. A Bayes approach to a quality control model. Ann Math Stat 1952, 23(1):114-125.
    • (1952) Ann Math Stat , vol.23 , Issue.1 , pp. 114-125
    • Girshik, M.A.1    Rubin, H.2
  • 120
    • 0242288807 scopus 로고    scopus 로고
    • Model selection for support vector machine classification
    • Gold C., Sollich P. Model selection for support vector machine classification. Neurocomputing 2003, 55:221-249.
    • (2003) Neurocomputing , vol.55 , pp. 221-249
    • Gold, C.1    Sollich, P.2
  • 121
    • 84861439058 scopus 로고    scopus 로고
    • Automatic location of l/h transition times for physical studies with a large statistical basis
    • JET-EFDA contributors
    • Gonzalez S., Vega J., Murari A., Pereira A., Dormido-Canto S., Ramirez J.M. Automatic location of l/h transition times for physical studies with a large statistical basis. Plasma Phys Control Fusion 2012, 54(6):065009. JET-EFDA contributors.
    • (2012) Plasma Phys Control Fusion , vol.54 , Issue.6 , pp. 065009
    • Gonzalez, S.1    Vega, J.2    Murari, A.3    Pereira, A.4    Dormido-Canto, S.5    Ramirez, J.M.6
  • 122
    • 84991384645 scopus 로고    scopus 로고
    • Region selection and image classification methodology using a non-conformity measure
    • Gonzalez S., Vega J., Pereira A., Pastor I. Region selection and image classification methodology using a non-conformity measure. Prog Artif Intell 2012, 1(3):215-222.
    • (2012) Prog Artif Intell , vol.1 , Issue.3 , pp. 215-222
    • Gonzalez, S.1    Vega, J.2    Pereira, A.3    Pastor, I.4
  • 125
    • 84855892138 scopus 로고    scopus 로고
    • Reliable pavement backcalculation with confidence estimation
    • Gopalakrishnan K., Papadopoulos H. Reliable pavement backcalculation with confidence estimation. Sci Iran 2011, 18(6):1214-1221.
    • (2011) Sci Iran , vol.18 , Issue.6 , pp. 1214-1221
    • Gopalakrishnan, K.1    Papadopoulos, H.2
  • 126
    • 84986792205 scopus 로고
    • An introduction to long-memory time series models and fractional differencing
    • Granger C.W.J., Joyeux R. An introduction to long-memory time series models and fractional differencing. J Time Ser Anal 1980, 1:15-29.
    • (1980) J Time Ser Anal , vol.1 , pp. 15-29
    • Granger, C.W.J.1    Joyeux, R.2
  • 128
    • 79957609052 scopus 로고    scopus 로고
    • Encrypted internet traffic classification method based on host behavior
    • Gu C., Zhang S., Xue X. Encrypted internet traffic classification method based on host behavior. Int J Digit Content Technol Appl 2011, 5(3):167-174.
    • (2011) Int J Digit Content Technol Appl , vol.5 , Issue.3 , pp. 167-174
    • Gu, C.1    Zhang, S.2    Xue, X.3
  • 134
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 135
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Mach Learn 2002, 46(1-3):389-422.
    • (2002) Mach Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 136
    • 84945268900 scopus 로고    scopus 로고
    • Using hard classifiers to estimate conditional class probabilities
    • Springer, Berlin, T. Elomaa, H. Mannila, H. Toivonen (Eds.)
    • Halck O.M. Using hard classifiers to estimate conditional class probabilities. Proceedings of the 13th European conference on machine learning 2002, 124-134. Springer, Berlin. T. Elomaa, H. Mannila, H. Toivonen (Eds.).
    • (2002) Proceedings of the 13th European conference on machine learning , pp. 124-134
    • Halck, O.M.1
  • 138
    • 58149330446 scopus 로고    scopus 로고
    • Breast cancer diagnosis from proteomic mass spectrometry data: a comparative evaluation
    • Hand D.J. Breast cancer diagnosis from proteomic mass spectrometry data: a comparative evaluation. Stat Appl Genet Mol Biol 2008, 7(2).
    • (2008) Stat Appl Genet Mol Biol , vol.7 , Issue.2
    • Hand, D.J.1
  • 139
    • 84925605946 scopus 로고    scopus 로고
    • The entire regularization path for the support vector machine
    • Hastie T., Rosset S., Tibshirani R., Zhu J. The entire regularization path for the support vector machine. J Mach Learn Res 2004, 5:1391-1415.
    • (2004) J Mach Learn Res , vol.5 , pp. 1391-1415
    • Hastie, T.1    Rosset, S.2    Tibshirani, R.3    Zhu, J.4
  • 141
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: data mining, inference and prediction
    • Hastie T., Tibshirani R., Friedman J., Franklin J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005, 27(2):83-85.
    • (2005) Math Intell , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 143
    • 84898947879 scopus 로고    scopus 로고
    • Practical confidence and prediction intervals
    • Heskes T. Practical confidence and prediction intervals. Adv Neural Inf Process Syst 1997, 9:176-182.
    • (1997) Adv Neural Inf Process Syst , vol.9 , pp. 176-182
    • Heskes, T.1
  • 145
    • 31844442669 scopus 로고    scopus 로고
    • A martingale framework for concept change detection in time-varying data streams
    • ACM, L. De Raedt, S. Wrobel (Eds.)
    • Ho S.-S. A martingale framework for concept change detection in time-varying data streams. ICML 2005, 321-327. ACM. L. De Raedt, S. Wrobel (Eds.).
    • (2005) ICML , pp. 321-327
    • Ho, S.-S.1
  • 147
    • 84880736710 scopus 로고    scopus 로고
    • Adaptive support vector machine for time-varying data streams using martingale
    • Professional Book Center, L.P. Kaelbling, A. Saffiotti (Eds.)
    • Ho S.-S., Wechsler H. Adaptive support vector machine for time-varying data streams using martingale. IJCAI 2005, 1606-1607. Professional Book Center. L.P. Kaelbling, A. Saffiotti (Eds.).
    • (2005) IJCAI , pp. 1606-1607
    • Ho, S.-S.1    Wechsler, H.2
  • 151
    • 78049529489 scopus 로고    scopus 로고
    • A martingale framework for detecting changes in data streams by testing exchangeability
    • Ho S.-S., Wechsler H. A martingale framework for detecting changes in data streams by testing exchangeability. IEEE Trans Pattern Anal Mach Intell 2010, 32(12):2113-2127.
    • (2010) IEEE Trans Pattern Anal Mach Intell , vol.32 , Issue.12 , pp. 2113-2127
    • Ho, S.-S.1    Wechsler, H.2
  • 153
    • 68549132506 scopus 로고    scopus 로고
    • Batch mode active learning with applications to text categorization and image retrieval
    • Hoi Steven C.H., Jin R., Lyu M. Batch mode active learning with applications to text categorization and image retrieval. IEEE Trans Knowl Data Eng 2009, 21(9):1233-1248.
    • (2009) IEEE Trans Knowl Data Eng , vol.21 , Issue.9 , pp. 1233-1248
    • Hoi, S.C.H.1    Jin, R.2    Lyu, M.3
  • 155
    • 77951943755 scopus 로고    scopus 로고
    • Semi-supervised SVM batch mode active learning for image retrieval
    • Hoi S.C.H., Jin R., Zhu J., Lyu M.R. Semi-supervised SVM batch mode active learning for image retrieval. IEEE CVPR 2008.
    • (2008) IEEE CVPR
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 160
    • 85013909606 scopus 로고    scopus 로고
    • Valid predictions with confidence estimation in an air pollution problem
    • Ivina O., Nouretdinov I., Gammerman A. Valid predictions with confidence estimation in an air pollution problem. Prog Artif Intell 2012, 1(3):235-243.
    • (2012) Prog Artif Intell , vol.1 , Issue.3 , pp. 235-243
    • Ivina, O.1    Nouretdinov, I.2    Gammerman, A.3
  • 168
    • 78650048351 scopus 로고    scopus 로고
    • Sinuhe: statistical machine translation using a globally trained conditional exponential family translation model
    • Association for Computational Linguistics
    • Kääriäinen M. Sinuhe: statistical machine translation using a globally trained conditional exponential family translation model. Proceedings of the 2009 conference on empirical methods in natural language processing 2009, vol. 2:1027-1036. Association for Computational Linguistics.
    • (2009) Proceedings of the 2009 conference on empirical methods in natural language processing , vol.2 , pp. 1027-1036
    • Kääriäinen, M.1
  • 171
    • 0033566418 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • Kearns M., Ron D. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Neural Comput 1999, 11(6):1427-1453.
    • (1999) Neural Comput , vol.11 , Issue.6 , pp. 1427-1453
    • Kearns, M.1    Ron, D.2
  • 172
    • 0042802443 scopus 로고
    • Generalized tolerance limits
    • Kemperman J.H.B. Generalized tolerance limits. Ann Math Stat 1956, 27:180-186.
    • (1956) Ann Math Stat , vol.27 , pp. 180-186
    • Kemperman, J.H.B.1
  • 174
    • 85123650840 scopus 로고    scopus 로고
    • Detecting change in data streams
    • Morgan Kaufmann, M.A. Nascimento, M.T. Özsu, D. Kossmann, R.J. Miller, J.A. Blakeley, K. Bernhard Schiefer (Eds.)
    • Kifer D., Ben-David S., Gehrke J. Detecting change in data streams. Proceedings of the 13th international conference on very large data bases 2004, 180-191. Morgan Kaufmann. M.A. Nascimento, M.T. Özsu, D. Kossmann, R.J. Miller, J.A. Blakeley, K. Bernhard Schiefer (Eds.).
    • (2004) Proceedings of the 13th international conference on very large data bases , pp. 180-191
    • Kifer, D.1    Ben-David, S.2    Gehrke, J.3
  • 176
    • 77955008439 scopus 로고    scopus 로고
    • Experimental designs for sensitivity analysis of simulation models
    • Kleijnen J. Experimental designs for sensitivity analysis of simulation models. Eurosim 2001 conference 2001.
    • (2001) Eurosim 2001 conference
    • Kleijnen, J.1
  • 177
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: examples selection vs example weighting
    • [special issue on incremental learning systems capable of dealing with concept drift]
    • Klinkenberg R. Learning drifting concepts: examples selection vs example weighting. Intell Data Anal 2004, 8(3):281-300. [special issue on incremental learning systems capable of dealing with concept drift].
    • (2004) Intell Data Anal , vol.8 , Issue.3 , pp. 281-300
    • Klinkenberg, R.1
  • 179
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: a new ensemble method for tracking concept drift
    • IEEE Computer Society
    • Kolter J.Z., Maloof M.A. Dynamic weighted majority: a new ensemble method for tracking concept drift. ICDM 2003, 123-130. IEEE Computer Society.
    • (2003) ICDM , pp. 123-130
    • Kolter, J.Z.1    Maloof, M.A.2
  • 180
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the myopia of inductive learning algorithms with RELIEFF
    • Kononenko I., Šimec E., Robnik-Šikonja M. Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl Intell 1997, 7:39-55.
    • (1997) Appl Intell , vol.7 , pp. 39-55
    • Kononenko, I.1    Šimec, E.2    Robnik-Šikonja, M.3
  • 182
    • 0742301742 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using a minimal number of queries
    • Kothari R., Jain V. Learning from labeled and unlabeled data using a minimal number of queries. IEEE Trans Neural Netw 2003.
    • (2003) IEEE Trans Neural Netw
    • Kothari, R.1    Jain, V.2
  • 184
    • 0041834856 scopus 로고    scopus 로고
    • Transductive reliability estimation for medical diagnosis
    • Kukar M. Transductive reliability estimation for medical diagnosis. Artif Intell Med 2003, 29:81-106.
    • (2003) Artif Intell Med , vol.29 , pp. 81-106
    • Kukar, M.1
  • 185
    • 33645537482 scopus 로고    scopus 로고
    • Quality assessment of individual classifications in machine learning and data mining
    • Kukar M. Quality assessment of individual classifications in machine learning and data mining. Knowledge and information systems 2006, 9(3):364-384.
    • (2006) Knowledge and information systems , vol.9 , Issue.3 , pp. 364-384
    • Kukar, M.1
  • 186
    • 15244340871 scopus 로고    scopus 로고
    • Transductive machine learning for reliable medical diagnostics
    • Kukar M., Groselj C. Transductive machine learning for reliable medical diagnostics. J Med Syst 2005, 29(1):13-32.
    • (2005) J Med Syst , vol.29 , Issue.1 , pp. 13-32
    • Kukar, M.1    Groselj, C.2
  • 187
    • 84945287811 scopus 로고    scopus 로고
    • Reliable classifications with machine learning
    • Springer-Verlag, Berlin, T. Elomaa, H. Mannila, H. Toivonen (Eds.)
    • Kukar M., Kononenko I. Reliable classifications with machine learning. Proceedings of 13th European conference on machine learning, ECML 2002 2002, 219-231. Springer-Verlag, Berlin. T. Elomaa, H. Mannila, H. Toivonen (Eds.).
    • (2002) Proceedings of 13th European conference on machine learning, ECML 2002 , pp. 219-231
    • Kukar, M.1    Kononenko, I.2
  • 190
    • 78651310870 scopus 로고    scopus 로고
    • Reliable confidence measures for medical diagnosis with evolutionary algorithms
    • Lambrou A., Papadopoulos H., Gammerman A. Reliable confidence measures for medical diagnosis with evolutionary algorithms. IEEE Trans Inf Technol Biomed 2011, 15(1):93-99.
    • (2011) IEEE Trans Inf Technol Biomed , vol.15 , Issue.1 , pp. 93-99
    • Lambrou, A.1    Papadopoulos, H.2    Gammerman, A.3
  • 193
    • 84870861519 scopus 로고    scopus 로고
    • Reliable probability estimates based on support vector machines for large multiclass datasets
    • Iliadis L, Maglogiannis I, Papadopoulos H, Karatzas K, Sioutas S. editors. IFIP advances in information and communication technology, vol. 382. Berlin: Springer
    • Lambrou A, Papadopoulos H, Nouretdinov I, Gammerman A. Reliable probability estimates based on support vector machines for large multiclass datasets. In: Iliadis L, Maglogiannis I, Papadopoulos H, Karatzas K, Sioutas S. editors. Proceedings of the AIAI 2012 workshop on conformal prediction and its applications. IFIP advances in information and communication technology, vol. 382. Berlin: Springer; 2012. p. 182-91.
    • (2012) Proceedings of the AIAI 2012 workshop on conformal prediction and its applications. , pp. 182-191
    • Lambrou, A.1    Papadopoulos, H.2    Nouretdinov, I.3    Gammerman, A.4
  • 194
    • 21844462365 scopus 로고    scopus 로고
    • Tutorial on practical prediction theory for classification
    • Langford J. Tutorial on practical prediction theory for classification. J Mach Learn Res 2005, 6:273-306.
    • (2005) J Mach Learn Res , vol.6 , pp. 273-306
    • Langford, J.1
  • 200
    • 84878234413 scopus 로고    scopus 로고
    • Distribution free prediction sets
    • Preliminary version published as Technical Report arXiv:1111.1418 [math.ST]
    • Lei Jing, Robins James, Wasserman Larry Distribution free prediction sets. Journal of the American Statistical Association 2013, 108:278-287. Preliminary version published as Technical Report arXiv:1111.1418 [math.ST].
    • (2013) Journal of the American Statistical Association , vol.108 , pp. 278-287
    • Lei, J.1    Robins, J.2    Wasserman, L.3
  • 201
    • 84891825688 scopus 로고    scopus 로고
    • Distribution free prediction bands. Technical Report [stat.ME], arXiv.org e-Print archive, March 2012.
    • arxiv:1203.5422.
    • Lei Jing, Wasserman Larry. Distribution free prediction bands. Technical Report [stat.ME], arXiv.org e-Print archive, March 2012. Published in the Journal of the Royal Statistical Society B, 2014;76:71-96. arxiv:1203.5422.
    • (2014) Published in the Journal of the Royal Statistical Society B , vol.76 , pp. 71-96
    • Lei, J.1    Wasserman, L.2
  • 202
    • 0028377540 scopus 로고
    • On the self-similar nature of ethernet traffic (extended version)
    • Leland W.E., Taqqu M.S., Willinger W., Wilson D.V. On the self-similar nature of ethernet traffic (extended version). IEEE/ACM Trans Netw 1994, 2(1):1-15.
    • (1994) IEEE/ACM Trans Netw , vol.2 , Issue.1 , pp. 1-15
    • Leland, W.E.1    Taqqu, M.S.2    Willinger, W.3    Wilson, D.V.4
  • 205
    • 67349172877 scopus 로고    scopus 로고
    • Face authentication using recognition-by-parts, boosting and transduction
    • Li F., Wechsler H. Face authentication using recognition-by-parts, boosting and transduction. Int J Artif Intell Pattern Recogn 2009, 23:545-573.
    • (2009) Int J Artif Intell Pattern Recogn , vol.23 , pp. 545-573
    • Li, F.1    Wechsler, H.2
  • 206
    • 35048818013 scopus 로고    scopus 로고
    • SVM model selection with the VC bound
    • Li H., Wang S., Qi F. SVM model selection with the VC bound. Comput Inf Sci 2005, 3314:1067-1071.
    • (2005) Comput Inf Sci , vol.3314 , pp. 1067-1071
    • Li, H.1    Wang, S.2    Qi, F.3
  • 210
    • 61749100211 scopus 로고    scopus 로고
    • Efficient application identification and the temporal and spatial stability of classification schema
    • Li W., Canini M., Moore A.W., Bolla R. Efficient application identification and the temporal and spatial stability of classification schema. Comput Netw 2009, 53(6):790-809.
    • (2009) Comput Netw , vol.53 , Issue.6 , pp. 790-809
    • Li, W.1    Canini, M.2    Moore, A.W.3    Bolla, R.4
  • 212
    • 36549085110 scopus 로고    scopus 로고
    • An active learning based TCM-KNN algorithm for supervised network intrusion detection
    • Li Y., Guo L. An active learning based TCM-KNN algorithm for supervised network intrusion detection. Comput Secur 2007, 26(7-8):459-467.
    • (2007) Comput Secur , vol.26 , Issue.7-8 , pp. 459-467
    • Li, Y.1    Guo, L.2
  • 215
    • 1242352526 scopus 로고    scopus 로고
    • Selective sampling for nearest neighbor classifiers
    • Lindenbaum M., Markovitch S., Rusakov D. Selective sampling for nearest neighbor classifiers. Mach Learn 2004, 54(2):125-152.
    • (2004) Mach Learn , vol.54 , Issue.2 , pp. 125-152
    • Lindenbaum, M.1    Markovitch, S.2    Rusakov, D.3
  • 217
    • 4944238374 scopus 로고    scopus 로고
    • A systematic comparison of methods for combining p-values from independent tests
    • Loughin T.M. A systematic comparison of methods for combining p-values from independent tests. Comput Stat Data Anal 2004, 47(3):467-485.
    • (2004) Comput Stat Data Anal , vol.47 , Issue.3 , pp. 467-485
    • Loughin, T.M.1
  • 218
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • MacKay David J.C. Information-based objective functions for active data selection. Neural Comput 1992, 4(4):590-604.
    • (1992) Neural Comput , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 222
    • 84885329354 scopus 로고    scopus 로고
    • Incremental support vector machines for fast reliable image recognition
    • Makili L., Vega J., Dormido-Canto S. Incremental support vector machines for fast reliable image recognition. Fusion Eng Des 2013, 88(6):1170-1173.
    • (2013) Fusion Eng Des , vol.88 , Issue.6 , pp. 1170-1173
    • Makili, L.1    Vega, J.2    Dormido-Canto, S.3
  • 223
    • 80054070526 scopus 로고    scopus 로고
    • Computationally efficient {SVM} multi-class image recognition with confidence measures
    • Proceedings of the 26th symposium of fusion technology (SOFT-26)
    • Makili L., Vega J., Dormido-Canto S., Pastor I., Murari A. Computationally efficient {SVM} multi-class image recognition with confidence measures. Fusion Eng Des 2011, 86(6-8):1213-1216. Proceedings of the 26th symposium of fusion technology (SOFT-26).
    • (2011) Fusion Eng Des , vol.86 , Issue.6-8 , pp. 1213-1216
    • Makili, L.1    Vega, J.2    Dormido-Canto, S.3    Pastor, I.4    Murari, A.5
  • 226
    • 84948132465 scopus 로고    scopus 로고
    • Comparing the Bayes and typicalness frameworks
    • Springer, Heidelberg, L. De Raedt, P.A. Flach (Eds.) Proceedings of the 12th European conference on machine learning
    • Melluish T., Saunders C., Nouretdinov I., Vovk V. Comparing the Bayes and typicalness frameworks. Lecture notes in computer science 2001, vol. 2167:360-371. Springer, Heidelberg. L. De Raedt, P.A. Flach (Eds.).
    • (2001) Lecture notes in computer science , vol.2167 , pp. 360-371
    • Melluish, T.1    Saunders, C.2    Nouretdinov, I.3    Vovk, V.4
  • 232
  • 239
    • 50549103905 scopus 로고    scopus 로고
    • A survey of vision-based trajectory learning and analysis for surveillance
    • Morris B.T., Trivedi M.M. A survey of vision-based trajectory learning and analysis for surveillance. IEEE Trans Circuits Syst Video Technol 2008, 18(8):1114-1127.
    • (2008) IEEE Trans Circuits Syst Video Technol , vol.18 , Issue.8 , pp. 1114-1127
    • Morris, B.T.1    Trivedi, M.M.2
  • 240
    • 0012951963 scopus 로고    scopus 로고
    • Computer Sciences Department, University of Wisconsin, Madison
    • Musicant D.R. Normally distributed clustered datasets 1998, Computer Sciences Department, University of Wisconsin, Madison. http://www.cs.wisc.edu/dmi/svm/ndc/.
    • (1998) Normally distributed clustered datasets
    • Musicant, D.R.1
  • 241
    • 84865607742 scopus 로고    scopus 로고
    • Robust re-identification using randomness and statistical learning: Quo Vadis
    • Nappi M., Wechsler H. Robust re-identification using randomness and statistical learning: Quo Vadis. Pattern Recogn Lett 2012, 33:1820-1827.
    • (2012) Pattern Recogn Lett , vol.33 , pp. 1820-1827
    • Nappi, M.1    Wechsler, H.2
  • 242
    • 84902232553 scopus 로고    scopus 로고
    • National Institute of Standards and Technology. Digital library of mathematical functions. ; 6 May
    • National Institute of Standards and Technology. Digital library of mathematical functions. ; 6 May 2013. http://dlmf.nist.gov/.
    • (2013)
  • 243
    • 62849120844 scopus 로고    scopus 로고
    • A survey of techniques for internet traffic classification using machine learning
    • Nguyen T.T.T., Armitage G. A survey of techniques for internet traffic classification using machine learning. IEEE Commun Surv Tutor 2008, 10(4):56-76.
    • (2008) IEEE Commun Surv Tutor , vol.10 , Issue.4 , pp. 56-76
    • Nguyen, T.T.T.1    Armitage, G.2
  • 244
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K., McCallum A.K., Thrun S., Mitchell T. Text classification from labeled and unlabeled documents using EM. Mach Learn 2000, 39(2-3):103-134.
    • (2000) Mach Learn , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 247
    • 79954987179 scopus 로고    scopus 로고
    • Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression
    • Nouretdinov I., Costafreda S.G., Gammerman A., Chervonenkis A., Vovk V., Vapnik V. Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage 2011, 56:809-813.
    • (2011) Neuroimage , vol.56 , pp. 809-813
    • Nouretdinov, I.1    Costafreda, S.G.2    Gammerman, A.3    Chervonenkis, A.4    Vovk, V.5    Vapnik, V.6
  • 249
    • 84891456421 scopus 로고    scopus 로고
    • Determining confidence of predicted interactions between HIV-1 and human proteins using conformal method
    • Nouretdinov I., Gammerman A., Qi Y., Klein-Seetharaman J. Determining confidence of predicted interactions between HIV-1 and human proteins using conformal method. Pacific symposium on biocomputing 2012, vol. 17:311-322.
    • (2012) Pacific symposium on biocomputing , vol.17 , pp. 311-322
    • Nouretdinov, I.1    Gammerman, A.2    Qi, Y.3    Klein-Seetharaman, J.4
  • 253
    • 7444249671 scopus 로고    scopus 로고
    • Transductive confidence machine is universal
    • Springer, Berlin, R. Gavaldà, K.P. Jantke, E. Takimoto (Eds.) Proceedings of the 14th international conference on algorithmic learning theory
    • Nouretdinov I., V'yugin V., Gammerman A. Transductive confidence machine is universal. Lecture notes in artificial intelligence 2003, vol. 2842. Springer, Berlin. R. Gavaldà, K.P. Jantke, E. Takimoto (Eds.).
    • (2003) Lecture notes in artificial intelligence , vol.2842
    • Nouretdinov, I.1    V'yugin, V.2    Gammerman, A.3
  • 255
    • 0005662389 scopus 로고
    • The probability of a correct diagnosis
    • Kluwer, Dordrecht, NL, J. Candell-Riera, D. Ortega-Alcalde (Eds.)
    • Olona-Cabases M. The probability of a correct diagnosis. Nuclear cardiology in everyday practice 1994, 348-357. Kluwer, Dordrecht, NL. J. Candell-Riera, D. Ortega-Alcalde (Eds.).
    • (1994) Nuclear cardiology in everyday practice , pp. 348-357
    • Olona-Cabases, M.1
  • 259
    • 0012316965 scopus 로고
    • On problem in which a change in a parameter occurs at an unknown point
    • Page E.S. On problem in which a change in a parameter occurs at an unknown point. Biometrika 1957, 44:248-252.
    • (1957) Biometrika , vol.44 , pp. 248-252
    • Page, E.S.1
  • 262
    • 77956693468 scopus 로고    scopus 로고
    • Reliable diagnosis of acute abdominal pain with conformal prediction
    • Papadopoulos H., Gammerman A., Vovk V. Reliable diagnosis of acute abdominal pain with conformal prediction. Eng Intell Syst 2009, 17:127-137.
    • (2009) Eng Intell Syst , vol.17 , pp. 127-137
    • Papadopoulos, H.1    Gammerman, A.2    Vovk, V.3
  • 263
    • 78049406324 scopus 로고    scopus 로고
    • Neural networks regression inductive conformal predictor and its application to total electron content prediction
    • Springer, Berlin/Heidelberg, K. Diamantaras, W. Duch, L. Iliadis (Eds.) Artificial neural networks ICANN 2010
    • Papadopoulos H., Haralambous H. Neural networks regression inductive conformal predictor and its application to total electron content prediction. Lecture notes in computer science 2010, vol. 6352:32-41. Springer, Berlin/Heidelberg. K. Diamantaras, W. Duch, L. Iliadis (Eds.).
    • (2010) Lecture notes in computer science , vol.6352 , pp. 32-41
    • Papadopoulos, H.1    Haralambous, H.2
  • 264
    • 80051799000 scopus 로고    scopus 로고
    • Reliable prediction intervals with regression neural networks
    • Papadopoulos H., Haralambous H. Reliable prediction intervals with regression neural networks. Neural Netw 2011, 24(8):842-851.
    • (2011) Neural Netw , vol.24 , Issue.8 , pp. 842-851
    • Papadopoulos, H.1    Haralambous, H.2
  • 267
    • 79956338571 scopus 로고    scopus 로고
    • Regression conformal prediction with nearest neighbours
    • Papadopoulos H., Vovk V., Gammerman A. Regression conformal prediction with nearest neighbours. J Artif Intell Res 2011, 40(1):815-840.
    • (2011) J Artif Intell Res , vol.40 , Issue.1 , pp. 815-840
    • Papadopoulos, H.1    Vovk, V.2    Gammerman, A.3
  • 269
    • 0029323403 scopus 로고
    • Wide-area traffic: the failure of poisson modeling
    • Paxson V., Floyd S. Wide-area traffic: the failure of poisson modeling. IEEE/ACM Trans Netw 1995, 3:226-244.
    • (1995) IEEE/ACM Trans Netw , vol.3 , pp. 226-244
    • Paxson, V.1    Floyd, S.2
  • 271
    • 84863441367 scopus 로고    scopus 로고
    • Addressing the national academy of sciences challenge: a method for statistical pattern comparison of striated tool marks
    • Petraco N.D.K., Shenkin P., Speir J., Diaczuk P., Pizzola P.A., Gambino C., Petraco N. Addressing the national academy of sciences challenge: a method for statistical pattern comparison of striated tool marks. J Forens Sci 2012, 57(4):900-911.
    • (2012) J Forens Sci , vol.57 , Issue.4 , pp. 900-911
    • Petraco, N.D.K.1    Shenkin, P.2    Speir, J.3    Diaczuk, P.4    Pizzola, P.A.5    Gambino, C.6    Petraco, N.7
  • 273
    • 84859852067 scopus 로고    scopus 로고
    • The Good, the bad, and the ugly face challenge problem
    • Phillips P.J. The Good, the bad, and the ugly face challenge problem. Image Vis Comput 2012, 30:177-185.
    • (2012) Image Vis Comput , vol.30 , pp. 177-185
    • Phillips, P.J.1
  • 274
    • 0032045780 scopus 로고    scopus 로고
    • The FERET database and evaluation procedure for face recognition algorithms
    • Phillips P.J., Wechsler H., Huang J., Rauss P. The FERET database and evaluation procedure for face recognition algorithms. Image Vis Comput 1998, 16:295-306.
    • (1998) Image Vis Comput , vol.16 , pp. 295-306
    • Phillips, P.J.1    Wechsler, H.2    Huang, J.3    Rauss, P.4
  • 277
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • Platt J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers 1999.
    • (1999) Advances in large margin classifiers
    • Platt, J.1
  • 278
    • 1842420581 scopus 로고    scopus 로고
    • General conditions for predictivity in learning theory
    • Poggio T., Rifkin R., Mukherjee S., Niyogi P. General conditions for predictivity in learning theory. Nature 2004, 428:419-422.
    • (2004) Nature , vol.428 , pp. 419-422
    • Poggio, T.1    Rifkin, R.2    Mukherjee, S.3    Niyogi, P.4
  • 279
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: dealing with data
    • Poggio T., Smale S. The mathematics of learning: dealing with data. Notices of ASM 2003, 537-544.
    • (2003) Notices of ASM , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 280
    • 52149120844 scopus 로고    scopus 로고
    • Transductive confidence machines for pattern recognition
    • Springer, London, (Lecture Notes in Computer Science), T. Elomaa, H. Mannila, H. Toivonen (Eds.)
    • Proedrou K, Nouretdinov I, Vovk V, Gammerman A Transductive confidence machines for pattern recognition. Proceedings of the 13th European conference on machine learning 2002, 381-390. Springer, London, (Lecture Notes in Computer Science). T. Elomaa, H. Mannila, H. Toivonen (Eds.).
    • (2002) Proceedings of the 13th European conference on machine learning , pp. 381-390
    • Proedrou, K.1    Nouretdinov, I.2    Vovk, V.3    Gammerman, A.4
  • 283
    • 0037433040 scopus 로고    scopus 로고
    • Identifying differentially expressed genes using false discovery rate controlling procedures
    • Reiner A., Yekutieli D., Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19(3):368-375.
    • (2003) Bioinformatics , vol.19 , Issue.3 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 285
    • 0033884858 scopus 로고    scopus 로고
    • Speaker verification using adaptive Gaussian mixture models
    • Reynolds D.A., Quatieri T.F., Dunn R.B. Speaker verification using adaptive Gaussian mixture models. Digit Signal Process 2000, 10:19-41.
    • (2000) Digit Signal Process , vol.10 , pp. 19-41
    • Reynolds, D.A.1    Quatieri, T.F.2    Dunn, R.B.3
  • 286
    • 77649197099 scopus 로고    scopus 로고
    • Optimal rates for plug-in estimators of density level sets
    • Rigollet P., Vert R. Optimal rates for plug-in estimators of density level sets. Bernoulli 2009, 14:1154-1178.
    • (2009) Bernoulli , vol.14 , pp. 1154-1178
    • Rigollet, P.1    Vert, R.2
  • 288
    • 9444283773 scopus 로고    scopus 로고
    • Gene expression profiling of pediatric acute myelogenous leukaemia
    • Ross M.E., Mahfouz R., Onciu M., Liu H.-C., Zhou X., Song G., et al. Gene expression profiling of pediatric acute myelogenous leukaemia. Blood 2004, 104(12):3679-3687.
    • (2004) Blood , vol.104 , Issue.12 , pp. 3679-3687
    • Ross, M.E.1    Mahfouz, R.2    Onciu, M.3    Liu, H.-C.4    Zhou, X.5    Song, G.6
  • 289
    • 0141993002 scopus 로고    scopus 로고
    • Classification of pediatric acute lymphoblastic leukaemia by gene expression profiling
    • Ross M.E., Zhou X., Song G., Shurtleff S.A., Girtman K., Williams W.K., et al. Classification of pediatric acute lymphoblastic leukaemia by gene expression profiling. Blood 2003, 102:2951-2959.
    • (2003) Blood , vol.102 , pp. 2951-2959
    • Ross, M.E.1    Zhou, X.2    Song, G.3    Shurtleff, S.A.4    Girtman, K.5    Williams, W.K.6
  • 293
    • 0003275264 scopus 로고
    • Parallel distributed processing
    • MIT Press, Cambridge
    • Rumelhart D.E., McClelland J.L. Parallel distributed processing. Foundations 1986, vol. 1. MIT Press, Cambridge.
    • (1986) Foundations , vol.1
    • Rumelhart, D.E.1    McClelland, J.L.2
  • 294
    • 84892126822 scopus 로고    scopus 로고
    • Technical report CS-TR-03-11. Department of Computer Science, Royal Holloway, University of London
    • Ryabko D. Relaxing i.i.d. assumption in online pattern recognition. Technical report CS-TR-03-11. Department of Computer Science, Royal Holloway, University of London; 2003.
    • (2003) Relaxing i.i.d assumption in online pattern recognition.
    • Ryabko, D.1
  • 298
    • 84974712411 scopus 로고    scopus 로고
    • Computationally efficient transductive machines
    • Springer, Berlin, Proceedings of the 11th international conference on algorithmic learning theory
    • Saunders C., Gammerman A., Vovk V. Computationally efficient transductive machines. Lecture notes in computer science 2000, vol. 1968:325-333. Springer, Berlin.
    • (2000) Lecture notes in computer science , vol.1968 , pp. 325-333
    • Saunders, C.1    Gammerman, A.2    Vovk, V.3
  • 299
    • 0000843955 scopus 로고
    • Nonparametric estimation I: validation of order statistics
    • Scheffé H., Tukey J.W. Nonparametric estimation I: validation of order statistics. Ann Math Stat 1945, 16:187-192.
    • (1945) Ann Math Stat , vol.16 , pp. 187-192
    • Scheffé, H.1    Tukey, J.W.2
  • 305
    • 84904806792 scopus 로고    scopus 로고
    • Online active learning methods for fast label-efficient spam filtering
    • Sculley D. Online active learning methods for fast label-efficient spam filtering. Fourth conference on email and antispam 2007.
    • (2007) Fourth conference on email and antispam
    • Sculley, D.1
  • 309
    • 68949137209 scopus 로고    scopus 로고
    • Technical report 1648. University of Wisconsin-Madison
    • Settles B. Active learning literature survey. Technical report 1648. University of Wisconsin-Madison; 2010.
    • (2010) Active learning literature survey
    • Settles, B.1
  • 315
    • 41549089117 scopus 로고    scopus 로고
    • A tutorial on conformal prediction
    • Shafer G., Vovk V. A tutorial on conformal prediction. J Mach Learn Res 2008, 9:371-421.
    • (2008) J Mach Learn Res , vol.9 , pp. 371-421
    • Shafer, G.1    Vovk, V.2
  • 318
    • 0004154449 scopus 로고    scopus 로고
    • Classification accuracy based on observed margin
    • Shawe-Taylor J. Classification accuracy based on observed margin. Algorithmica 1998, 22:57-172.
    • (1998) Algorithmica , vol.22 , pp. 57-172
    • Shawe-Taylor, J.1
  • 320
    • 0345349896 scopus 로고
    • The application of statistics as an aid in maintaining quality of a manufactured products
    • Shewhart W.A. The application of statistics as an aid in maintaining quality of a manufactured products. J Am Stat Assoc 1925, 20:546-548.
    • (1925) J Am Stat Assoc , vol.20 , pp. 546-548
    • Shewhart, W.A.1
  • 324
    • 0002196122 scopus 로고
    • On optimum methods in quickest detection problems
    • Shiryaev A.N. On optimum methods in quickest detection problems. Theory Probab Appl 1963, 8:22-46.
    • (1963) Theory Probab Appl , vol.8 , pp. 22-46
    • Shiryaev, A.N.1
  • 326
    • 33947369065 scopus 로고    scopus 로고
    • Face recognition by humans: nineteen results all computer vision researchers should know about
    • Sinha P., Balas B., Ostrovsky Y., Russell R. Face recognition by humans: nineteen results all computer vision researchers should know about. Proc IEEE 2006, 94(11):1948-1962.
    • (2006) Proc IEEE , vol.94 , Issue.11 , pp. 1948-1962
    • Sinha, P.1    Balas, B.2    Ostrovsky, Y.3    Russell, R.4
  • 328
    • 77649156732 scopus 로고    scopus 로고
    • Meta-conformity approach to reliable classification
    • Smirnov E.N., Nalbantov G.I., Kaptein A.M. Meta-conformity approach to reliable classification. Intell Data Anal 2009, 13(6):901-915.
    • (2009) Intell Data Anal , vol.13 , Issue.6 , pp. 901-915
    • Smirnov, E.N.1    Nalbantov, G.I.2    Kaptein, A.M.3
  • 329
    • 78149259862 scopus 로고    scopus 로고
    • Single-stacking conformity approach to reliable classification
    • Springer, D. Dicheva, D. Dochev (Eds.) Artificial intelligence: methodology, systems, and applications
    • Smirnov E., Nikolaev N., Nalbantov G. Single-stacking conformity approach to reliable classification. Lecture notes in computer science 2010, vol. 6304:161-170. Springer. D. Dicheva, D. Dochev (Eds.).
    • (2010) Lecture notes in computer science , vol.6304 , pp. 161-170
    • Smirnov, E.1    Nikolaev, N.2    Nalbantov, G.3
  • 331
    • 0028742240 scopus 로고
    • Experience with adaptive probabilistic neural networks and adaptive general regression neural networks
    • IEEE Press, Piscataway, USA, S.K. Rogers (Ed.)
    • Specht D.F., Romsdahl H. Experience with adaptive probabilistic neural networks and adaptive general regression neural networks. Proceedings of IEEE international conference on neural networks, Orlando, USA 1994, IEEE Press, Piscataway, USA. S.K. Rogers (Ed.).
    • (1994) Proceedings of IEEE international conference on neural networks, Orlando, USA
    • Specht, D.F.1    Romsdahl, H.2
  • 336
    • 80053074478 scopus 로고    scopus 로고
    • Image processing and machine learning for fully automated probabilistic evaluation of medical images
    • Šajn L., Kukar M. Image processing and machine learning for fully automated probabilistic evaluation of medical images. Comput Method Prog Biomed 2011, 104:75-86.
    • (2011) Comput Method Prog Biomed , vol.104 , pp. 75-86
    • Šajn, L.1    Kukar, M.2
  • 337
    • 77954953206 scopus 로고    scopus 로고
    • Explanation and reliability of prediction models: the case of breast cancer recurrence
    • Štrumbelj E., Bosnić Z., Kononenko I., Zakotnik B., Grašič C. Explanation and reliability of prediction models: the case of breast cancer recurrence. Knowl Inf Syst 2010, 24:305-324.
    • (2010) Knowl Inf Syst , vol.24 , pp. 305-324
    • Štrumbelj, E.1    Bosnić, Z.2    Kononenko, I.3    Zakotnik, B.4    Grašič, C.5
  • 338
    • 0001598644 scopus 로고
    • On generalized information measures and their applications
    • Taneja I.J. On generalized information measures and their applications. Adv Electron Elect Phys 1995, 76:327-416.
    • (1995) Adv Electron Elect Phys , vol.76 , pp. 327-416
    • Taneja, I.J.1
  • 342
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • Tong S., Koller D. Support vector machine active learning with applications to text classification. J Mach Learn Res 2002, 2:45-66.
    • (2002) J Mach Learn Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 343
    • 38049105735 scopus 로고    scopus 로고
    • Traffic demand prediction using ann simulator
    • KES 2007 and XVII Italian workshop on neural networks conference on knowledge-based Intelligent Information and Engineering Systems: Part I
    • Topuz V. Traffic demand prediction using ann simulator. In: Proceedings of the 11th international conference, KES 2007 and XVII Italian workshop on neural networks conference on knowledge-based Intelligent Information and Engineering Systems: Part I; 2007. p. 864-70.
    • (2007) Proceedings of the 11th international conference , pp. 864-870
    • Topuz, V.1
  • 344
    • 84958985297 scopus 로고    scopus 로고
    • Learning to predict the leave-one-out error of kernel based classifiers
    • Springer, Berlin/Heidelberg
    • Tsuda K., Raetsch M., Mika S., Mueller K. Learning to predict the leave-one-out error of kernel based classifiers. Lecture notes in computer science 2001, 227-331. Springer, Berlin/Heidelberg.
    • (2001) Lecture notes in computer science , pp. 227-331
    • Tsuda, K.1    Raetsch, M.2    Mika, S.3    Mueller, K.4
  • 346
    • 0011003349 scopus 로고
    • Sunset salvo
    • Tukey J.W. Sunset salvo. Am Stat 1986, 40:72-76.
    • (1986) Am Stat , vol.40 , pp. 72-76
    • Tukey, J.W.1
  • 347
    • 0001038382 scopus 로고
    • Nonparametric estimation II: statistically equivalent blocks and tolerance regions - the continuous case
    • Tukey J.W. Nonparametric estimation II: statistically equivalent blocks and tolerance regions - the continuous case. Ann Math Stat 1947, 18:529-539.
    • (1947) Ann Math Stat , vol.18 , pp. 529-539
    • Tukey, J.W.1
  • 348
    • 0002138576 scopus 로고
    • Nonparametric estimation III: statistically equivalent blocks and tolerance regions - the discontinuous case
    • Tukey J.W. Nonparametric estimation III: statistically equivalent blocks and tolerance regions - the discontinuous case. Ann Math Stat 1948, 19:30-39.
    • (1948) Ann Math Stat , vol.19 , pp. 30-39
    • Tukey, J.W.1
  • 349
    • 0035942271 scopus 로고    scopus 로고
    • Significance analysis of microarrays applied to the ionising radiation response
    • Tusher V.G., Tibshirani R., Chu G. Significance analysis of microarrays applied to the ionising radiation response. Proc Natl Acad Sci USA 2001, 98:5116-5121.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5116-5121
    • Tusher, V.G.1    Tibshirani, R.2    Chu, G.3
  • 350
    • 38049160709 scopus 로고    scopus 로고
    • A comparison of two approaches to classify with guaranteed performance
    • Springer, Berlin, J.N. Kok, J. Koronacki, R. López de Mántaras, S. Matwin, D. Mladenic, A. Skowron (Eds.) Proceedings of the 11th European conference on principles and practice of knowledge discovery in databases, September 17-21, 2007, Warsaw
    • Vanderlooy S., Sprinkhuizen-Kuyper I.G. A comparison of two approaches to classify with guaranteed performance. Lecture notes in computer science 2007, vol. 4702:288-299. Springer, Berlin. J.N. Kok, J. Koronacki, R. López de Mántaras, S. Matwin, D. Mladenic, A. Skowron (Eds.).
    • (2007) Lecture notes in computer science , vol.4702 , pp. 288-299
    • Vanderlooy, S.1    Sprinkhuizen-Kuyper, I.G.2
  • 354
    • 78149445570 scopus 로고    scopus 로고
    • Accurate and reliable image classification by using conformal predictors in the TJ-II thomson scattering
    • 10E118-10E118-4
    • Vega J., Murari A., Pereira A., Gonzalez S., Pastor I. Accurate and reliable image classification by using conformal predictors in the TJ-II thomson scattering. Rev Sci Instrum 2010, 81(10). 10E118-10E118-4.
    • (2010) Rev Sci Instrum , vol.81 , Issue.10
    • Vega, J.1    Murari, A.2    Pereira, A.3    Gonzalez, S.4    Pastor, I.5
  • 356
    • 84870873258 scopus 로고    scopus 로고
    • Identification of confinement regimes in tokamak plasmas by conformal prediction on a probabilistic manifold
    • Springer, L.S. Iliadis, I. Maglogiannis, H. Papadopoulos, K. Karatzas, S. Sioutas (Eds.) AIAI (2)
    • Verdoolaege G., Vega J., Murari A., Van Oost G. Identification of confinement regimes in tokamak plasmas by conformal prediction on a probabilistic manifold. IFIP advances in information and communication technology 2012, vol. 382:244-253. Springer. L.S. Iliadis, I. Maglogiannis, H. Papadopoulos, K. Karatzas, S. Sioutas (Eds.).
    • (2012) IFIP advances in information and communication technology , vol.382 , pp. 244-253
    • Verdoolaege, G.1    Vega, J.2    Murari, A.3    Van Oost, G.4
  • 360
    • 84880107869 scopus 로고    scopus 로고
    • Conditional validity of inductive conformal predictors
    • Vovk V. Conditional validity of inductive conformal predictors. Mach Learn 2013, 92:349-376.
    • (2013) Mach Learn , vol.92 , pp. 349-376
    • Vovk, V.1
  • 361
    • 84930413676 scopus 로고    scopus 로고
    • Cross-conformal predictors
    • 10.1007/s10472-013-9368-4.
    • Vovk V. Cross-conformal predictors. Ann Math Artif Intell 2013, (1012-2443):20. 10.1007/s10472-013-9368-4.
    • (2013) Ann Math Artif Intell , Issue.1012-2443 , pp. 20
    • Vovk, V.1
  • 362
    • 84939617755 scopus 로고    scopus 로고
    • Kernel ridge regression
    • Springer, Heidelberg, [chapter 11], B. Schölkopf, Z. Luo, V. Vovk (Eds.)
    • Vovk V. Kernel ridge regression. Empirical inference: festschrift in honor of Vladimir N. Vapnik 2013, Springer, Heidelberg, [chapter 11]. B. Schölkopf, Z. Luo, V. Vovk (Eds.).
    • (2013) Empirical inference: festschrift in honor of Vladimir N. Vapnik
    • Vovk, V.1
  • 366
    • 1942484490 scopus 로고    scopus 로고
    • Testing exchangeability on-line
    • AAAI Press, T. Fawcett, N. Mishra (Eds.)
    • Vovk V., Nouretdinov I., Gammerman A. Testing exchangeability on-line. ICML 2003, 768-775. AAAI Press. T. Fawcett, N. Mishra (Eds.).
    • (2003) ICML , pp. 768-775
    • Vovk, V.1    Nouretdinov, I.2    Gammerman, A.3
  • 370
    • 0002502739 scopus 로고
    • An extension of Wilks' method for setting tolerance limits
    • Wald A. An extension of Wilks' method for setting tolerance limits. Ann Math Stat 1943, 14:45-55.
    • (1943) Ann Math Stat , vol.14 , pp. 45-55
    • Wald, A.1
  • 372
    • 67349191538 scopus 로고    scopus 로고
    • Hedged predictions for traditional chinese chronic gastritis diagnosis with confidence machine
    • Wang H., Lin Ch., Yang F., Hu X. Hedged predictions for traditional chinese chronic gastritis diagnosis with confidence machine. Comput Biol Med 2009, 39(5).
    • (2009) Comput Biol Med , vol.39 , Issue.5
    • Wang, H.1    Lin, C.2    Yang, F.3    Hu, X.4
  • 374
    • 82655179903 scopus 로고    scopus 로고
    • Frasian inference
    • Wasserman L. Frasian inference. Stat Sci 2011, 26:322-325.
    • (2011) Stat Sci , vol.26 , pp. 322-325
    • Wasserman, L.1
  • 378
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G., Kubat Miroslav Learning in the presence of concept drift and hidden contexts. Mach Learn 1996, 23(1):69-101.
    • (1996) Mach Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 379
    • 0002765765 scopus 로고
    • Determination of sample sizes for setting tolerance limits
    • Wilks S.S. Determination of sample sizes for setting tolerance limits. Ann Math Stat 1941, 12:91-96.
    • (1941) Ann Math Stat , vol.12 , pp. 91-96
    • Wilks, S.S.1
  • 380
    • 33750283653 scopus 로고    scopus 로고
    • A preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification
    • Williams N., Zander S., Armitage G. A preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification. SIGCOMM Comput Commun Rev 2006, 36(5):5-16.
    • (2006) SIGCOMM Comput Commun Rev , vol.36 , Issue.5 , pp. 5-16
    • Williams, N.1    Zander, S.2    Armitage, G.3
  • 382
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses
    • Wold S., Ruhe A., Wold H., Dunn W.J. The collinearity problem in linear regression. the partial least squares (PLS) approach to generalized inverses. SIAM J Sci Stat Comput 1984, 5(3):735-743.
    • (1984) SIAM J Sci Stat Comput , vol.5 , Issue.3 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn, W.J.4
  • 383
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Netw 1992, 5:241-259.
    • (1992) Neural Netw , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 385
    • 60849085435 scopus 로고    scopus 로고
    • Using random forest for reliable classification and cost-sensitive learning for medical diagnosis
    • Yang F., Zhen Wang H., Mi H., de Lin C., Wen Cai W. Using random forest for reliable classification and cost-sensitive learning for medical diagnosis. BMC Bioinf 2009, 10(1).
    • (2009) BMC Bioinf , vol.10 , Issue.1
    • Yang, F.1    Zhen Wang, H.2    Mi, H.3    de Lin, C.4    Wen Cai, W.5
  • 387
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukaemia by gene expression profiling
    • Yeoh E.-J., Ross M.E., Shurtleff S.A., Williams W.K., Patel D., Mahfouza R., et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukaemia by gene expression profiling. Cancer Cell 2002, 1:133-143.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.-J.1    Ross, M.E.2    Shurtleff, S.A.3    Williams, W.K.4    Patel, D.5    Mahfouza, R.6
  • 390
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • Yu L., Liu H. Efficient feature selection via analysis of relevance and redundancy. J Mach Learn Res 2004, 5:1205-1224.
    • (2004) J Mach Learn Res , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 391
    • 0042836881 scopus 로고    scopus 로고
    • Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data
    • Zaffalon M., Wesnes K., Petrini O. Reliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artif Intell Med 2003, 29(1):61-79.
    • (2003) Artif Intell Med , vol.29 , Issue.1 , pp. 61-79
    • Zaffalon, M.1    Wesnes, K.2    Petrini, O.3
  • 392
    • 33751393658 scopus 로고    scopus 로고
    • Automated traffic classification and application identification using machine learning
    • Zander S., Nguyen T., Armitage G. Automated traffic classification and application identification using machine learning. IEEE conference on local computer networks 2005, 250-257.
    • (2005) IEEE conference on local computer networks , pp. 250-257
    • Zander, S.1    Nguyen, T.2    Armitage, G.3
  • 395
    • 33745456231 scopus 로고    scopus 로고
    • Computer sciences technical report 1530. University of Wisconsin-Madison
    • Zhu X. Semi-supervised learning literature survey. Computer sciences technical report 1530. University of Wisconsin-Madison; 2005.
    • (2005) Semi-supervised learning literature survey
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.