메뉴 건너뛰기




Volumn 24, Issue 2, 2010, Pages 305-324

Explanation and reliability of prediction models: The case of breast cancer recurrence

Author keywords

Breast cancer; Classification explanation; Data mining; Machine learning; Prediction reliability

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA MINING; DECISION MAKING; DISEASES; FORECASTING; LEARNING SYSTEMS; MACHINE LEARNING; RELIABILITY;

EID: 77954953206     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-009-0244-9     Document Type: Article
Times cited : (41)

References (30)
  • 1
    • 0029484103 scopus 로고    scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R, Diederich J, Tickle AB (1996) Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl Based Syst 8: 373-389.
    • (1996) Knowl Based Syst , vol.8 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 2
    • 77954953755 scopus 로고    scopus 로고
    • Becker B, Kohavi R, Sommerfield D (1997) Visualizing the simple bayesian classier. In: KDD Workshop on issues in the integration of data mining and data visualization.
  • 3
    • 54249164497 scopus 로고    scopus 로고
    • Estimation of individual prediction reliability using the local sensitivity analysis
    • Bosnić Z, Kononenko I (2007) Estimation of individual prediction reliability using the local sensitivity analysis. Appl Intell 29(3): 187-203.
    • (2007) Appl Intell , vol.29 , Issue.3 , pp. 187-203
    • Bosnić, Z.1    Kononenko, I.2
  • 4
    • 77954955900 scopus 로고    scopus 로고
    • Bosnić Z, Kononenko I (2008) Automatic selection of reliability estimates for individual predictions. Knowl Eng Rev (in press).
  • 5
    • 54349094489 scopus 로고    scopus 로고
    • Comparison of approaches for estimating reliability of individual regression predictions
    • Bosnić Z, Kononenko I (2008) Comparison of approaches for estimating reliability of individual regression predictions. Data Knowl Eng 67(3): 504-516.
    • (2008) Data Knowl Eng , vol.67 , Issue.3 , pp. 504-516
    • Bosnić, Z.1    Kononenko, I.2
  • 6
    • 62449194481 scopus 로고    scopus 로고
    • Bosnić Z, Kononenko I (2009) An overview of advances in reliability estimation of individual predictions in machine learning. Intell Data Anal 13(2): 385-401.
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L (2001) Random forests. Mach Learn J 45: 5-32.
    • (2001) Mach Learn J , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 77954957145 scopus 로고    scopus 로고
    • Craven MW, Shavlik J (1994) Using sampling and queries to extract rules from trained neural networks. In: Proceedings of international conference on machine learning, pp 37-45.
  • 10
    • 13644251959 scopus 로고    scopus 로고
    • An evolutionary approach for automatically extracting intelligible classification rules
    • De Falco I, Della Cioppa A, Iazzetta A, Tarantino E (2006) An evolutionary approach for automatically extracting intelligible classification rules. Knowl Inf Syst 7: 179-201.
    • (2006) Knowl Inf Syst , vol.7 , pp. 179-201
    • de Falco, I.1    della Cioppa, A.2    Iazzetta, A.3    Tarantino, E.4
  • 12
    • 77954957243 scopus 로고    scopus 로고
    • Gammerman A, Vovk V, Vapnik V (1998) Learning by transduction. In: Proceedings of the 14th conference on uncertainty in artificial intelligence. Madison, Wisconsin, pp 148-155.
  • 13
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 14
    • 77954953657 scopus 로고    scopus 로고
    • Hamel L (2006) Visualization of support vector machines with unsupervised learning. In: Proceedings of 2006 IEEE symposium on computational intelligence in bioinformatics and computational biology. pp 1-8.
  • 15
    • 32344441116 scopus 로고    scopus 로고
    • Jakulin A, Možina M, Demšar J, Bratko I, Zupan B (2005) Nomograms for visualizing support vector machines. In: KDD '05: proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. pp 108-117.
  • 16
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R, John G (1997) Wrappers for feature subset selection. Artif Intell J 97(1-2): 273-324.
    • (1997) Artif Intell J , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 17
    • 0027682531 scopus 로고
    • Inductive and bayesian learning in medical diagnosis
    • Kononenko I (1993) Inductive and bayesian learning in medical diagnosis. Appl Artif Intell 7: 317-337.
    • (1993) Appl Artif Intell , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 18
    • 0034922742 scopus 로고    scopus 로고
    • Machine learning for medical diagnosis: History, state of the art and perspective
    • Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23: 89-109.
    • (2001) Artif Intell Med , vol.23 , pp. 89-109
    • Kononenko, I.1
  • 19
    • 84882637032 scopus 로고    scopus 로고
    • Kononenko I, Kukar M (2007) Machine learning and data mining: introduction to principles and algorithms. Horwood, New York.
  • 20
    • 33645537482 scopus 로고    scopus 로고
    • Quality assessment of individual classifications in machine learning and data mining
    • Kukar M (2004) Quality assessment of individual classifications in machine learning and data mining. Knowl Inf Syst 9(3): 364-384.
    • (2004) Knowl Inf Syst , vol.9 , Issue.3 , pp. 364-384
    • Kukar, M.1
  • 21
    • 56349095888 scopus 로고    scopus 로고
    • Lemaire V, Féraud R, Voisine N (2008) Contact personalization using a score understanding method. In: International joint conference on neural networks (IJCNN).
  • 22
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. Knowl Data Eng 17(4): 491-502.
    • (2005) Knowl Data Eng , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 23
    • 33750710231 scopus 로고    scopus 로고
    • Možina M, Demšar J, Kattan M, Zupan B (2004) Nomograms for visualization of naive bayesian classifier. In: PKDD '04: proceedings of the 8th European conference on principles and practice of knowledge discovery in databases, New York, NY, USA, 2004. Springer, New York, pp 337-348.
  • 24
    • 19544386607 scopus 로고    scopus 로고
    • Poulet F (2004) Svm and graphical algorithms: a cooperative approach. In: Proceedings of fourth IEEE international conference on data mining. pp 499-502.
  • 25
    • 52949101606 scopus 로고    scopus 로고
    • Explaining classifications for individual instances
    • Robnik Šikonja M, Kononenko I (2008) Explaining classifications for individual instances. IEEE Trans Knowl Data Eng 20: 589-600.
    • (2008) IEEE Trans Knowl Data Eng , vol.20 , pp. 589-600
    • Robnik, S.M.1    Kononenko, I.2
  • 26
    • 84880657197 scopus 로고    scopus 로고
    • Transduction with confidence and credibility
    • Saunders C, Gammerman A, Vovk V (1999) Transduction with confidence and credibility. Proc IJCAI' 99(2): 722-726.
    • (1999) Proc IJCAI , vol.99 , Issue.2 , pp. 722-726
    • Saunders, C.1    Gammerman, A.2    Vovk, V.3
  • 27
    • 33750708213 scopus 로고    scopus 로고
    • Szafron D, Poulin B, Eisner R, Lu P, Greiner R, Wishart D, Fyshe A, Pearcy B, Macdonell C, and Anvik J (2006) Visual explanation of evidence in additive classifiers. In: Proceedings of innovative applications of artificial intelligence.
  • 28
    • 52949147440 scopus 로고    scopus 로고
    • Štrumbelj E, Kononenko I (2008) Towards a model independent method for explaining classification for individual instances. In: Proceedings of data warehousing and knowledge discovery. LNCS. Springer, Berlin, pp 273-282.
  • 29
    • 0027678679 scopus 로고
    • Extracting refined rules from knowledge-based neural networks
    • Towell G, Shavlik JW (1993) Extracting refined rules from knowledge-based neural networks. Mach Learn 13: 71-101.
    • (1993) Mach Learn , vol.13 , pp. 71-101
    • Towell, G.1    Shavlik, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.