-
1
-
-
0029484103
-
Survey and critique of techniques for extracting rules from trained artificial neural networks
-
Andrews R, Diederich J, Tickle AB (1996) Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowl Based Syst 8: 373-389.
-
(1996)
Knowl Based Syst
, vol.8
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle, A.B.3
-
2
-
-
77954953755
-
-
Becker B, Kohavi R, Sommerfield D (1997) Visualizing the simple bayesian classier. In: KDD Workshop on issues in the integration of data mining and data visualization.
-
-
-
-
3
-
-
54249164497
-
Estimation of individual prediction reliability using the local sensitivity analysis
-
Bosnić Z, Kononenko I (2007) Estimation of individual prediction reliability using the local sensitivity analysis. Appl Intell 29(3): 187-203.
-
(2007)
Appl Intell
, vol.29
, Issue.3
, pp. 187-203
-
-
Bosnić, Z.1
Kononenko, I.2
-
4
-
-
77954955900
-
-
Bosnić Z, Kononenko I (2008) Automatic selection of reliability estimates for individual predictions. Knowl Eng Rev (in press).
-
-
-
-
5
-
-
54349094489
-
Comparison of approaches for estimating reliability of individual regression predictions
-
Bosnić Z, Kononenko I (2008) Comparison of approaches for estimating reliability of individual regression predictions. Data Knowl Eng 67(3): 504-516.
-
(2008)
Data Knowl Eng
, vol.67
, Issue.3
, pp. 504-516
-
-
Bosnić, Z.1
Kononenko, I.2
-
6
-
-
62449194481
-
-
Bosnić Z, Kononenko I (2009) An overview of advances in reliability estimation of individual predictions in machine learning. Intell Data Anal 13(2): 385-401.
-
-
-
-
7
-
-
0035478854
-
Random forests
-
Breiman L (2001) Random forests. Mach Learn J 45: 5-32.
-
(2001)
Mach Learn J
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
77954957145
-
-
Craven MW, Shavlik J (1994) Using sampling and queries to extract rules from trained neural networks. In: Proceedings of international conference on machine learning, pp 37-45.
-
-
-
-
10
-
-
13644251959
-
An evolutionary approach for automatically extracting intelligible classification rules
-
De Falco I, Della Cioppa A, Iazzetta A, Tarantino E (2006) An evolutionary approach for automatically extracting intelligible classification rules. Knowl Inf Syst 7: 179-201.
-
(2006)
Knowl Inf Syst
, vol.7
, pp. 179-201
-
-
de Falco, I.1
della Cioppa, A.2
Iazzetta, A.3
Tarantino, E.4
-
11
-
-
34250310031
-
Strategies for improving the modeling and interpretability of bayesian networks
-
de Santana AL, Frances C, Rocha CA, Carvalho SV, Vijaykumar NL, Rego LP, Costa JC (2007) Strategies for improving the modeling and interpretability of bayesian networks. Data Knowl Eng 63(1): 91-107.
-
(2007)
Data Knowl Eng
, vol.63
, Issue.1
, pp. 91-107
-
-
de Santana, A.L.1
Frances, C.2
Rocha, C.A.3
Carvalho, S.V.4
Vijaykumar, N.L.5
Rego, L.P.6
Costa, J.C.7
-
12
-
-
77954957243
-
-
Gammerman A, Vovk V, Vapnik V (1998) Learning by transduction. In: Proceedings of the 14th conference on uncertainty in artificial intelligence. Madison, Wisconsin, pp 148-155.
-
-
-
-
13
-
-
33745561205
-
An introduction to variable and feature selection
-
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
14
-
-
77954953657
-
-
Hamel L (2006) Visualization of support vector machines with unsupervised learning. In: Proceedings of 2006 IEEE symposium on computational intelligence in bioinformatics and computational biology. pp 1-8.
-
-
-
-
15
-
-
32344441116
-
-
Jakulin A, Možina M, Demšar J, Bratko I, Zupan B (2005) Nomograms for visualizing support vector machines. In: KDD '05: proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining. pp 108-117.
-
-
-
-
16
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R, John G (1997) Wrappers for feature subset selection. Artif Intell J 97(1-2): 273-324.
-
(1997)
Artif Intell J
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
17
-
-
0027682531
-
Inductive and bayesian learning in medical diagnosis
-
Kononenko I (1993) Inductive and bayesian learning in medical diagnosis. Appl Artif Intell 7: 317-337.
-
(1993)
Appl Artif Intell
, vol.7
, pp. 317-337
-
-
Kononenko, I.1
-
18
-
-
0034922742
-
Machine learning for medical diagnosis: History, state of the art and perspective
-
Kononenko I (2001) Machine learning for medical diagnosis: history, state of the art and perspective. Artif Intell Med 23: 89-109.
-
(2001)
Artif Intell Med
, vol.23
, pp. 89-109
-
-
Kononenko, I.1
-
19
-
-
84882637032
-
-
Kononenko I, Kukar M (2007) Machine learning and data mining: introduction to principles and algorithms. Horwood, New York.
-
-
-
-
20
-
-
33645537482
-
Quality assessment of individual classifications in machine learning and data mining
-
Kukar M (2004) Quality assessment of individual classifications in machine learning and data mining. Knowl Inf Syst 9(3): 364-384.
-
(2004)
Knowl Inf Syst
, vol.9
, Issue.3
, pp. 364-384
-
-
Kukar, M.1
-
21
-
-
56349095888
-
-
Lemaire V, Féraud R, Voisine N (2008) Contact personalization using a score understanding method. In: International joint conference on neural networks (IJCNN).
-
-
-
-
22
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. Knowl Data Eng 17(4): 491-502.
-
(2005)
Knowl Data Eng
, vol.17
, Issue.4
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
23
-
-
33750710231
-
-
Možina M, Demšar J, Kattan M, Zupan B (2004) Nomograms for visualization of naive bayesian classifier. In: PKDD '04: proceedings of the 8th European conference on principles and practice of knowledge discovery in databases, New York, NY, USA, 2004. Springer, New York, pp 337-348.
-
-
-
-
24
-
-
19544386607
-
-
Poulet F (2004) Svm and graphical algorithms: a cooperative approach. In: Proceedings of fourth IEEE international conference on data mining. pp 499-502.
-
-
-
-
25
-
-
52949101606
-
Explaining classifications for individual instances
-
Robnik Šikonja M, Kononenko I (2008) Explaining classifications for individual instances. IEEE Trans Knowl Data Eng 20: 589-600.
-
(2008)
IEEE Trans Knowl Data Eng
, vol.20
, pp. 589-600
-
-
Robnik, S.M.1
Kononenko, I.2
-
26
-
-
84880657197
-
Transduction with confidence and credibility
-
Saunders C, Gammerman A, Vovk V (1999) Transduction with confidence and credibility. Proc IJCAI' 99(2): 722-726.
-
(1999)
Proc IJCAI
, vol.99
, Issue.2
, pp. 722-726
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
27
-
-
33750708213
-
-
Szafron D, Poulin B, Eisner R, Lu P, Greiner R, Wishart D, Fyshe A, Pearcy B, Macdonell C, and Anvik J (2006) Visual explanation of evidence in additive classifiers. In: Proceedings of innovative applications of artificial intelligence.
-
-
-
-
28
-
-
52949147440
-
-
Štrumbelj E, Kononenko I (2008) Towards a model independent method for explaining classification for individual instances. In: Proceedings of data warehousing and knowledge discovery. LNCS. Springer, Berlin, pp 273-282.
-
-
-
-
29
-
-
0027678679
-
Extracting refined rules from knowledge-based neural networks
-
Towell G, Shavlik JW (1993) Extracting refined rules from knowledge-based neural networks. Mach Learn 13: 71-101.
-
(1993)
Mach Learn
, vol.13
, pp. 71-101
-
-
Towell, G.1
Shavlik, J.W.2
-
30
-
-
37549018049
-
Top 10 algorithms in data mining
-
Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, McLachlan GJ, Ng A, Liu R, Yu PS, Steinbach ZZM, Hand DJ, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14: 1-37.
-
(2008)
Knowl Inf Syst
, vol.14
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, R.9
Yu, P.S.10
Steinbach, Z.Z.M.11
Hand, D.J.12
Steinberg, D.13
|