메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1873-1878

Multi-class batch-mode active learning for image classification

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING; IMAGE CLASSIFICATION SYSTEMS; INTERACTIVE LABELING; MODE SELECTION; MULTI-CLASS; OBJECT CATEGORIES; OBJECT RECOGNITION SYSTEMS; SUBMODULAR FUNCTIONS; SURVEILLANCE APPLICATIONS; TRAINING DATA; VISION SYSTEMS;

EID: 77955800734     PISSN: 10504729     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ROBOT.2010.5509293     Document Type: Conference Paper
Times cited : (31)

References (27)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • Available at
    • A. Asuncion and D. J. Newman. UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences, 2007. Available at http://archive.ics.uci.edu/ml/datasets.html.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 3
    • 1942517333 scopus 로고    scopus 로고
    • Incorporating diversity in active learning with support vector machines
    • K. Brinker. Incorporating diversity in active learning with support vector machines. In ICML, 2003.
    • (2003) ICML
    • Brinker, K.1
  • 4
    • 0038399423 scopus 로고    scopus 로고
    • Query learning with large margin classifiers
    • C. Campbell, N. Cristianini, and A. J. Smola. Query learning with large margin classifiers. In ICML, 2000.
    • (2000) ICML
    • Campbell, C.1    Cristianini, N.2    Smola, A.J.3
  • 7
    • 84898947320 scopus 로고    scopus 로고
    • Analysis of a greedy active learning strategy
    • MIT Press
    • S. Dasgupta. Analysis of a greedy active learning strategy. In NIPS . MIT Press, 2005.
    • (2005) NIPS
    • Dasgupta, S.1
  • 8
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. In CVPR, 2005.
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 10
    • 56449094315 scopus 로고    scopus 로고
    • A bound on the label complexity of agnostic active learning
    • S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.
    • (2007) ICML
    • Hanneke, S.1
  • 11
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • T. Hastie and R. Tibshirani. Classification by pairwise coupling. Annals of Statistics, 26(2):451-471, 1998.
    • (1998) Annals of Statistics , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2
  • 12
    • 33749263388 scopus 로고    scopus 로고
    • Batch mode active learning and its application to medical image classification
    • S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Batch mode active learning and its application to medical image classification. In ICML, 2006.
    • (2006) ICML
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 14
    • 70450192673 scopus 로고    scopus 로고
    • Active learning for large multi-class problems
    • P. Jain and A. Kapoor. Active learning for large multi-class problems. In CVPR, 2009.
    • (2009) CVPR
    • Jain, P.1    Kapoor, A.2
  • 15
    • 70450181250 scopus 로고    scopus 로고
    • Multi-class active learning for image classification
    • A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Joshi, A.J.1    Porikli, F.2    Papanikolopoulos, N.3
  • 16
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with Gaussian Processes for object categorization
    • A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active learning with Gaussian Processes for object categorization. In ICCV, 2007.
    • (2007) ICCV
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 17
    • 78651463011 scopus 로고    scopus 로고
    • Selective supervision: Guiding supervised learning with decision-theoretic active learning
    • A. Kapoor, E. Horvitz, and S. Basu. Selective supervision: Guiding supervised learning with decision-theoretic active learning. In IJCAI, 2007.
    • (2007) IJCAI
    • Kapoor, A.1    Horvitz, E.2    Basu, S.3
  • 18
    • 67650691734 scopus 로고    scopus 로고
    • Near-optimal nonmyopic value of information in graphical models
    • A. Krause and C. Guestrin. Near-optimal nonmyopic value of information in graphical models. In UAI, 2005.
    • (2005) UAI
    • Krause, A.1    Guestrin, C.2
  • 20
    • 34548160247 scopus 로고    scopus 로고
    • A note on Platt's probabilistic outputs for support vector machines
    • H.-T. Lin, C.-J. Lin, and R. C. Weng. A note on Platt's probabilistic outputs for support vector machines. Machine Learning, 68:267-276, 2007.
    • (2007) Machine Learning , vol.68 , pp. 267-276
    • Lin, H.-T.1    Lin, C.-J.2    Weng, R.C.3
  • 21
    • 0000095809 scopus 로고
    • An analysis of the approximations for maximizing submodular set functions
    • G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14:265-294, 1978.
    • (1978) Mathematical Programming , vol.14 , pp. 265-294
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 22
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV, 42(3):145-175, 2001.
    • (2001) IJCV , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 23
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparison to regularized likelihood methods
    • MIT Press
    • J. Platt. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press, 2000.
    • (2000) Advances in Large Margin Classifiers
    • Platt, J.1
  • 24
    • 51949086514 scopus 로고    scopus 로고
    • Two-dimensional active learning for image classification
    • G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, and H.-J. Zhang. Two-dimensional active learning for image classification. In CVPR, 2008.
    • (2008) CVPR
    • Qi, G.-J.1    Hua, X.-S.2    Rui, Y.3    Tang, J.4    Zhang, H.-J.5
  • 25
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. JMLR, 2:45-66, 2001.
    • (2001) JMLR , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 26
    • 85058225616 scopus 로고    scopus 로고
    • Multi-level active prediction of useful image annotations for recognition
    • MIT Press
    • S. Vijayanarasimhan and K. Grauman. Multi-level active prediction of useful image annotations for recognition. In NIPS . MIT Press, 2008.
    • (2008) NIPS
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 27
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multiclass classification by pairwise coupling
    • T.-F. Wu, C.-J. Lin, and R. C. Weng. Probability estimates for multiclass classification by pairwise coupling. JMLR, 5:975-1005, 2004.
    • (2004) JMLR , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.