메뉴 건너뛰기




Volumn , Issue , 2001, Pages 97-106

Mining time-changing data streams

Author keywords

Concept drift; Data streams; Decision trees; Hoeffding bounds; Incremental learning; Subsampling

Indexed keywords

ALGORITHMS; COMPUTATIONAL COMPLEXITY; DATABASE SYSTEMS; DECISION THEORY; LEARNING SYSTEMS; TREES (MATHEMATICS);

EID: 0035789299     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/502512.502529     Document Type: Conference Paper
Times cited : (1508)

References (29)
  • 3
    • 0034320912 scopus 로고    scopus 로고
    • Learning changing concepts by exploiting the structure of change
    • P. L. Bartlett, S. Ben-David, and S. R. Kulkarni. Learning changing concepts by exploiting the structure of change. Machine Learning, 41:153-174, 2000.
    • (2000) Machine Learning , vol.41 , pp. 153-174
    • Bartlett, P.L.1    Ben-David, S.2    Kulkarni, S.R.3
  • 5
    • 0003460351 scopus 로고
    • PhD thesis, Basser Department of Computer Science, University of Sydney, Sydney, Australia
    • J. Catlett. Megainduction: Machine Learning on Very Large Databases. PhD thesis, Basser Department of Computer Science, University of Sydney, Sydney, Australia, 1991.
    • (1991) Megainduction: Machine Learning on Very Large Databases
    • Catlett, J.1
  • 7
    • 0029733589 scopus 로고    scopus 로고
    • Maintenance of discovered association rules in large databases: An incremental updating technique
    • New Orleans, Louisiana. IEEE Computer Society Press
    • D. W.-L. Cheung, J. Han, V. Ng, and C. Y. Wong. Maintenance of discovered association rules in large databases: An incremental updating technique. In Proceedings of the Twelfth International Conference on Data Engineering, pages 106-114, New Orleans, Louisiana, 1996. IEEE Computer Society Press.
    • (1996) Proceedings of the Twelfth International Conference on Data Engineering , pp. 106-114
    • Cheung, D.W.-L.1    Han, J.2    Ng, V.3    Wong, C.Y.4
  • 13
  • 16
    • 0033281653 scopus 로고    scopus 로고
    • The complexity of learning according to two models of a drifting environment
    • P. M. Long. The complexity of learning according to two models of a drifting environment. Machine Learning, 37:337-354, 1999.
    • (1999) Machine Learning , vol.37 , pp. 337-354
    • Long, P.M.1
  • 25
    • 0003558537 scopus 로고    scopus 로고
    • Online bibliography, Institute for Information Technology of the National Research Council of Canada, Ottawa, Canada
    • P. Turney. Context-sensitive learning bibliography. Online bibliography, Institute for Information Technology of the National Research Council of Canada, Ottawa, Canada, 1998. http://ai.iit.nrc.ca/-bibliographies/context-sensitive.html.
    • (1998) Context-Sensitive Learning Bibliography
    • Turney, P.1
  • 27
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23:69-101, 1996.
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 28
    • 0012902924 scopus 로고    scopus 로고
    • Special issue on context sensitivity and concept drift
    • G. Widmer and M. Kubat. Special issue on context sensitivity and concept drift. Machine Learning, 32(2), 1998.
    • (1998) Machine Learning , vol.32 , Issue.2
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.