메뉴 건너뛰기




Volumn , Issue , 2010, Pages 875-882

Batch mode sparse active learning

Author keywords

Active learning; Batch mode sparse active learning; Sparse classification; Submodularity

Indexed keywords

ACTIVE LEARNING; BATCH MODES; BOUNDED ALGORITHMS; CLASSIFICATION METHODS; DATA SETS; EMPIRICAL TEST; LABELED TRAINING DATA; NON-LINEAR; SPARSE CLASSIFICATION; SPARSE REPRESENTATION; STATE-OF-THE-ART METHODS; SUBMODULARITY; UNIFIED FRAMEWORK;

EID: 79951741424     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDMW.2010.175     Document Type: Conference Paper
Times cited : (4)

References (35)
  • 1
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • DOI 10.1109/TSP.2006.881199
    • M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311 - 4322, 2006. (Pubitemid 44637761)
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruckstein, A.3
  • 2
    • 0004493166 scopus 로고    scopus 로고
    • On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems
    • PII S0304397597001151
    • E. Amaldi and V. Kann. On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theoretical Computer Science, 209:237 - 260, 1998. (Pubitemid 128450440)
    • (1998) Theoretical Computer Science , vol.209 , Issue.1-2 , pp. 237-260
    • Amaldi, E.1    Kann, V.2
  • 3
    • 35148878725 scopus 로고    scopus 로고
    • Approximate nearest subspace search with applications to pattern recognition
    • R. Basri, T. Hassner, and L. Zelnik-Manor. Approximate nearest subspace search with applications to pattern recognition. In CVRP'07, 2007.
    • (2007) CVRP'07
    • Basri, R.1    Hassner, T.2    Zelnik-Manor, L.3
  • 5
  • 6
    • 33744726904 scopus 로고    scopus 로고
    • Quantitative robust uncertainty principles and optimally sparse decompositions
    • DOI 10.1007/s10208-004-0162-x
    • E. J. Candes and J. Romberg. Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math., 6(2):227-254, 2006. (Pubitemid 43824483)
    • (2006) Foundations of Computational Mathematics , vol.6 , Issue.2 , pp. 227-254
    • Candes, E.J.1    Romberg, J.2
  • 7
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • DOI 10.1109/TIT.2005.858979
    • E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):4203 - 4215, 2005. (Pubitemid 41800353)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 8
  • 9
    • 0035273106 scopus 로고    scopus 로고
    • Atomic decomposition by basis pursuit
    • DOI 10.1137/S003614450037906X, PII S003614450037906X
    • S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Rev., 43(1):129-159, 2001. (Pubitemid 32406896)
    • (2001) SIAM Review , vol.43 , Issue.1 , pp. 129-159
    • Chen, S.S.1    Donoho, D.L.2    Saunders, M.A.3
  • 10
    • 33646365077 scopus 로고    scopus 로고
    • 1-norm solution is also the sparsest solution
    • DOI 10.1002/cpa.20132
    • D. L. Donoho. For most large underdetermined systems of linear equations the minimal ℓ1-norm solution is also the sparsest solution. Comm. Pure and Applied Math, 59(6):797 - 829, 2006. (Pubitemid 43667226)
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.L.1
  • 12
    • 34547970687 scopus 로고    scopus 로고
    • Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
    • Standford, Department of Statistics
    • D. L. Donoho, Y. Tsaig, I. Drori, and J. Starck. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Technical Report 2006-02, Standford, Department of Statistics, 2006.
    • (2006) Technical Report 2006-02
    • Donoho, D.L.1    Tsaig, Y.2    Drori, I.3    Starck, J.4
  • 14
    • 84867227925 scopus 로고    scopus 로고
    • Noise reduction through compressed sensing
    • J. F. Gemmeke and B. Cranen. Noise reduction through compressed sensing. In Proceedings of Interspeech, pages 1785 - 1788, 2008.
    • (2008) Proceedings of Interspeech , pp. 1785-1788
    • Gemmeke, J.F.1    Cranen, B.2
  • 17
    • 68549086546 scopus 로고    scopus 로고
    • Semisupervised svm batch mode active learning with applications to image retrieval
    • S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu. Semisupervised svm batch mode active learning with applications to image retrieval. ACM Trans. Inf. Syst., 27(3):1-29, 2009.
    • (2009) ACM Trans. Inf. Syst. , vol.27 , Issue.3 , pp. 1-29
    • Hoi, S.C.H.1    Jin, R.2    Zhu, J.3    Lyu, M.R.4
  • 18
    • 57049125348 scopus 로고    scopus 로고
    • Explicit constructions for compressed sensing of sparse signals
    • P. Indyk. Explicit constructions for compressed sensing of sparse signals. In SODA'08, pages 30-33, 2008.
    • (2008) SODA'08 , pp. 30-33
    • Indyk, P.1
  • 19
    • 78651312555 scopus 로고    scopus 로고
    • Decomposing background topics from keywords by principal component pursuit
    • J. Wright K. Min, Z. Zhang and Y. Ma. Decomposing background topics from keywords by principal component pursuit. In CIKM'10, 2010.
    • (2010) CIKM'10
    • Min, J.W.K.1    Zhang, Z.2    Ma, Y.3
  • 20
    • 77956509091 scopus 로고    scopus 로고
    • Submodular dictionary selection for sparse representation
    • A. Krause and V. Cevher. Submodular dictionary selection for sparse representation. In ICML'10, 2010.
    • (2010) ICML'10
    • Krause, A.1    Cevher, V.2
  • 21
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and empirical studies
    • A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies. J. Mach. Learn. Res., 9:235-284, 2008. (Pubitemid 351469021)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 22
    • 61349108034 scopus 로고    scopus 로고
    • Deblurring from highly incomplete measurements for remote sensing
    • J. Ma and F. L. Dimet. Deblurring from highly incomplete measurements for remote sensing. IEEE Trans. Geoscience and Remote Sensing, 47(3):792 - 802, 2009.
    • (2009) IEEE Trans. Geoscience and Remote Sensing , vol.47 , Issue.3 , pp. 792-802
    • Ma, J.1    Dimet, F.L.2
  • 25
    • 0000095809 scopus 로고
    • An analysis of the approximations for maximizing submodular set functions
    • G. Nemhauser, L. A. Wolsey, and M. L. Fischer. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14, 1978.
    • (1978) Mathematical Programming , vol.14
    • Nemhauser, G.1    Wolsey, L.A.2    Fischer, M.L.3
  • 28
    • 0040270671 scopus 로고
    • Analyzing cross-connected networks
    • T. R. Shultz and J. L. Elman. Analyzing cross-connected networks. In NIPS'93, pages 1117-1124, 1993.
    • (1993) NIPS'93 , pp. 1117-1124
    • Shultz, T.R.1    Elman, J.L.2
  • 29
    • 77952364863 scopus 로고    scopus 로고
    • Wavelet, active basis, and shape script: A tour in the sparse land
    • Z. Si and Y. N. Wu. Wavelet, active basis, and shape script: a tour in the sparse land. In MIR'10, pages 201-210, 2010.
    • (2010) MIR'10 , pp. 201-210
    • Si, Z.1    Wu, Y.N.2
  • 30
    • 64649083745 scopus 로고    scopus 로고
    • Signal recovery from random measurements via orthogonal matching pursuit
    • J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655-4666, 2007.
    • (2007) IEEE Transactions on Information Theory , vol.53 , Issue.12 , pp. 4655-4666
    • Tropp, J.A.1    Gilbert, A.C.2
  • 31
    • 3543103176 scopus 로고    scopus 로고
    • Sparse bayesian learning for basis selection
    • D. P. Wipf and B. D. Rao. Sparse bayesian learning for basis selection. IEEE Transactions on Signal Processing, 52(8):2153 - 2164, 2004.
    • (2004) IEEE Transactions on Signal Processing , vol.52 , Issue.8 , pp. 2153-2164
    • Wipf, D.P.1    Rao, B.D.2
  • 34
    • 78149351664 scopus 로고    scopus 로고
    • Alternating direction algorithms for ℓ1-problems in compressive sensing
    • J. Yang and Y. Zhang. Alternating direction algorithms for ℓ1-problems in compressive sensing. Technical Report TR09-37, Rice University, 2009.
    • (2009) Technical Report TR09-37, Rice University
    • Yang, J.1    Zhang, Y.2
  • 35
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning using gaussian fields and harmonic functions
    • X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using gaussian fields and harmonic functions. In ICML Workshop'03, pages 58 - 65, 2003.
    • (2003) ICML Workshop'03 , pp. 58-65
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.