메뉴 건너뛰기




Volumn 92, Issue 2-3, 2013, Pages 349-376

Conditional validity of inductive conformal predictors

Author keywords

Batch mode of learning; Boosting; Conditional validity; Inductive conformal predictors; MART; ROC curves; Spam detection

Indexed keywords

BATCH MODES; BOOSTING; CONDITIONAL VALIDITY; CONFORMAL PREDICTORS; MART; ROC CURVES; SPAM DETECTION;

EID: 84880107869     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5355-6     Document Type: Conference Paper
Times cited : (106)

References (32)
  • 6
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Freund, Y.; & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 7
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29, 1189-1232. (Pubitemid 33405972)
    • (2001) Annals of Statistics , vol.29 , Issue.5 , pp. 1189-1232
    • Friedman, J.H.1
  • 8
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • DOI 10.1016/S0167-9473(01)00065-2, PII S0167947301000652
    • Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38, 367-378. (Pubitemid 34197167)
    • (2002) Computational Statistics and Data Analysis , vol.38 , Issue.4 , pp. 367-378
    • Friedman, J.H.1
  • 11
    • 21844462365 scopus 로고    scopus 로고
    • Tutorial on practical prediction theory for classification
    • 2249822 1222.68243
    • Langford, J. (2005). Tutorial on practical prediction theory for classification. Journal of Machine Learning Research, 6, 273-306.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 273-306
    • Langford, J.1
  • 12
    • 84880099907 scopus 로고    scopus 로고
    • Distribution free prediction bands for nonparametric regression. Journal of the Royal Statistical Society B (to appear)
    • arXiv:1203.5422 [stat.ME]
    • Lei, J.; & Wasserman, L. (2013). Distribution free prediction bands for nonparametric regression. Journal of the Royal Statistical Society B (to appear), preliminary version published as Technical Report. arXiv:1203.5422 [stat.ME].
    • (2013) Preliminary Version Published As Technical Report
    • Lei, J.1    Wasserman, L.2
  • 13
    • 84878234413 scopus 로고    scopus 로고
    • Distribution free prediction sets
    • 06158342 10.1080/01621459.2012.751873 Preliminary version published as Technical Report. arXiv:1111.1418 [math.ST]
    • Lei, J.; Robins, J.; & Wasserman, L. (2013). Distribution free prediction sets. Journal of the American Statistical Association, 108, 278-287. Preliminary version published as Technical Report. arXiv:1111.1418 [math.ST].
    • (2013) Journal of the American Statistical Association , vol.108 , pp. 278-287
    • Lei, J.1    Robins, J.2    Wasserman, L.3
  • 16
    • 77953940632 scopus 로고    scopus 로고
    • National Institute of Standards and Technology
    • National Institute of Standards and Technology (2012). Digital library of mathematical functions. URL http://dlmf.nist.gov/.
    • (2012) Digital Library of Mathematical Functions
  • 18
    • 84902237449 scopus 로고    scopus 로고
    • Inductive confidence machines for regression
    • T. Elomaa H. Mannila H. Toivonen (eds) Helsinki August 19-23, 2002 Lecture notes in computer science 2430 Springer Berlin
    • Papadopoulos, H.; Proedrou, K.; Vovk, V.; & Gammerman, A. (2002a). Inductive confidence machines for regression. In T. Elomaa, H. Mannila, & H. Toivonen (Eds.), Lecture notes in computer science: Vol. 2430. Proceedings of the thirteenth European conference on machine learning, August 19-23, 2002, Helsinki (pp. 345-356). Berlin: Springer.
    • (2002) Proceedings of the Thirteenth European Conference on Machine Learning , pp. 345-356
    • Papadopoulos, H.1    Proedrou, K.2    Vovk, V.3    Gammerman, A.4
  • 22
    • 0000843955 scopus 로고
    • Nonparametric estimation I: Validation of order statistics
    • 0060.30511 10.1214/aoms/1177731119
    • Scheffé, H.; & Tukey, J. W. (1945). Nonparametric estimation I: Validation of order statistics. The Annals of Mathematical Statistics, 16, 187-192.
    • (1945) The Annals of Mathematical Statistics , vol.16 , pp. 187-192
    • Scheffé, H.1    Tukey, J.W.2
  • 24
    • 0001038382 scopus 로고
    • Nonparametric estimation II: Statistically equivalent blocks and tolerance regions - The continuous case
    • 23033 0029.15502 10.1214/aoms/1177730343
    • Tukey, J. W. (1947). Nonparametric estimation II: Statistically equivalent blocks and tolerance regions - the continuous case. The Annals of Mathematical Statistics, 18, 529-539.
    • (1947) The Annals of Mathematical Statistics , vol.18 , pp. 529-539
    • Tukey, J.W.1
  • 25
    • 0002138576 scopus 로고
    • Nonparametric estimation III: Statistically equivalent blocks and tolerance regions - The discontinuous case
    • 24110 0032.29501 10.1214/aoms/1177730287
    • Tukey, J. W. (1948). Nonparametric estimation III: Statistically equivalent blocks and tolerance regions - the discontinuous case. The Annals of Mathematical Statistics, 19, 30-39.
    • (1948) The Annals of Mathematical Statistics , vol.19 , pp. 30-39
    • Tukey, J.W.1
  • 26
    • 38049160709 scopus 로고    scopus 로고
    • A comparison of two approaches to classify with guaranteed performance
    • J. N. Kok J. Koronacki R. L. de Mántaras S. Matwin D. Mladenic A. Skowron (eds) Warsaw September 17-21, 2007 Lecture notes in computer science 4702 Springer Berlin
    • Vanderlooy, S.; & Sprinkhuizen-Kuyper, I. G. (2007). A comparison of two approaches to classify with guaranteed performance. In J. N. Kok, J. Koronacki, R. L. de Mántaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.), Lecture notes in computer science: Vol. 4702. Proceedings of the eleventh European conference on principles and practice of knowledge discovery in databases, September 17-21, 2007, Warsaw (pp. 288-299). Berlin: Springer.
    • (2007) Proceedings of the Eleventh European Conference on Principles and Practice of Knowledge Discovery in Databases , pp. 288-299
    • Vanderlooy, S.1    Sprinkhuizen-Kuyper, I.G.2
  • 28
    • 0036953613 scopus 로고    scopus 로고
    • On-line Confidence Machines are well-calibrated
    • Vancouver November 16-19, 2002 IEEE Computer Society Los Alamitos
    • Vovk, V. (2002). On-line Confidence Machines are well-calibrated. In Proceedings of the forty third annual symposium on foundations of computer science, November 16-19, 2002, Vancouver (pp. 187-196). Los Alamitos: IEEE Computer Society.
    • (2002) Proceedings of the Forty Third Annual Symposium on Foundations of Computer Science , pp. 187-196
    • Vovk, V.1
  • 29
    • 84876884912 scopus 로고    scopus 로고
    • Conditional validity of inductive conformal predictors
    • S. C. H. Hoi W. Buntine (eds) Asian conference on machine learning 25
    • Vovk, V. (2012). Conditional validity of inductive conformal predictors. In S. C. H. Hoi & W. Buntine (Eds.), Asian conference on machine learning: Vol. 25. JMLR: Workshop and conference proceedings (pp. 475-490).
    • (2012) JMLR: Workshop and Conference Proceedings , pp. 475-490
    • Vovk, V.1
  • 32
    • 0002765765 scopus 로고
    • Determination of sample sizes for setting tolerance limits
    • 4451 10.1214/aoms/1177731788
    • Wilks, S. S. (1941). Determination of sample sizes for setting tolerance limits. The Annals of Mathematical Statistics, 12, 91-96.
    • (1941) The Annals of Mathematical Statistics , vol.12 , pp. 91-96
    • Wilks, S.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.