-
1
-
-
84880086948
-
-
(eds) Elsevier Waltham (to appear)
-
Balasubramanian, V. N.; Ho, S. S.; & Vovk, V. (Eds.) (2013). Conformal prediction for reliable machine learning: theory, adaptations, and applications. Waltham: Elsevier (to appear).
-
(2013)
Conformal Prediction for Reliable Machine Learning: Theory, Adaptations, and Applications
-
-
Balasubramanian, V.N.1
Ho, S.S.2
Vovk, V.3
-
6
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Freund, Y.; & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
7
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29, 1189-1232. (Pubitemid 33405972)
-
(2001)
Annals of Statistics
, vol.29
, Issue.5
, pp. 1189-1232
-
-
Friedman, J.H.1
-
8
-
-
0037186544
-
Stochastic gradient boosting
-
DOI 10.1016/S0167-9473(01)00065-2, PII S0167947301000652
-
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38, 367-378. (Pubitemid 34197167)
-
(2002)
Computational Statistics and Data Analysis
, vol.38
, Issue.4
, pp. 367-378
-
-
Friedman, J.H.1
-
10
-
-
0003684449
-
-
2 Springer New York 10.1007/978-0-387-84858-7
-
Hastie, T.; Tibshirani, R.; & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2nd ed.). New York: Springer.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
11
-
-
21844462365
-
Tutorial on practical prediction theory for classification
-
2249822 1222.68243
-
Langford, J. (2005). Tutorial on practical prediction theory for classification. Journal of Machine Learning Research, 6, 273-306.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 273-306
-
-
Langford, J.1
-
12
-
-
84880099907
-
Distribution free prediction bands for nonparametric regression. Journal of the Royal Statistical Society B (to appear)
-
arXiv:1203.5422 [stat.ME]
-
Lei, J.; & Wasserman, L. (2013). Distribution free prediction bands for nonparametric regression. Journal of the Royal Statistical Society B (to appear), preliminary version published as Technical Report. arXiv:1203.5422 [stat.ME].
-
(2013)
Preliminary Version Published As Technical Report
-
-
Lei, J.1
Wasserman, L.2
-
13
-
-
84878234413
-
Distribution free prediction sets
-
06158342 10.1080/01621459.2012.751873 Preliminary version published as Technical Report. arXiv:1111.1418 [math.ST]
-
Lei, J.; Robins, J.; & Wasserman, L. (2013). Distribution free prediction sets. Journal of the American Statistical Association, 108, 278-287. Preliminary version published as Technical Report. arXiv:1111.1418 [math.ST].
-
(2013)
Journal of the American Statistical Association
, vol.108
, pp. 278-287
-
-
Lei, J.1
Robins, J.2
Wasserman, L.3
-
15
-
-
77950833131
-
Conditional prediction intervals for linear regression
-
Miami, FL December 13-15
-
McCullagh, P.; Vovk, V.; Nouretdinov, I.; Devetyarov, D.; & Gammerman, A. (2009). Conditional prediction intervals for linear regression. In Proceedings of the eighth international conference on machine learning and applications, December 13-15, Miami, FL (pp. 131-138). Available from http://www.stat.uchicago.edu/pmcc/reports/predict.pdf.
-
(2009)
Proceedings of the Eighth International Conference on Machine Learning and Applications
, pp. 131-138
-
-
McCullagh, P.1
Vovk, V.2
Nouretdinov, I.3
Devetyarov, D.4
Gammerman, A.5
-
16
-
-
77953940632
-
-
National Institute of Standards and Technology
-
National Institute of Standards and Technology (2012). Digital library of mathematical functions. URL http://dlmf.nist.gov/.
-
(2012)
Digital Library of Mathematical Functions
-
-
-
18
-
-
84902237449
-
Inductive confidence machines for regression
-
T. Elomaa H. Mannila H. Toivonen (eds) Helsinki August 19-23, 2002 Lecture notes in computer science 2430 Springer Berlin
-
Papadopoulos, H.; Proedrou, K.; Vovk, V.; & Gammerman, A. (2002a). Inductive confidence machines for regression. In T. Elomaa, H. Mannila, & H. Toivonen (Eds.), Lecture notes in computer science: Vol. 2430. Proceedings of the thirteenth European conference on machine learning, August 19-23, 2002, Helsinki (pp. 345-356). Berlin: Springer.
-
(2002)
Proceedings of the Thirteenth European Conference on Machine Learning
, pp. 345-356
-
-
Papadopoulos, H.1
Proedrou, K.2
Vovk, V.3
Gammerman, A.4
-
19
-
-
0012583190
-
Qualified predictions for large data sets in the case of pattern recognition
-
Las Vegas, NV June 24-27, 2002 CSREA Press Las Vegas
-
Papadopoulos, H.; Vovk, V.; & Gammerman, A. (2002b). Qualified predictions for large data sets in the case of pattern recognition. In Proceedings of the first international conference on machine learning and applications, June 24-27, 2002, Las Vegas, NV (pp. 159-163). Las Vegas: CSREA Press.
-
(2002)
Proceedings of the First International Conference on Machine Learning and Applications
, pp. 159-163
-
-
Papadopoulos, H.1
Vovk, V.2
Gammerman, A.3
-
21
-
-
84880657197
-
Transduction with confidence and credibility
-
T. Dean (eds) Stockholm July 31-August 6, 1999 2 Morgan Kaufmann San Francisco
-
Saunders, C.; Gammerman, A.; & Vovk, V. (1999). Transduction with confidence and credibility. In T. Dean (Ed.), Proceedings of the sixteenth international joint conference on artificial intelligence, July 31-August 6, 1999, Stockholm (Vol. 2, pp. 722-726). San Francisco: Morgan Kaufmann.
-
(1999)
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence
, pp. 722-726
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
22
-
-
0000843955
-
Nonparametric estimation I: Validation of order statistics
-
0060.30511 10.1214/aoms/1177731119
-
Scheffé, H.; & Tukey, J. W. (1945). Nonparametric estimation I: Validation of order statistics. The Annals of Mathematical Statistics, 16, 187-192.
-
(1945)
The Annals of Mathematical Statistics
, vol.16
, pp. 187-192
-
-
Scheffé, H.1
Tukey, J.W.2
-
24
-
-
0001038382
-
Nonparametric estimation II: Statistically equivalent blocks and tolerance regions - The continuous case
-
23033 0029.15502 10.1214/aoms/1177730343
-
Tukey, J. W. (1947). Nonparametric estimation II: Statistically equivalent blocks and tolerance regions - the continuous case. The Annals of Mathematical Statistics, 18, 529-539.
-
(1947)
The Annals of Mathematical Statistics
, vol.18
, pp. 529-539
-
-
Tukey, J.W.1
-
25
-
-
0002138576
-
Nonparametric estimation III: Statistically equivalent blocks and tolerance regions - The discontinuous case
-
24110 0032.29501 10.1214/aoms/1177730287
-
Tukey, J. W. (1948). Nonparametric estimation III: Statistically equivalent blocks and tolerance regions - the discontinuous case. The Annals of Mathematical Statistics, 19, 30-39.
-
(1948)
The Annals of Mathematical Statistics
, vol.19
, pp. 30-39
-
-
Tukey, J.W.1
-
26
-
-
38049160709
-
A comparison of two approaches to classify with guaranteed performance
-
J. N. Kok J. Koronacki R. L. de Mántaras S. Matwin D. Mladenic A. Skowron (eds) Warsaw September 17-21, 2007 Lecture notes in computer science 4702 Springer Berlin
-
Vanderlooy, S.; & Sprinkhuizen-Kuyper, I. G. (2007). A comparison of two approaches to classify with guaranteed performance. In J. N. Kok, J. Koronacki, R. L. de Mántaras, S. Matwin, D. Mladenic, & A. Skowron (Eds.), Lecture notes in computer science: Vol. 4702. Proceedings of the eleventh European conference on principles and practice of knowledge discovery in databases, September 17-21, 2007, Warsaw (pp. 288-299). Berlin: Springer.
-
(2007)
Proceedings of the Eleventh European Conference on Principles and Practice of Knowledge Discovery in Databases
, pp. 288-299
-
-
Vanderlooy, S.1
Sprinkhuizen-Kuyper, I.G.2
-
27
-
-
37249057780
-
Off-line learning with transductive confidence machines: An empirical evaluation
-
Machine Learning and Data Mining in Pattern Recognition - 5th International Conference, MLDM 2007, Proceedings LNAI
-
Vanderlooy, S.; van der Maaten, L.; & Sprinkhuizen-Kuyper, I. (2007). Off-line learning with Transductive Confidence Machines: an empirical evaluation. In P. Perner (Ed.), Lecture notes in artificial intelligence: Vol. 4571. Proceedings of the fifth international conference on machine learning and data mining in pattern recognition, July 18-20, 2007, Leipzig, Germany (pp. 310-323). Berlin: Springer. (Pubitemid 350270672)
-
(2007)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4571
, pp. 310-323
-
-
Vanderlooy, S.1
Van Der Maaten, L.2
Sprinkhuizen-Kuyper, I.3
-
28
-
-
0036953613
-
On-line Confidence Machines are well-calibrated
-
Vancouver November 16-19, 2002 IEEE Computer Society Los Alamitos
-
Vovk, V. (2002). On-line Confidence Machines are well-calibrated. In Proceedings of the forty third annual symposium on foundations of computer science, November 16-19, 2002, Vancouver (pp. 187-196). Los Alamitos: IEEE Computer Society.
-
(2002)
Proceedings of the Forty Third Annual Symposium on Foundations of Computer Science
, pp. 187-196
-
-
Vovk, V.1
-
29
-
-
84876884912
-
Conditional validity of inductive conformal predictors
-
S. C. H. Hoi W. Buntine (eds) Asian conference on machine learning 25
-
Vovk, V. (2012). Conditional validity of inductive conformal predictors. In S. C. H. Hoi & W. Buntine (Eds.), Asian conference on machine learning: Vol. 25. JMLR: Workshop and conference proceedings (pp. 475-490).
-
(2012)
JMLR: Workshop and Conference Proceedings
, pp. 475-490
-
-
Vovk, V.1
-
30
-
-
0002656659
-
Machine-learning applications of algorithmic randomness
-
Bled, Slovenia June 27-30, 1999 Morgan Kaufmann San Francisco
-
Vovk, V.; Gammerman, A.; & Saunders, C. (1999). Machine-learning applications of algorithmic randomness. In Proceedings of the sixteenth international conference on machine learning, June 27-30, 1999, Bled, Slovenia (pp. 444-453). San Francisco: Morgan Kaufmann.
-
(1999)
Proceedings of the Sixteenth International Conference on Machine Learning
, pp. 444-453
-
-
Vovk, V.1
Gammerman, A.2
Saunders, C.3
-
32
-
-
0002765765
-
Determination of sample sizes for setting tolerance limits
-
4451 10.1214/aoms/1177731788
-
Wilks, S. S. (1941). Determination of sample sizes for setting tolerance limits. The Annals of Mathematical Statistics, 12, 91-96.
-
(1941)
The Annals of Mathematical Statistics
, vol.12
, pp. 91-96
-
-
Wilks, S.S.1
|