메뉴 건너뛰기




Volumn 29, Issue 2, 2012, Pages 143-155

Multi-scale Internet traffic forecasting using neural networks and time series methods

Author keywords

Multi layer perceptron; Network monitoring; Time series; Traffic engineering

Indexed keywords

INTERNET TRAFFIC; MULTI LAYER PERCEPTRON; NETWORK MONITORING; TIME SERIES METHOD; TRAFFIC ENGINEERING;

EID: 84875986861     PISSN: 02664720     EISSN: 14680394     Source Type: Journal    
DOI: 10.1111/j.1468-0394.2010.00568.x     Document Type: Article
Times cited : (180)

References (25)
  • 1
    • 33646007938 scopus 로고    scopus 로고
    • Multi-resolution FIR neural-network-based learning algorithm applied to network traffic prediction
    • ALARCON-AQUINO, V. and J. BARRIA (2006) Multi-resolution FIR neural-network-based learning algorithm applied to network traffic prediction, IEEE Transactions on Systems, Man and Cybernetics - Part C, 36, 208-220.
    • (2006) IEEE Transactions on Systems, Man and Cybernetics - Part C , vol.36 , pp. 208-220
    • Alarcon-Aquino, V.1    Barria, J.2
  • 2
    • 33745891493 scopus 로고    scopus 로고
    • Internet traffic midterm forecasting: A pragmatic approach using statistical analysis tools
    • BABIARZ, R. and J. BEDO (2006) Internet traffic midterm forecasting: a pragmatic approach using statistical analysis tools, Lecture Notes on Computer Science, 3976, 111-121.
    • (2006) Lecture Notes on Computer Science , vol.3976 , pp. 111-121
    • Babiarz, R.1    Bedo, J.2
  • 4
    • 0029452555 scopus 로고
    • A neural network based forecasting system
    • Perth, Australia
    • CORTEZ, P., M. ROCHA, J. MACHADO and J. NEVES (1995) A neural network based forecasting system. In Proceedings of IEEE ICNN'95. Vol. 5, Perth, Australia, pp. 2689-2693
    • (1995) Proceedings of IEEE ICNN'95 , vol.5 , pp. 2689-2693
    • Cortez, P.1    Rocha, M.2    Machado, J.3    Neves, J.4
  • 5
    • 84900071834 scopus 로고    scopus 로고
    • Time series forecasting by evolutionary neural networks
    • Chapter III Hershey, PA, USA: Idea Group Publishing
    • CORTEZ, P., M. ROCHA and J. NEVES (2005) Time series forecasting by evolutionary neural networks, Chapter III: Artificial Neural Networks in Real-Life Applications, Hershey, PA, USA: Idea Group Publishing, pp 47-70.
    • (2005) Artificial Neural Networks in Real-Life Applications , pp. 47-70
    • Cortez, P.1    Rocha, M.2    Neves, J.3
  • 6
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • J. Kittler and F. Roli (eds) Berlin: Springer
    • DIETTERICH, T. (2000) Ensemble methods in machine learning, in J. Kittler and F. Roli (eds), Multiple Classifier Systems, Lecture Notes in Computer Science 1857, Berlin: Springer, 1-15.
    • (2000) Multiple Classifier Systems, Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.1
  • 8
    • 0012320945 scopus 로고    scopus 로고
    • Statistical evaluation of neural networks experiments: Minimum requirements and current practice
    • Vienna, Austria
    • FLEXER, A. (1996) Statistical evaluation of neural networks experiments: minimum requirements and current practice, In Proceedings of the 13th European Meeting on Cybernetics and Systems Research, Vol. 2, Vienna, Austria, pp. 1005-1008
    • (1996) Proceedings of the 13th European Meeting on Cybernetics and Systems Research , vol.2 , pp. 1005-1008
    • Flexer, A.1
  • 11
    • 3543088029 scopus 로고    scopus 로고
    • Detecting network attacks in the internet via statistical network traffic normality prediction
    • JIANG, J. and S. PAPAVASSILIOU (2004) Detecting network attacks in the internet via statistical network traffic normality prediction, Journal of Network and Systems Management, 12, 51-72.
    • (2004) Journal of Network and Systems Management , vol.12 , pp. 51-72
    • Jiang, J.1    Papavassiliou, S.2
  • 14
    • 84984426556 scopus 로고
    • The accuracy of extrapolation (times series) methods: Results of a forecasting competition
    • MAKRIDAKIS, S. (1982) The accuracy of extrapolation (times series) methods: results of a forecasting competition, Journal of Forecasting, 1, 111-153.
    • (1982) Journal of Forecasting , vol.1 , pp. 111-153
    • Makridakis, S.1
  • 16
    • 3242790841 scopus 로고    scopus 로고
    • Short-term electric power load forecasting using feedforward neural networks
    • MALKI, H., N. KARAYIANNIS, B. NICOLAOS and M. BALASUBRAMANIAN (2004) Short-term electric power load forecasting using feedforward neural networks, Expert Systems, 21, 157-167.
    • (2004) Expert Systems , vol.21 , pp. 157-167
    • Malki, H.1    Karayiannis, N.2    Nicolaos, B.3    Balasubramanian, M.4
  • 18
    • 0028466750 scopus 로고
    • Advanced supervised learning in multilayer perceptrons - From backpropagation to adaptive learning techniques
    • RIEDMILLER, M. (1994) Advanced supervised learning in multilayer perceptrons - from backpropagation to adaptive learning techniques, International Journal of Computer Standards and Interfaces, 16, 265-278.
    • (1994) International Journal of Computer Standards and Interfaces , vol.16 , pp. 265-278
    • Riedmiller, M.1
  • 19
    • 0037099927 scopus 로고    scopus 로고
    • A predictability analysis of network traffic
    • SANG, A. and S. LI (2002) A predictability analysis of network traffic, Computer Networks, 39, 329-345.
    • (2002) Computer Networks , vol.39 , pp. 329-345
    • Sang, A.1    Li, S.2
  • 21
    • 0043246006 scopus 로고    scopus 로고
    • Short-term electricity demand forecasting using double seasonal exponential smoothing
    • TAYLOR, J. (2003) Short-term electricity demand forecasting using double seasonal exponential smoothing, Journal of Operational Research Society, 54, 799-805.
    • (2003) Journal of Operational Research Society , vol.54 , pp. 799-805
    • Taylor, J.1
  • 22
    • 31744444183 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting electricity demand up to a day ahead
    • TAYLOR, J., L. MENEZES and P. MCSHARRY (2006) A comparison of univariate methods for forecasting electricity demand up to a day ahead, International Journal of Forecasting, 21, 1-16.
    • (2006) International Journal of Forecasting , vol.21 , pp. 1-16
    • Taylor, J.1    Menezes, L.2    Mcsharry, P.3
  • 23
    • 28244476673 scopus 로고    scopus 로고
    • Available at (accessed December 2008), U. S. Census Bureau, Washington, USA, July
    • Time-Series-Staff (2002). X-12-ARIMA reference manual. Available at http://www.census.gov/srd/www/x12a/ (accessed December 2008), U. S. Census Bureau, Washington, USA, July.
    • (2002) X-12-ARIMA Reference Manual
    • Time-Series-Staff1
  • 25
    • 50949118604 scopus 로고    scopus 로고
    • An internet traffic forecasting model adopting radical based on function neural network optimized by genetic algorithm
    • Adelaide, Australia
    • WANG, C., X. ZHANG, H. YAN and L. ZHENG (2008) An internet traffic forecasting model adopting radical based on function neural network optimized by genetic algorithm, In Proceedings of IEEE Workshop on Knowledge Discovery and Data Mining (WKDD08). Adelaide, Australia, pp. 367-370
    • (2008) Proceedings of IEEE Workshop on Knowledge Discovery and Data Mining (WKDD08) , pp. 367-370
    • Wang, C.1    Zhang, X.2    Yan, H.3    Zheng, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.