-
1
-
-
0000308194
-
Gaussian processes for Bayesian classification via hybrid Monte Carlo
-
M.C. Mozer, M.I. Jordan, T. Petsche (Eds.), MIT Press, Cambridge, MA
-
D. Barber, C.K.I. Williams, Gaussian processes for Bayesian classification via hybrid Monte Carlo, in: M.C. Mozer, M.I. Jordan, T. Petsche (Eds.), Advances in Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 340-346.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
, pp. 340-346
-
-
Barber, D.1
Williams, C.K.I.2
-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discovery 2 (2) (1998) 121-167.
-
(1998)
Data Mining Knowledge Discovery
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
3
-
-
84899010634
-
Model selection for support vector machines
-
S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), MIT Press, Cambridge, MA
-
O. Chapelle, V.N. Vapnik, Model selection for support vector machines, in: S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 230-236.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 230-236
-
-
Chapelle, O.1
Vapnik, V.N.2
-
4
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters for support vector machines, Mach. Learning 46 (1-3) (2002) 131-159.
-
(2002)
Mach. Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
5
-
-
84898998301
-
Dynamically adapting kernels in support vector machines
-
M. Kearns, S.A. Solla, D. Cohn (Eds.), MIT Press, Cambridge, MA
-
N. Cristianini, C. Campbell, J. Shawe-Taylor, Dynamically adapting kernels in support vector machines, in: M. Kearns, S.A. Solla, D. Cohn (Eds.), Advances in Neural Information Processing Systems, Vol. 11, MIT Press, Cambridge, MA, 1999, pp. 204-210.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
, pp. 204-210
-
-
Cristianini, N.1
Campbell, C.2
Shawe-Taylor, J.3
-
7
-
-
0242288899
-
Probabilistic kernel regression models
-
D. Heckerman, J. Whittaker (Eds.), San Francisco, CA, Morgan Kaufmann, Los Altos, CA
-
T. Jaakkola, D. Haussler, Probabilistic kernel regression models, in: D. Heckerman, J. Whittaker (Eds.), Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics, San Francisco, CA, Morgan Kaufmann, Los Altos, CA, 1999.
-
(1999)
Proceedings of the Seventh International Workshop on Artificial Intelligence and Statistics
-
-
Jaakkola, T.1
Haussler, D.2
-
8
-
-
0003054932
-
Introduction to Monte Carlo algorithms
-
J. Kertesz, I. Kondor (Eds.), Springer, Berlin
-
W. Krauth, Introduction to Monte Carlo algorithms, in: J. Kertesz, I. Kondor (Eds.), Advances in Computer Simulation, Springer, Berlin, 1998.
-
(1998)
Advances in Computer Simulation
-
-
Krauth, W.1
-
9
-
-
0032594960
-
Moderating the outputs of support vector machine classifiers
-
J.T.Y. Kwok, Moderating the outputs of support vector machine classifiers, IEEE Trans. Neural Networks 10 (5) (1999) 1018-1031.
-
(1999)
IEEE Trans. Neural Networks
, vol.10
, Issue.5
, pp. 1018-1031
-
-
Kwok, J.T.Y.1
-
10
-
-
0034271876
-
The evidence framework applied to support vector machines
-
J.T.Y. Kwok, The evidence framework applied to support vector machines, IEEE Trans. Neural Networks 11 (5) (2000) 1162-1173.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.5
, pp. 1162-1173
-
-
Kwok, J.T.Y.1
-
11
-
-
0001025418
-
Bayesian interpolation
-
D.J.C. MacKay, Bayesian interpolation, Neural Comput. 4 (1992) 415-447.
-
(1992)
Neural Comput.
, vol.4
, pp. 415-447
-
-
MacKay, D.J.C.1
-
12
-
-
0000234257
-
The evidence framework applied to classification networks
-
D.J.C. MacKay, The evidence framework applied to classification networks, Neural Comput. 4 (1992) 720-736.
-
(1992)
Neural Comput.
, vol.4
, pp. 720-736
-
-
MacKay, D.J.C.1
-
13
-
-
0004087397
-
Probabilistic inference using Markov chain Monte Carlo methods
-
Technical Report CRG-TR-93-1, University of Toronto
-
R.M. Neal, Probabilistic inference using Markov chain Monte Carlo methods, Technical Report CRG-TR-93-1, University of Toronto, 1993.
-
(1993)
-
-
Neal, R.M.1
-
15
-
-
0002755771
-
Gaussian process classification and SVM: Mean field results and leave-one-out estimator
-
A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), MIT Press, Cambridge, MA
-
M. Opper, O. Winther, Gaussian process classification and SVM: mean field results and leave-one-out estimator, in: A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, 2000, pp. 311-326.
-
(2000)
Advances in Large Margin Classifiers
, pp. 311-326
-
-
Opper, M.1
Winther, O.2
-
16
-
-
0034320350
-
Gaussian processes for classification: Mean-field algorithms
-
M. Opper, O. Winther, Gaussian processes for classification: mean-field algorithms, Neural Comput. 12 (11) (2000) 2655-2684.
-
(2000)
Neural Comput.
, vol.12
, Issue.11
, pp. 2655-2684
-
-
Opper, M.1
Winther, O.2
-
17
-
-
0003474751
-
-
2nd Edition, Cambridge University Press, Cambridge
-
W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd Edition, Cambridge University Press, Cambridge, 1992.
-
(1992)
Numerical Recipes in C
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
18
-
-
84898947199
-
Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
-
S.A. Solla, T.K. Leen, K.R. Müller (Eds.), MIT Press, Cambridge, MA
-
M. Seeger, Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers, in: S.A. Solla, T.K. Leen, K.R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 603-609.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 603-609
-
-
Seeger, M.1
-
19
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
A.J. Smola, B. Schölkopf, K.R. Müller, The connection between regularization operators and support vector kernels, Neural Networks 11 (4) (1998) 637-649.
-
(1998)
Neural Networks
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.J.1
Schölkopf, B.2
Müller, K.R.3
-
20
-
-
0033327850
-
Probabilistic interpretation and Bayesian methods for support vector machines
-
ICANN99 - Ninth International Conference on Artificial Neural Networks, The Institution of Electrical Engineers, London
-
P. Sollich, Probabilistic interpretation and Bayesian methods for support vector machines, in: ICANN99 - Ninth International Conference on Artificial Neural Networks, The Institution of Electrical Engineers, London, 1999, pp. 91-96.
-
(1999)
, pp. 91-96
-
-
Sollich, P.1
-
21
-
-
84899032333
-
Probabilistic methods for support vector machines
-
S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), MIT Press, Cambridge, MA
-
P. Sollich, Probabilistic methods for support vector machines, in: S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 349-355.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 349-355
-
-
Sollich, P.1
-
22
-
-
0036163572
-
Bayesian methods for support vector machines: Evidence and predictive class probabilities
-
P. Sollich, Bayesian methods for support vector machines: evidence and predictive class probabilities, Mach. Learning 46 (1-3) (2002) 21-52.
-
(2002)
Mach. Learning
, vol.46
, Issue.1-3
, pp. 21-52
-
-
Sollich, P.1
-
23
-
-
84899032239
-
The relevance vector machine
-
S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), MIT Press, Cambridge, MA
-
M.E. Tipping, The relevance vector machine, in: S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 652-658.
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 652-658
-
-
Tipping, M.E.1
-
26
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
V. Vapnik, O. Chapelle, Bounds on error expectation for support vector machines, Neural Comput. 12 (9) (2000) 2013-2036.
-
(2000)
Neural Comput.
, vol.12
, Issue.9
, pp. 2013-2036
-
-
Vapnik, V.1
Chapelle, O.2
-
27
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
-
B. Schölkopf, C. Burges, A.J. Smola (Eds.), MIT Press, Cambridge, MA
-
G. Wahba, Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV, in: B. Schölkopf, C. Burges, A.J. Smola (Eds.), Advances in Kernel Methods: Support Vector Machines, MIT Press, Cambridge, MA, 1998, pp. 69-88.
-
(1998)
Advances in Kernel Methods: Support Vector Machines
, pp. 69-88
-
-
Wahba, G.1
-
28
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
M.I. Jordan (Ed.), Kluwer Academic, Dordrecht
-
C.K.I. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond, in: M.I. Jordan (Ed.), Learning and Inference in Graphical Models, Kluwer Academic, Dordrecht, 1998, pp. 599-621.
-
(1998)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
-
30
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), MIT Press, Cambridge, MA
-
C.K.I. Williams, M. Seeger, Using the Nyström method to speed up kernel machines, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing Systems, Vol. 13, MIT Press, Cambridge, MA, 2001, pp. 682-688.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 682-688
-
-
Williams, C.K.I.1
Seeger, M.2
|