메뉴 건너뛰기




Volumn 55, Issue 1-2, 2003, Pages 221-249

Model selection for support vector machine classification

Author keywords

Bayesian evidence; Classification; Model selection; Probabilistic methods; Support vector machines

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; MATHEMATICAL MODELS; MONTE CARLO METHODS; PROBABILITY; VECTORS;

EID: 0242288807     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(03)00375-8     Document Type: Article
Times cited : (204)

References (30)
  • 1
    • 0000308194 scopus 로고    scopus 로고
    • Gaussian processes for Bayesian classification via hybrid Monte Carlo
    • M.C. Mozer, M.I. Jordan, T. Petsche (Eds.), MIT Press, Cambridge, MA
    • D. Barber, C.K.I. Williams, Gaussian processes for Bayesian classification via hybrid Monte Carlo, in: M.C. Mozer, M.I. Jordan, T. Petsche (Eds.), Advances in Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 340-346.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 340-346
    • Barber, D.1    Williams, C.K.I.2
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data Mining Knowledge Discovery 2 (2) (1998) 121-167.
    • (1998) Data Mining Knowledge Discovery , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 3
    • 84899010634 scopus 로고    scopus 로고
    • Model selection for support vector machines
    • S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), MIT Press, Cambridge, MA
    • O. Chapelle, V.N. Vapnik, Model selection for support vector machines, in: S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 230-236.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 230-236
    • Chapelle, O.1    Vapnik, V.N.2
  • 4
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parameters for support vector machines, Mach. Learning 46 (1-3) (2002) 131-159.
    • (2002) Mach. Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 5
    • 84898998301 scopus 로고    scopus 로고
    • Dynamically adapting kernels in support vector machines
    • M. Kearns, S.A. Solla, D. Cohn (Eds.), MIT Press, Cambridge, MA
    • N. Cristianini, C. Campbell, J. Shawe-Taylor, Dynamically adapting kernels in support vector machines, in: M. Kearns, S.A. Solla, D. Cohn (Eds.), Advances in Neural Information Processing Systems, Vol. 11, MIT Press, Cambridge, MA, 1999, pp. 204-210.
    • (1999) Advances in Neural Information Processing Systems , vol.11 , pp. 204-210
    • Cristianini, N.1    Campbell, C.2    Shawe-Taylor, J.3
  • 8
    • 0003054932 scopus 로고    scopus 로고
    • Introduction to Monte Carlo algorithms
    • J. Kertesz, I. Kondor (Eds.), Springer, Berlin
    • W. Krauth, Introduction to Monte Carlo algorithms, in: J. Kertesz, I. Kondor (Eds.), Advances in Computer Simulation, Springer, Berlin, 1998.
    • (1998) Advances in Computer Simulation
    • Krauth, W.1
  • 9
    • 0032594960 scopus 로고    scopus 로고
    • Moderating the outputs of support vector machine classifiers
    • J.T.Y. Kwok, Moderating the outputs of support vector machine classifiers, IEEE Trans. Neural Networks 10 (5) (1999) 1018-1031.
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 1018-1031
    • Kwok, J.T.Y.1
  • 10
    • 0034271876 scopus 로고    scopus 로고
    • The evidence framework applied to support vector machines
    • J.T.Y. Kwok, The evidence framework applied to support vector machines, IEEE Trans. Neural Networks 11 (5) (2000) 1162-1173.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.5 , pp. 1162-1173
    • Kwok, J.T.Y.1
  • 11
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D.J.C. MacKay, Bayesian interpolation, Neural Comput. 4 (1992) 415-447.
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1
  • 12
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D.J.C. MacKay, The evidence framework applied to classification networks, Neural Comput. 4 (1992) 720-736.
    • (1992) Neural Comput. , vol.4 , pp. 720-736
    • MacKay, D.J.C.1
  • 13
    • 0004087397 scopus 로고
    • Probabilistic inference using Markov chain Monte Carlo methods
    • Technical Report CRG-TR-93-1, University of Toronto
    • R.M. Neal, Probabilistic inference using Markov chain Monte Carlo methods, Technical Report CRG-TR-93-1, University of Toronto, 1993.
    • (1993)
    • Neal, R.M.1
  • 15
    • 0002755771 scopus 로고    scopus 로고
    • Gaussian process classification and SVM: Mean field results and leave-one-out estimator
    • A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), MIT Press, Cambridge, MA
    • M. Opper, O. Winther, Gaussian process classification and SVM: mean field results and leave-one-out estimator, in: A.J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.), Advances in Large Margin Classifiers, MIT Press, Cambridge, MA, 2000, pp. 311-326.
    • (2000) Advances in Large Margin Classifiers , pp. 311-326
    • Opper, M.1    Winther, O.2
  • 16
    • 0034320350 scopus 로고    scopus 로고
    • Gaussian processes for classification: Mean-field algorithms
    • M. Opper, O. Winther, Gaussian processes for classification: mean-field algorithms, Neural Comput. 12 (11) (2000) 2655-2684.
    • (2000) Neural Comput. , vol.12 , Issue.11 , pp. 2655-2684
    • Opper, M.1    Winther, O.2
  • 18
    • 84898947199 scopus 로고    scopus 로고
    • Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers
    • S.A. Solla, T.K. Leen, K.R. Müller (Eds.), MIT Press, Cambridge, MA
    • M. Seeger, Bayesian model selection for support vector machines, Gaussian processes and other kernel classifiers, in: S.A. Solla, T.K. Leen, K.R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 603-609.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 603-609
    • Seeger, M.1
  • 19
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • A.J. Smola, B. Schölkopf, K.R. Müller, The connection between regularization operators and support vector kernels, Neural Networks 11 (4) (1998) 637-649.
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.J.1    Schölkopf, B.2    Müller, K.R.3
  • 20
    • 0033327850 scopus 로고    scopus 로고
    • Probabilistic interpretation and Bayesian methods for support vector machines
    • ICANN99 - Ninth International Conference on Artificial Neural Networks, The Institution of Electrical Engineers, London
    • P. Sollich, Probabilistic interpretation and Bayesian methods for support vector machines, in: ICANN99 - Ninth International Conference on Artificial Neural Networks, The Institution of Electrical Engineers, London, 1999, pp. 91-96.
    • (1999) , pp. 91-96
    • Sollich, P.1
  • 21
    • 84899032333 scopus 로고    scopus 로고
    • Probabilistic methods for support vector machines
    • S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), MIT Press, Cambridge, MA
    • P. Sollich, Probabilistic methods for support vector machines, in: S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 349-355.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 349-355
    • Sollich, P.1
  • 22
    • 0036163572 scopus 로고    scopus 로고
    • Bayesian methods for support vector machines: Evidence and predictive class probabilities
    • P. Sollich, Bayesian methods for support vector machines: evidence and predictive class probabilities, Mach. Learning 46 (1-3) (2002) 21-52.
    • (2002) Mach. Learning , vol.46 , Issue.1-3 , pp. 21-52
    • Sollich, P.1
  • 23
    • 84899032239 scopus 로고    scopus 로고
    • The relevance vector machine
    • S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), MIT Press, Cambridge, MA
    • M.E. Tipping, The relevance vector machine, in: S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 652-658.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 652-658
    • Tipping, M.E.1
  • 26
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • V. Vapnik, O. Chapelle, Bounds on error expectation for support vector machines, Neural Comput. 12 (9) (2000) 2013-2036.
    • (2000) Neural Comput. , vol.12 , Issue.9 , pp. 2013-2036
    • Vapnik, V.1    Chapelle, O.2
  • 27
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
    • B. Schölkopf, C. Burges, A.J. Smola (Eds.), MIT Press, Cambridge, MA
    • G. Wahba, Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV, in: B. Schölkopf, C. Burges, A.J. Smola (Eds.), Advances in Kernel Methods: Support Vector Machines, MIT Press, Cambridge, MA, 1998, pp. 69-88.
    • (1998) Advances in Kernel Methods: Support Vector Machines , pp. 69-88
    • Wahba, G.1
  • 28
    • 0003017575 scopus 로고    scopus 로고
    • Prediction with Gaussian processes: From linear regression to linear prediction and beyond
    • M.I. Jordan (Ed.), Kluwer Academic, Dordrecht
    • C.K.I. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond, in: M.I. Jordan (Ed.), Learning and Inference in Graphical Models, Kluwer Academic, Dordrecht, 1998, pp. 599-621.
    • (1998) Learning and Inference in Graphical Models , pp. 599-621
    • Williams, C.K.I.1
  • 30
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), MIT Press, Cambridge, MA
    • C.K.I. Williams, M. Seeger, Using the Nyström method to speed up kernel machines, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing Systems, Vol. 13, MIT Press, Cambridge, MA, 2001, pp. 682-688.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.K.I.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.