메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1531-1555

Fast binary feature selection with conditional mutual information

Author keywords

Classification; Fast learning; Feature selection; Information theory; Mutual information; Naive Bayes

Indexed keywords

FEATURE EXTRACTION; INFORMATION THEORY;

EID: 33645690579     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (934)

References (34)
  • 2
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti. Using mutual information for selecting features in supervised neural net learning. In IEEE Transactions on Neural Networks, volume 5, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5
    • Battiti, R.1
  • 3
    • 0002690573 scopus 로고    scopus 로고
    • Selecting input variables using mutual information and nonparametric density estimation
    • B. V. Bonnlander and A. S. Weigend. Selecting input variables using mutual information and nonparametric density estimation. In Proceedings of ISANN, 1996.
    • (1996) Proceedings of ISANN
    • Bonnlander, B.V.1    Weigend, A.S.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0006001358 scopus 로고    scopus 로고
    • Technical Report, Department of Statistics, University of California, Berkeley
    • L. Breiman. Random forests - random features. Technical Report 567, Department of Statistics, University of California, Berkeley, 1999.
    • (1999) Random Forests - Random Features
    • Breiman, L.1
  • 7
    • 0013228784 scopus 로고    scopus 로고
    • Technical Report, Department of Statistics, University of California, Berkeley
    • L. Breiman. Some infinity theory for predictors ensembles. Technical Report 579, Department of Statistics, University of California, Berkeley, 2000.
    • (2000) Some Infinity Theory for Predictors Ensembles
    • Breiman, L.1
  • 14
    • 33751570459 scopus 로고    scopus 로고
    • Fast face detection with precise pose estimation
    • F. Fleuret and D. Geman. Fast face detection with precise pose estimation. In Proceedings of ICPR2002, volume 1, pages 235-238, 2002.
    • (2002) Proceedings of ICPR2002 , vol.1 , pp. 235-238
    • Fleuret, F.1    Geman, D.2
  • 17
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting. Annal of Statistics, 28:337-407, 2000.
    • (2000) Annal of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 18
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10), 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 21
    • 84898942883 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, The MIT Press
    • T. Hastie and R. Tibshirani. Classification by pairwise coupling. In Michael I. Jordan, Michael J. Kearns, and Sara A. Solla, editors, Advances in Neural Information Processing Systems, volume 10. The MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10
    • Hastie, T.1    Tibshirani, R.2
  • 22
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, pages 273-324, 1997.
    • (1997) Artificial Intelligence , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 28
    • 0242498509 scopus 로고    scopus 로고
    • Feature selection for the naive bayesian classifier using decision trees
    • C. A. Ratanamahatana and D. Gunopulos. Feature selection for the naive bayesian classifier using decision trees. Applied Artificial Intelligence, 17(5-6):475-487, 2003.
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 475-487
    • Ratanamahatana, C.A.1    Gunopulos, D.2
  • 30
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-408, 1958.
    • (1958) Psychological Review , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 31
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non-parametric mutual information maximization
    • K. Torkkola. Feature extraction by non-parametric mutual information maximization. Journal of Machine Learning Research, 3:1415-1438, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.