메뉴 건너뛰기




Volumn 27, Issue 8, 2006, Pages 861-874

An introduction to ROC analysis

Author keywords

Classifier evaluation; Evaluation metrics; ROC analysis

Indexed keywords

DATA MINING; DECISION MAKING; METRIC SYSTEM; PERFORMANCE;

EID: 33646023117     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2005.10.010     Document Type: Article
Times cited : (16851)

References (31)
  • 1
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30 7 (1997) 1145-1159
    • (1997) Pattern Recogn. , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 3
    • 0026405773 scopus 로고
    • A rule-learning program in high energy physics event classification
    • Clearwater S., and Stern E. A rule-learning program in high energy physics event classification. Comput. Phys. Commun. 67 (1991) 159-182
    • (1991) Comput. Phys. Commun. , vol.67 , pp. 159-182
    • Clearwater, S.1    Stern, E.2
  • 4
    • 33646018975 scopus 로고    scopus 로고
    • Domingos, P., 1999. MetaCost: A general method for making classifiers cost-sensitive. In: Proc. Fifth ACM SIGKDD Internat. Conf.on Knowledge Discovery and Data Mining, pp. 155-164.
  • 5
    • 0004080666 scopus 로고
    • Signal detection theory and ROC analysis
    • Academic Press, New York
    • Egan J.P. Signal detection theory and ROC analysis. Series in Cognition and Perception (1975), Academic Press, New York
    • (1975) Series in Cognition and Perception
    • Egan, J.P.1
  • 6
    • 78149315656 scopus 로고    scopus 로고
    • Fawcett, T., 2001. Using rule sets to maximize ROC performance. In: Proc. IEEE Internat. Conf. on Data Mining (ICDM-2001), pp. 131-138.
  • 7
    • 0002567443 scopus 로고    scopus 로고
    • Combining data mining and machine learning for effective user profiling
    • Simoudis E., Han J., and Fayyad U. (Eds), AAAI Press, Menlo Park, CA
    • Fawcett T., and Provost F. Combining data mining and machine learning for effective user profiling. In: Simoudis E., Han J., and Fayyad U. (Eds). Proc. Second Internat. Conf. on Knowledge Discovery and Data Mining (1996), AAAI Press, Menlo Park, CA 8-13
    • (1996) Proc. Second Internat. Conf. on Knowledge Discovery and Data Mining , pp. 8-13
    • Fawcett, T.1    Provost, F.2
  • 10
    • 33646059555 scopus 로고    scopus 로고
    • Forman, G., 2002. A method for discovering the insignificance of one's best classifier and the unlearnability of a classification task. In: Lavrac, N., Motoda, H., Fawcett, T. (Eds.), Proc. First Internat. Workshop on Data Mining Lessons Learned (DMLL-2002). Available from: http://www.purl.org/NET/tfawcett/DMLL-2002/Forman.pdf.
  • 11
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalization of the area under the ROC curve to multiple class classification problems
    • Hand D.J., and Till R.J. A simple generalization of the area under the ROC curve to multiple class classification problems. Mach. Learning 45 2 (2001) 171-186
    • (2001) Mach. Learning , vol.45 , Issue.2 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 12
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982) 29-36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 13
    • 33646021045 scopus 로고    scopus 로고
    • Holte, R., 2002. Personal communication.
  • 14
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M., Holte R.C., and Matwin S. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30 2-3 (1998) 195-215
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 15
    • 33646039527 scopus 로고    scopus 로고
    • Lane, T., 2000. Extensions of ROC analysis to multi-class domains. In: Dietterich, T., Margineantu, D., Provost, F., Turney, P. (Eds.), ICML-2000 Workshop on Cost-Sensitive Learning.
  • 16
    • 8844285446 scopus 로고
    • Representation quality in text classification: An introduction and experiment
    • Morgan Kaufmann, Hidden Valley, PA
    • Lewis D. Representation quality in text classification: An introduction and experiment. Proc. Workshop on Speech and Natural Language (1990), Morgan Kaufmann, Hidden Valley, PA 288-295
    • (1990) Proc. Workshop on Speech and Natural Language , pp. 288-295
    • Lewis, D.1
  • 18
    • 33646058619 scopus 로고    scopus 로고
    • Macskassy, S., Provost, F., 2004. Confidence bands for ROC curves: Methods and an empirical study. In: Proc. First Workshop on ROC Analysis in AI (ROCAI-04).
  • 19
    • 33646028828 scopus 로고    scopus 로고
    • Provost, F., Domingos, P., 2001. Well-trained PETs: Improving probability estimation trees, CeDER Working Paper #IS-00-04, Stern School of Business, New York University, NY, NY 10012.
  • 20
    • 0002009113 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • AAAI Press, Menlo Park, CA
    • Provost F., and Fawcett T. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. Proc. Third Internat. Conf. on Knowledge Discovery and Data Mining (KDD-97) (1997), AAAI Press, Menlo Park, CA 43-48
    • (1997) Proc. Third Internat. Conf. on Knowledge Discovery and Data Mining (KDD-97) , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 21
    • 0031641801 scopus 로고    scopus 로고
    • Robust classification systems for imprecise environments
    • AAAI Press, Menlo Park, CA
    • Provost F., and Fawcett T. Robust classification systems for imprecise environments. Proc. AAAI-98 (1998), AAAI Press, Menlo Park, CA 706-713. Available from:
    • (1998) Proc. AAAI-98 , pp. 706-713
    • Provost, F.1    Fawcett, T.2
  • 22
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., and Fawcett T. Robust classification for imprecise environments. Mach. Learning 42 3 (2001) 203-231
    • (2001) Mach. Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 23
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Shavlik J. (Ed), Morgan Kaufmann, San Francisco, CA
    • Provost F., Fawcett T., and Kohavi R. The case against accuracy estimation for comparing induction algorithms. In: Shavlik J. (Ed). Proc. ICML-98 (1998), Morgan Kaufmann, San Francisco, CA 445-453. Available from:
    • (1998) Proc. ICML-98 , pp. 445-453
    • Provost, F.1    Fawcett, T.2    Kohavi, R.3
  • 24
    • 0032001170 scopus 로고    scopus 로고
    • Learning in the "real world"
    • Saitta L., and Neri F. Learning in the "real world". Mach. Learning 30 (1998) 133-163
    • (1998) Mach. Learning , vol.30 , pp. 133-163
    • Saitta, L.1    Neri, F.2
  • 25
    • 85152631406 scopus 로고
    • Signal detection theory: Valuable tools for evaluating inductive learning
    • Morgan Kaufman, San Mateo, CA
    • Spackman K.A. Signal detection theory: Valuable tools for evaluating inductive learning. Proc. Sixth Internat. Workshop on Machine Learning (1989), Morgan Kaufman, San Mateo, CA 160-163
    • (1989) Proc. Sixth Internat. Workshop on Machine Learning , pp. 160-163
    • Spackman, K.A.1
  • 26
    • 33646048795 scopus 로고    scopus 로고
    • Srinivasan, A., 1999. Note on the location of optimal classifiers in n-dimensional ROC space. Technical Report PRG-TR-2-99, Oxford University Computing Laboratory, Oxford, England. Available from: .
  • 27
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • Swets J. Measuring the accuracy of diagnostic systems. Science 240 (1988) 1285-1293
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.1
  • 29
    • 33646068421 scopus 로고    scopus 로고
    • van der Putten, P., van Someren, M., 2000. CoIL challenge 2000: The insurance company case. Technical Report 2000-09, Leiden Institute of Advanced Computer Science, Universiteit van Leiden. Available from: .
  • 30
    • 33646043208 scopus 로고    scopus 로고
    • Zadrozny, B., Elkan, C., 2001. Obtaining calibrated probability estimates from decision trees and naive Bayesian classiers. In: Proc. Eighteenth Internat. Conf. on Machine Learning, pp. 609-616.
  • 31
    • 33646033486 scopus 로고    scopus 로고
    • Zou, K.H., 2002. Receiver operating characteristic (ROC) literature research. On-line bibliography available from: .


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.