-
1
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
Bradley A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30 7 (1997) 1145-1159
-
(1997)
Pattern Recogn.
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
2
-
-
0003802343
-
-
Wadsworth International Group, Belmont, CA
-
Breiman L., Friedman J., Olshen R., and Stone C. Classification and Regression Trees (1984), Wadsworth International Group, Belmont, CA
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
3
-
-
0026405773
-
A rule-learning program in high energy physics event classification
-
Clearwater S., and Stern E. A rule-learning program in high energy physics event classification. Comput. Phys. Commun. 67 (1991) 159-182
-
(1991)
Comput. Phys. Commun.
, vol.67
, pp. 159-182
-
-
Clearwater, S.1
Stern, E.2
-
4
-
-
33646018975
-
-
Domingos, P., 1999. MetaCost: A general method for making classifiers cost-sensitive. In: Proc. Fifth ACM SIGKDD Internat. Conf.on Knowledge Discovery and Data Mining, pp. 155-164.
-
-
-
-
5
-
-
0004080666
-
Signal detection theory and ROC analysis
-
Academic Press, New York
-
Egan J.P. Signal detection theory and ROC analysis. Series in Cognition and Perception (1975), Academic Press, New York
-
(1975)
Series in Cognition and Perception
-
-
Egan, J.P.1
-
6
-
-
78149315656
-
-
Fawcett, T., 2001. Using rule sets to maximize ROC performance. In: Proc. IEEE Internat. Conf. on Data Mining (ICDM-2001), pp. 131-138.
-
-
-
-
7
-
-
0002567443
-
Combining data mining and machine learning for effective user profiling
-
Simoudis E., Han J., and Fayyad U. (Eds), AAAI Press, Menlo Park, CA
-
Fawcett T., and Provost F. Combining data mining and machine learning for effective user profiling. In: Simoudis E., Han J., and Fayyad U. (Eds). Proc. Second Internat. Conf. on Knowledge Discovery and Data Mining (1996), AAAI Press, Menlo Park, CA 8-13
-
(1996)
Proc. Second Internat. Conf. on Knowledge Discovery and Data Mining
, pp. 8-13
-
-
Fawcett, T.1
Provost, F.2
-
10
-
-
33646059555
-
-
Forman, G., 2002. A method for discovering the insignificance of one's best classifier and the unlearnability of a classification task. In: Lavrac, N., Motoda, H., Fawcett, T. (Eds.), Proc. First Internat. Workshop on Data Mining Lessons Learned (DMLL-2002). Available from: http://www.purl.org/NET/tfawcett/DMLL-2002/Forman.pdf.
-
-
-
-
11
-
-
0003562954
-
A simple generalization of the area under the ROC curve to multiple class classification problems
-
Hand D.J., and Till R.J. A simple generalization of the area under the ROC curve to multiple class classification problems. Mach. Learning 45 2 (2001) 171-186
-
(2001)
Mach. Learning
, vol.45
, Issue.2
, pp. 171-186
-
-
Hand, D.J.1
Till, R.J.2
-
12
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley J.A., and McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1982) 29-36
-
(1982)
Radiology
, vol.143
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
13
-
-
33646021045
-
-
Holte, R., 2002. Personal communication.
-
-
-
-
14
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
Kubat M., Holte R.C., and Matwin S. Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30 2-3 (1998) 195-215
-
(1998)
Machine Learning
, vol.30
, Issue.2-3
, pp. 195-215
-
-
Kubat, M.1
Holte, R.C.2
Matwin, S.3
-
15
-
-
33646039527
-
-
Lane, T., 2000. Extensions of ROC analysis to multi-class domains. In: Dietterich, T., Margineantu, D., Provost, F., Turney, P. (Eds.), ICML-2000 Workshop on Cost-Sensitive Learning.
-
-
-
-
16
-
-
8844285446
-
Representation quality in text classification: An introduction and experiment
-
Morgan Kaufmann, Hidden Valley, PA
-
Lewis D. Representation quality in text classification: An introduction and experiment. Proc. Workshop on Speech and Natural Language (1990), Morgan Kaufmann, Hidden Valley, PA 288-295
-
(1990)
Proc. Workshop on Speech and Natural Language
, pp. 288-295
-
-
Lewis, D.1
-
18
-
-
33646058619
-
-
Macskassy, S., Provost, F., 2004. Confidence bands for ROC curves: Methods and an empirical study. In: Proc. First Workshop on ROC Analysis in AI (ROCAI-04).
-
-
-
-
19
-
-
33646028828
-
-
Provost, F., Domingos, P., 2001. Well-trained PETs: Improving probability estimation trees, CeDER Working Paper #IS-00-04, Stern School of Business, New York University, NY, NY 10012.
-
-
-
-
20
-
-
0002009113
-
Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
-
AAAI Press, Menlo Park, CA
-
Provost F., and Fawcett T. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. Proc. Third Internat. Conf. on Knowledge Discovery and Data Mining (KDD-97) (1997), AAAI Press, Menlo Park, CA 43-48
-
(1997)
Proc. Third Internat. Conf. on Knowledge Discovery and Data Mining (KDD-97)
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
-
21
-
-
0031641801
-
Robust classification systems for imprecise environments
-
AAAI Press, Menlo Park, CA
-
Provost F., and Fawcett T. Robust classification systems for imprecise environments. Proc. AAAI-98 (1998), AAAI Press, Menlo Park, CA 706-713. Available from:
-
(1998)
Proc. AAAI-98
, pp. 706-713
-
-
Provost, F.1
Fawcett, T.2
-
22
-
-
0035283313
-
Robust classification for imprecise environments
-
Provost F., and Fawcett T. Robust classification for imprecise environments. Mach. Learning 42 3 (2001) 203-231
-
(2001)
Mach. Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
23
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
Shavlik J. (Ed), Morgan Kaufmann, San Francisco, CA
-
Provost F., Fawcett T., and Kohavi R. The case against accuracy estimation for comparing induction algorithms. In: Shavlik J. (Ed). Proc. ICML-98 (1998), Morgan Kaufmann, San Francisco, CA 445-453. Available from:
-
(1998)
Proc. ICML-98
, pp. 445-453
-
-
Provost, F.1
Fawcett, T.2
Kohavi, R.3
-
24
-
-
0032001170
-
Learning in the "real world"
-
Saitta L., and Neri F. Learning in the "real world". Mach. Learning 30 (1998) 133-163
-
(1998)
Mach. Learning
, vol.30
, pp. 133-163
-
-
Saitta, L.1
Neri, F.2
-
25
-
-
85152631406
-
Signal detection theory: Valuable tools for evaluating inductive learning
-
Morgan Kaufman, San Mateo, CA
-
Spackman K.A. Signal detection theory: Valuable tools for evaluating inductive learning. Proc. Sixth Internat. Workshop on Machine Learning (1989), Morgan Kaufman, San Mateo, CA 160-163
-
(1989)
Proc. Sixth Internat. Workshop on Machine Learning
, pp. 160-163
-
-
Spackman, K.A.1
-
26
-
-
33646048795
-
-
Srinivasan, A., 1999. Note on the location of optimal classifiers in n-dimensional ROC space. Technical Report PRG-TR-2-99, Oxford University Computing Laboratory, Oxford, England. Available from: .
-
-
-
-
27
-
-
0023890867
-
Measuring the accuracy of diagnostic systems
-
Swets J. Measuring the accuracy of diagnostic systems. Science 240 (1988) 1285-1293
-
(1988)
Science
, vol.240
, pp. 1285-1293
-
-
Swets, J.1
-
29
-
-
33646068421
-
-
van der Putten, P., van Someren, M., 2000. CoIL challenge 2000: The insurance company case. Technical Report 2000-09, Leiden Institute of Advanced Computer Science, Universiteit van Leiden. Available from: .
-
-
-
-
30
-
-
33646043208
-
-
Zadrozny, B., Elkan, C., 2001. Obtaining calibrated probability estimates from decision trees and naive Bayesian classiers. In: Proc. Eighteenth Internat. Conf. on Machine Learning, pp. 609-616.
-
-
-
-
31
-
-
33646033486
-
-
Zou, K.H., 2002. Receiver operating characteristic (ROC) literature research. On-line bibliography available from: .
-
-
-
|