메뉴 건너뛰기




Volumn 13, Issue 1, 2009, Pages 3-37

The ROC isometrics approach to construct reliable classifiers

Author keywords

Abstaining classifiers; Cost sensitive classification; Isometrics; Reliable classifiers; ROC analysis

Indexed keywords


EID: 61449239251     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2009-0354     Document Type: Article
Times cited : (21)

References (46)
  • 3
    • 1942452386 scopus 로고    scopus 로고
    • Improving accuracy and cost of two-class and multiclass probabilistic classifiers using ROC curves
    • T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press
    • N. Lachiche and P. Flach, Improving accuracy and cost of two-class and multiclass probabilistic classifiers using ROC curves, in: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press, 2003, pp. 416-423.
    • (2003) Proceedings of the 20th International Conference on Machine Learning (ICML 2003) , pp. 416-423
    • Lachiche, N.1    Flach, P.2
  • 4
    • 0034294901 scopus 로고    scopus 로고
    • Better decisions through science
    • J. Swets, R. Dawes and J. Monahan, Better decisions through science, Scientific American 283(4) (2000), 82-87.
    • (2000) Scientific American , vol.283 , Issue.4 , pp. 82-87
    • Swets, J.1    Dawes, R.2    Monahan, J.3
  • 5
    • 0345438685 scopus 로고    scopus 로고
    • Notes and practical considerations for researchers
    • ROC graphs:, Technical Report HPL-2003-4, HP Laboratories
    • T. Fawcett, ROC graphs: Notes and practical considerations for researchers. Technical Report HPL-2003-4, HP Laboratories, 2003.
    • (2003)
    • Fawcett, T.1
  • 6
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • F. Provost and T. Fawcett, Robust classification for imprecise environments, Machine Learning 42(3) (2001), 203-231.
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 7
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • D. Heckerman, H. Mannila and D. Pregibon, eds, AAAI Press
    • F. Provost and T. Fawcett, Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions, in: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD 1997), D. Heckerman, H. Mannila and D. Pregibon, eds, AAAI Press, 1997, pp. 43-48.
    • (1997) Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD 1997) , pp. 43-48
    • Provost, F.1    Fawcett, T.2
  • 11
    • 14844357975 scopus 로고    scopus 로고
    • A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions
    • T. Fawcett and P. Flach, A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions, Machine Learning 58(1) (2005), 33-38.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 33-38
    • Fawcett, T.1    Flach, P.2
  • 12
    • 30144439931 scopus 로고    scopus 로고
    • A study of the effect of class distribution using cost-sensitive learning
    • S. Lange, K. Satoh and C. Smith, eds, Lübeck, Germany, Springer
    • K. Ting, A study of the effect of class distribution using cost-sensitive learning, in: Proceedings of the 5th International Conference on Discovery Science (DS 2002), S. Lange, K. Satoh and C. Smith, eds, Lübeck, Germany, Springer, 2002, pp. 98-112.
    • (2002) Proceedings of the 5th International Conference on Discovery Science (DS 2002) , pp. 98-112
    • Ting, K.1
  • 13
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • G. Weiss and F. Provost, Learning when training data are costly: The effect of class distribution on tree induction, Journal of Artificial Intelligence Research 19 (2003), 315-354.
    • (2003) Journal of Artificial Intelligence Research , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2
  • 14
    • 61449170039 scopus 로고    scopus 로고
    • Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs?
    • R. Stahlbock, S. Crone and S. Lessmann, eds, Las Vegas, NV, USA, CSREA Press
    • G. Weiss, K. McCarthy and B. Zabar, Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs? in: Proceedings of the 2007 International Conference on Data Mining (DMIN 2007), R. Stahlbock, S. Crone and S. Lessmann, eds, Las Vegas, NV, USA, CSREA Press, 2007, pp. 35-41.
    • (2007) Proceedings of the 2007 International Conference on Data Mining (DMIN 2007) , pp. 35-41
    • Weiss, G.1    McCarthy, K.2    Zabar, B.3
  • 16
    • 1942421135 scopus 로고    scopus 로고
    • Understanding machine learning metrics through ROC isometrics
    • The geometry of ROC space:, T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press
    • P. Flach, The geometry of ROC space: Understanding machine learning metrics through ROC isometrics, in: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press, 2003, pp. 194-201.
    • (2003) Proceedings of the 20th International Conference on Machine Learning (ICML 2003) , pp. 194-201
    • Flach, P.1
  • 18
    • 84937744538 scopus 로고
    • An optimum character recognition system using decision functions
    • C. Chow, An optimum character recognition system using decision functions, IRE Transactions on Electronic Computers 6(4) (1957), 247-254.
    • (1957) IRE Transactions on Electronic Computers , vol.6 , Issue.4 , pp. 247-254
    • Chow, C.1
  • 19
    • 0014710323 scopus 로고
    • On optimum recognition error and reject tradeoff
    • C. Chow, On optimum recognition error and reject tradeoff, IEEE Transactions on Information Theory 16(1) (1970), 41-46.
    • (1970) IEEE Transactions on Information Theory , vol.16 , Issue.1 , pp. 41-46
    • Chow, C.1
  • 20
    • 0011928208 scopus 로고
    • Trading off coverage for accuracy in forecasts: Applications to clinical data analysis
    • Stanford, CA, USA, AAAI Press
    • M. Pazzani, P. Murphy, K. Ali and D. Schulenburg, Trading off coverage for accuracy in forecasts: Applications to clinical data analysis, in: Working Notes of the AAAI Symposium on AI in Medicine, Stanford, CA, USA, AAAI Press, 1994, pp. 106-110.
    • (1994) Working Notes of the AAAI Symposium on AI in Medicine , pp. 106-110
    • Pazzani, M.1    Murphy, P.2    Ali, K.3    Schulenburg, D.4
  • 22
    • 10044230249 scopus 로고    scopus 로고
    • F. Tortorella, A ROC-based reject rule for dichotomizers, Pattern Recognition Letters 26(2) (2005), 167-180.
    • F. Tortorella, A ROC-based reject rule for dichotomizers, Pattern Recognition Letters 26(2) (2005), 167-180.
  • 23
    • 34547481510 scopus 로고    scopus 로고
    • On the use of ROC analysis for the optimization of abstaining classifiers
    • T. Pietraszek, On the use of ROC analysis for the optimization of abstaining classifiers, Machine Learning 68(2) (2007), 137-169.
    • (2007) Machine Learning , vol.68 , Issue.2 , pp. 137-169
    • Pietraszek, T.1
  • 25
    • 0032042640 scopus 로고    scopus 로고
    • Classifier design with incomplete knowledge
    • R. Muzzolini, Y.H. Yang and R. Pierson, Classifier design with incomplete knowledge, Pattern Recognition 31(4) (1998), 345-369.
    • (1998) Pattern Recognition , vol.31 , Issue.4 , pp. 345-369
    • Muzzolini, R.1    Yang, Y.H.2    Pierson, R.3
  • 26
    • 0036083131 scopus 로고    scopus 로고
    • Reject strategies driven combination of pattern classifiers
    • C. Frélicot and L. Mascarilla, Reject strategies driven combination of pattern classifiers, Pattern Analysis and Applications 5 (2) (2002), 234-243.
    • (2002) Pattern Analysis and Applications , vol.5 , Issue.2 , pp. 234-243
    • Frélicot, C.1    Mascarilla, L.2
  • 28
    • 14844361816 scopus 로고    scopus 로고
    • Roc 'n' rule learning - towards a better understanding of covering algorithms
    • J. Fürnkranz and P. Flach, Roc 'n' rule learning - towards a better understanding of covering algorithms, Machine Learning 58(1) (2005), 39-77.
    • (2005) Machine Learning , vol.58 , Issue.1 , pp. 39-77
    • Fürnkranz, J.1    Flach, P.2
  • 29
    • 0004217877 scopus 로고
    • 2nd edn, Department of Computer Science, University of Glasgow
    • C.V. Rijsbergen, Information Retrieval, 2nd edn, Department of Computer Science, University of Glasgow, 1979.
    • (1979) Information Retrieval
    • Rijsbergen, C.V.1
  • 30
    • 0342864587 scopus 로고
    • Handling noise in inductive logic programming
    • S. Muggleton and K. Furukawa, eds, Tokyo, Japan, Institute for New Generation Computer Technology
    • S. Džeroski and I. Bratko, Handling noise in inductive logic programming, in: Proceedings of the 2nd International Workshop on Inductive Logic Programming (ILP 1992), S. Muggleton and K. Furukawa, eds, Tokyo, Japan, Institute for New Generation Computer Technology, 1992, pp. 109-125.
    • (1992) Proceedings of the 2nd International Workshop on Inductive Logic Programming (ILP 1992) , pp. 109-125
    • Džeroski, S.1    Bratko, I.2
  • 38
    • 25344452379 scopus 로고    scopus 로고
    • Transductive confidence machines for pattern recognition
    • Technical Report 01-02, Royal Holloway University of London, London, UK
    • K. Proedrou, I. Nouretdinov, V. Vovk and A. Gammerman, Transductive confidence machines for pattern recognition. Technical Report 01-02, Royal Holloway University of London, London, UK, 2001.
    • (2001)
    • Proedrou, K.1    Nouretdinov, I.2    Vovk, V.3    Gammerman, A.4
  • 39
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29(2) (1997), 103-130.
    • (1997) Machine Learning , vol.29 , Issue.2 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 42
    • 4043143546 scopus 로고    scopus 로고
    • Reducing the classification cost of support vector classifiers through an ROC-based reject rule
    • F. Tortorella, Reducing the classification cost of support vector classifiers through an ROC-based reject rule, Pattern Analysis and Applications 7(2) (2004), 128-143.
    • (2004) Pattern Analysis and Applications , vol.7 , Issue.2 , pp. 128-143
    • Tortorella, F.1
  • 43
    • 34547433148 scopus 로고    scopus 로고
    • Classification of intrusion detection alerts using abstaining classifiers
    • T. Pietraszek, Classification of intrusion detection alerts using abstaining classifiers, Intelligent Data Analysis 11(3) (2007), 293-316.
    • (2007) Intelligent Data Analysis , vol.11 , Issue.3 , pp. 293-316
    • Pietraszek, T.1
  • 44
    • 0003006556 scopus 로고
    • Estimating probabilities: A crucial task in machine learning
    • L. Aiello, ed, Stockholm, Sweden, Pitman Publishing
    • B. Cestnik, Estimating probabilities: A crucial task in machine learning, in: Proceedings of the 9th European Conference on Artificial Intelligence (ECAI 1990), L. Aiello, ed., Stockholm, Sweden, Pitman Publishing, 1990, pp. 147-149.
    • (1990) Proceedings of the 9th European Conference on Artificial Intelligence (ECAI 1990) , pp. 147-149
    • Cestnik, B.1
  • 45
    • 13844266947 scopus 로고    scopus 로고
    • Estimating the posterior probabilities using the k-nearest neighbor rule
    • A. Atiya, Estimating the posterior probabilities using the k-nearest neighbor rule, Neural Computation 17(3) (2005), 731-740.
    • (2005) Neural Computation , vol.17 , Issue.3 , pp. 731-740
    • Atiya, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.