-
1
-
-
36048977816
-
Reliable classifiers in ROC space
-
Y. Saeys, E. Tsiporkova, B.D. Baets and Y.V. de Peer, eds, Ghent, Belgium
-
S. Vanderlooy, I. Sprinkhuizen-Kuyper and E. Smirnov, Reliable classifiers in ROC space, in: Proceedings of the 15th Annual Machine Learning Conference of Belgium and the Netherlands (BENELEARN 2006), Y. Saeys, E. Tsiporkova, B.D. Baets and Y.V. de Peer, eds, Ghent, Belgium, 2006, pp. 113-120.
-
(2006)
Proceedings of the 15th Annual Machine Learning Conference of Belgium and the Netherlands (BENELEARN 2006)
, pp. 113-120
-
-
Vanderlooy, S.1
Sprinkhuizen-Kuyper, I.2
Smirnov, E.3
-
2
-
-
36049040238
-
An analysis of reliable classifiers through ROC isometrics
-
N. Lachiche, C. Ferri and S. Macskassy, eds, Pittsburgh, USA
-
S. Vanderlooy, I. Sprinkhuizen-Kuyper and E. Smirnov, An analysis of reliable classifiers through ROC isometrics, in: Proceedings of the ICML 2006 Workshop on ROC Analysis (ROCML 2006), N. Lachiche, C. Ferri and S. Macskassy, eds, Pittsburgh, USA, 2006, pp. 55-62.
-
(2006)
Proceedings of the ICML 2006 Workshop on ROC Analysis (ROCML 2006)
, pp. 55-62
-
-
Vanderlooy, S.1
Sprinkhuizen-Kuyper, I.2
Smirnov, E.3
-
3
-
-
1942452386
-
Improving accuracy and cost of two-class and multiclass probabilistic classifiers using ROC curves
-
T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press
-
N. Lachiche and P. Flach, Improving accuracy and cost of two-class and multiclass probabilistic classifiers using ROC curves, in: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press, 2003, pp. 416-423.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning (ICML 2003)
, pp. 416-423
-
-
Lachiche, N.1
Flach, P.2
-
4
-
-
0034294901
-
Better decisions through science
-
J. Swets, R. Dawes and J. Monahan, Better decisions through science, Scientific American 283(4) (2000), 82-87.
-
(2000)
Scientific American
, vol.283
, Issue.4
, pp. 82-87
-
-
Swets, J.1
Dawes, R.2
Monahan, J.3
-
5
-
-
0345438685
-
Notes and practical considerations for researchers
-
ROC graphs:, Technical Report HPL-2003-4, HP Laboratories
-
T. Fawcett, ROC graphs: Notes and practical considerations for researchers. Technical Report HPL-2003-4, HP Laboratories, 2003.
-
(2003)
-
-
Fawcett, T.1
-
6
-
-
0035283313
-
Robust classification for imprecise environments
-
F. Provost and T. Fawcett, Robust classification for imprecise environments, Machine Learning 42(3) (2001), 203-231.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
7
-
-
85101511266
-
Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
-
D. Heckerman, H. Mannila and D. Pregibon, eds, AAAI Press
-
F. Provost and T. Fawcett, Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions, in: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD 1997), D. Heckerman, H. Mannila and D. Pregibon, eds, AAAI Press, 1997, pp. 43-48.
-
(1997)
Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD 1997)
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
-
8
-
-
84880794162
-
A statistically consistent and more discriminating measure than accuracy
-
AUC:, G. Gottlob and T. Walsh, eds, AAAI Press
-
C. Ling, J. Huang and H. Zhang, AUC: A statistically consistent and more discriminating measure than accuracy, in: Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003) G. Gottlob and T. Walsh, eds, AAAI Press, 2003.
-
(2003)
Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI 2003)
-
-
Ling, C.1
Huang, J.2
Zhang, H.3
-
9
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
J. Shavlik, ed, Madison, Wisconsin, USA, Morgan Kaufmann
-
F. Provost, T. Fawcett and R. Kohavi, The case against accuracy estimation for comparing induction algorithms, in: Proceedings of the 15th International Conference on Machine Learning (ICML 1998), J. Shavlik, ed., Madison, Wisconsin, USA, Morgan Kaufmann, 1998, pp. 43-48.
-
(1998)
Proceedings of the 15th International Conference on Machine Learning (ICML 1998)
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
Kohavi, R.3
-
10
-
-
77951257727
-
Repairing concavities in ROC curves
-
L. Kaelbling and A. Saffiotti, eds, Edinburgh, UK, Professional Book Center
-
P. Flach and S. Wu, Repairing concavities in ROC curves, in: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), L. Kaelbling and A. Saffiotti, eds, Edinburgh, UK, Professional Book Center, 2005, pp. 702-707.
-
(2005)
Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005)
, pp. 702-707
-
-
Flach, P.1
Wu, S.2
-
11
-
-
14844357975
-
A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions
-
T. Fawcett and P. Flach, A response to Webb and Ting's on the application of ROC analysis to predict classification performance under varying class distributions, Machine Learning 58(1) (2005), 33-38.
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 33-38
-
-
Fawcett, T.1
Flach, P.2
-
12
-
-
30144439931
-
A study of the effect of class distribution using cost-sensitive learning
-
S. Lange, K. Satoh and C. Smith, eds, Lübeck, Germany, Springer
-
K. Ting, A study of the effect of class distribution using cost-sensitive learning, in: Proceedings of the 5th International Conference on Discovery Science (DS 2002), S. Lange, K. Satoh and C. Smith, eds, Lübeck, Germany, Springer, 2002, pp. 98-112.
-
(2002)
Proceedings of the 5th International Conference on Discovery Science (DS 2002)
, pp. 98-112
-
-
Ting, K.1
-
13
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G. Weiss and F. Provost, Learning when training data are costly: The effect of class distribution on tree induction, Journal of Artificial Intelligence Research 19 (2003), 315-354.
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.1
Provost, F.2
-
14
-
-
61449170039
-
Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs?
-
R. Stahlbock, S. Crone and S. Lessmann, eds, Las Vegas, NV, USA, CSREA Press
-
G. Weiss, K. McCarthy and B. Zabar, Cost-sensitive learning vs. sampling: Which is best for handling unbalanced classes with unequal error costs? in: Proceedings of the 2007 International Conference on Data Mining (DMIN 2007), R. Stahlbock, S. Crone and S. Lessmann, eds, Las Vegas, NV, USA, CSREA Press, 2007, pp. 35-41.
-
(2007)
Proceedings of the 2007 International Conference on Data Mining (DMIN 2007)
, pp. 35-41
-
-
Weiss, G.1
McCarthy, K.2
Zabar, B.3
-
15
-
-
84867577175
-
The foundations of cost-sensitive learning
-
B. Nebel, ed, Seattle, WA, USA, Morgan Kaufmann
-
C. Elkan, The foundations of cost-sensitive learning, in: Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001), B. Nebel, ed., Seattle, WA, USA, Morgan Kaufmann, 2001, pp. 973-978.
-
(2001)
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI 2001)
, pp. 973-978
-
-
Elkan, C.1
-
16
-
-
1942421135
-
Understanding machine learning metrics through ROC isometrics
-
The geometry of ROC space:, T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press
-
P. Flach, The geometry of ROC space: Understanding machine learning metrics through ROC isometrics, in: Proceedings of the 20th International Conference on Machine Learning (ICML 2003), T. Fawcett and N. Mishra, eds, Washington, DC, USA, AAAI Press, 2003, pp. 194-201.
-
(2003)
Proceedings of the 20th International Conference on Machine Learning (ICML 2003)
, pp. 194-201
-
-
Flach, P.1
-
17
-
-
61449252901
-
Cost curves for abstaining classifiers
-
N. Lachiche, C. Ferri and S. Macskassy, eds, Pittsburgh, PA, USA
-
C. Friedel, U. Rückert and S. Kramer, Cost curves for abstaining classifiers, in: Proceedings of the ICML 2006 Workshop on ROC Analysis (ROCML 2006), N. Lachiche, C. Ferri and S. Macskassy, eds, Pittsburgh, PA, USA, 2006, pp. 33-40.
-
(2006)
Proceedings of the ICML 2006 Workshop on ROC Analysis (ROCML 2006)
, pp. 33-40
-
-
Friedel, C.1
Rückert, U.2
Kramer, S.3
-
18
-
-
84937744538
-
An optimum character recognition system using decision functions
-
C. Chow, An optimum character recognition system using decision functions, IRE Transactions on Electronic Computers 6(4) (1957), 247-254.
-
(1957)
IRE Transactions on Electronic Computers
, vol.6
, Issue.4
, pp. 247-254
-
-
Chow, C.1
-
19
-
-
0014710323
-
On optimum recognition error and reject tradeoff
-
C. Chow, On optimum recognition error and reject tradeoff, IEEE Transactions on Information Theory 16(1) (1970), 41-46.
-
(1970)
IEEE Transactions on Information Theory
, vol.16
, Issue.1
, pp. 41-46
-
-
Chow, C.1
-
20
-
-
0011928208
-
Trading off coverage for accuracy in forecasts: Applications to clinical data analysis
-
Stanford, CA, USA, AAAI Press
-
M. Pazzani, P. Murphy, K. Ali and D. Schulenburg, Trading off coverage for accuracy in forecasts: Applications to clinical data analysis, in: Working Notes of the AAAI Symposium on AI in Medicine, Stanford, CA, USA, AAAI Press, 1994, pp. 106-110.
-
(1994)
Working Notes of the AAAI Symposium on AI in Medicine
, pp. 106-110
-
-
Pazzani, M.1
Murphy, P.2
Ali, K.3
Schulenburg, D.4
-
21
-
-
31844434431
-
Cautious classifiers
-
J. Hernández-Orallo, C. Ferri, N. Lachiche and P. Flach, eds, Valencia, Spain, PP
-
C. Ferri and J. Hernández-Orallo, Cautious classifiers, in: Proceedings of the 1st InternationalWorkshop on ROC Analysis in Artificial Intelligence (ROCAI 2004), J. Hernández-Orallo, C. Ferri, N. Lachiche and P. Flach, eds, Valencia, Spain, 2004, PP. 27-36.
-
(2004)
Proceedings of the 1st InternationalWorkshop on ROC Analysis in Artificial Intelligence (ROCAI 2004)
, pp. 27-36
-
-
Ferri, C.1
Hernández-Orallo, J.2
-
22
-
-
10044230249
-
-
F. Tortorella, A ROC-based reject rule for dichotomizers, Pattern Recognition Letters 26(2) (2005), 167-180.
-
F. Tortorella, A ROC-based reject rule for dichotomizers, Pattern Recognition Letters 26(2) (2005), 167-180.
-
-
-
-
23
-
-
34547481510
-
On the use of ROC analysis for the optimization of abstaining classifiers
-
T. Pietraszek, On the use of ROC analysis for the optimization of abstaining classifiers, Machine Learning 68(2) (2007), 137-169.
-
(2007)
Machine Learning
, vol.68
, Issue.2
, pp. 137-169
-
-
Pietraszek, T.1
-
25
-
-
0032042640
-
Classifier design with incomplete knowledge
-
R. Muzzolini, Y.H. Yang and R. Pierson, Classifier design with incomplete knowledge, Pattern Recognition 31(4) (1998), 345-369.
-
(1998)
Pattern Recognition
, vol.31
, Issue.4
, pp. 345-369
-
-
Muzzolini, R.1
Yang, Y.H.2
Pierson, R.3
-
26
-
-
0036083131
-
Reject strategies driven combination of pattern classifiers
-
C. Frélicot and L. Mascarilla, Reject strategies driven combination of pattern classifiers, Pattern Analysis and Applications 5 (2) (2002), 234-243.
-
(2002)
Pattern Analysis and Applications
, vol.5
, Issue.2
, pp. 234-243
-
-
Frélicot, C.1
Mascarilla, L.2
-
27
-
-
26944449882
-
Delegating classifiers
-
J. Hernández-Orallo, C. Ferri, N. Lachiche and P. Flach, eds, Valencia, Spain
-
C. Ferri, P. Flach and J. Herández-Orallo, Delegating classifiers, in: Proceedings of the 1st International Workshop on ROC Analysis in Artificial Intelligence (ROCAI 2004), J. Hernández-Orallo, C. Ferri, N. Lachiche and P. Flach, eds, Valencia, Spain, 2004, pp. 37-44.
-
(2004)
Proceedings of the 1st International Workshop on ROC Analysis in Artificial Intelligence (ROCAI 2004)
, pp. 37-44
-
-
Ferri, C.1
Flach, P.2
Herández-Orallo, J.3
-
28
-
-
14844361816
-
Roc 'n' rule learning - towards a better understanding of covering algorithms
-
J. Fürnkranz and P. Flach, Roc 'n' rule learning - towards a better understanding of covering algorithms, Machine Learning 58(1) (2005), 39-77.
-
(2005)
Machine Learning
, vol.58
, Issue.1
, pp. 39-77
-
-
Fürnkranz, J.1
Flach, P.2
-
29
-
-
0004217877
-
-
2nd edn, Department of Computer Science, University of Glasgow
-
C.V. Rijsbergen, Information Retrieval, 2nd edn, Department of Computer Science, University of Glasgow, 1979.
-
(1979)
Information Retrieval
-
-
Rijsbergen, C.V.1
-
30
-
-
0342864587
-
Handling noise in inductive logic programming
-
S. Muggleton and K. Furukawa, eds, Tokyo, Japan, Institute for New Generation Computer Technology
-
S. Džeroski and I. Bratko, Handling noise in inductive logic programming, in: Proceedings of the 2nd International Workshop on Inductive Logic Programming (ILP 1992), S. Muggleton and K. Furukawa, eds, Tokyo, Japan, Institute for New Generation Computer Technology, 1992, pp. 109-125.
-
(1992)
Proceedings of the 2nd International Workshop on Inductive Logic Programming (ILP 1992)
, pp. 109-125
-
-
Džeroski, S.1
Bratko, I.2
-
31
-
-
0004080766
-
-
Ellis Horwood, New York, NY, USA
-
N. Lavrac and S. Dzeroski, Inductive Logic Programming: Techniques and Applications, Ellis Horwood, New York, NY, USA, 1994.
-
(1994)
Inductive Logic Programming: Techniques and Applications
-
-
Lavrac, N.1
Dzeroski, S.2
-
32
-
-
26444505673
-
Methods and an empirical study
-
Confidence bands for ROC curves:, J. Hernández-Orallo, C. Ferri, N. Lachiche and P. Flach, eds, Valencia, Spain
-
S. Macskassy and F. Provost, Confidence bands for ROC curves: Methods and an empirical study, in: Proceedings of the 1st International Workshop on ROC Analysis in Artificial Intelligence (ROCAI 2004), J. Hernández-Orallo, C. Ferri, N. Lachiche and P. Flach, eds, Valencia, Spain, 2004, pp. 61-70.
-
(2004)
Proceedings of the 1st International Workshop on ROC Analysis in Artificial Intelligence (ROCAI 2004)
, pp. 61-70
-
-
Macskassy, S.1
Provost, F.2
-
33
-
-
21844440820
-
Generalization error bounds for the area under the ROC curve
-
Apr
-
S. Agarwal, T. Graepel, R. Herbrich, S. Har-Peled and D. Roth, Generalization error bounds for the area under the ROC curve, Journal of Machine Learning Research 6(Apr) (2005), 393-425.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 393-425
-
-
Agarwal, S.1
Graepel, T.2
Herbrich, R.3
Har-Peled, S.4
Roth, D.5
-
36
-
-
27244450132
-
Two-dimensional linear discriminant analysis
-
Vancouver, British Columbia, Canada
-
J. Ye, R. Janardan and Q. Li, Two-dimensional linear discriminant analysis. In: Advances in Neural Information Processing Systems 17 (NIPS 2004), Vancouver, British Columbia, Canada, 2004, 1569-1576.
-
(2004)
Advances in Neural Information Processing Systems 17 (NIPS 2004)
, pp. 1569-1576
-
-
Ye, J.1
Janardan, R.2
Li, Q.3
-
38
-
-
25344452379
-
Transductive confidence machines for pattern recognition
-
Technical Report 01-02, Royal Holloway University of London, London, UK
-
K. Proedrou, I. Nouretdinov, V. Vovk and A. Gammerman, Transductive confidence machines for pattern recognition. Technical Report 01-02, Royal Holloway University of London, London, UK, 2001.
-
(2001)
-
-
Proedrou, K.1
Nouretdinov, I.2
Vovk, V.3
Gammerman, A.4
-
39
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29(2) (1997), 103-130.
-
(1997)
Machine Learning
, vol.29
, Issue.2
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
40
-
-
33749383239
-
Incremental discretization for naive Bayes classifier
-
X. Li, O. Zaïane and Z. Li, eds, Xi'an, China, Springer
-
J. Lu, Y. Yang and G. Webb, Incremental discretization for naive Bayes classifier, in: Proceedings of the 2nd International Conference on Advanced Data Mining and Applications (ADMA 2006), X. Li, O. Zaïane and Z. Li, eds, Xi'an, China, Springer, 2006, pp. 223-238.
-
(2006)
Proceedings of the 2nd International Conference on Advanced Data Mining and Applications (ADMA 2006)
, pp. 223-238
-
-
Lu, J.1
Yang, Y.2
Webb, G.3
-
41
-
-
37249051733
-
An empirical comparison of ideal and empirical ROC-based reject rules
-
P. Perner, ed, Leipzig, Germany, Springer
-
C. Marrocco, M. Molinara and F. Tortorella, An empirical comparison of ideal and empirical ROC-based reject rules, in: Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2007), P. Perner, ed., Leipzig, Germany, Springer, 2007, pp. 47-60.
-
(2007)
Proceedings of the 5th International Conference on Machine Learning and Data Mining in Pattern Recognition (MLDM 2007)
, pp. 47-60
-
-
Marrocco, C.1
Molinara, M.2
Tortorella, F.3
-
42
-
-
4043143546
-
Reducing the classification cost of support vector classifiers through an ROC-based reject rule
-
F. Tortorella, Reducing the classification cost of support vector classifiers through an ROC-based reject rule, Pattern Analysis and Applications 7(2) (2004), 128-143.
-
(2004)
Pattern Analysis and Applications
, vol.7
, Issue.2
, pp. 128-143
-
-
Tortorella, F.1
-
43
-
-
34547433148
-
Classification of intrusion detection alerts using abstaining classifiers
-
T. Pietraszek, Classification of intrusion detection alerts using abstaining classifiers, Intelligent Data Analysis 11(3) (2007), 293-316.
-
(2007)
Intelligent Data Analysis
, vol.11
, Issue.3
, pp. 293-316
-
-
Pietraszek, T.1
-
44
-
-
0003006556
-
Estimating probabilities: A crucial task in machine learning
-
L. Aiello, ed, Stockholm, Sweden, Pitman Publishing
-
B. Cestnik, Estimating probabilities: A crucial task in machine learning, in: Proceedings of the 9th European Conference on Artificial Intelligence (ECAI 1990), L. Aiello, ed., Stockholm, Sweden, Pitman Publishing, 1990, pp. 147-149.
-
(1990)
Proceedings of the 9th European Conference on Artificial Intelligence (ECAI 1990)
, pp. 147-149
-
-
Cestnik, B.1
-
45
-
-
13844266947
-
Estimating the posterior probabilities using the k-nearest neighbor rule
-
A. Atiya, Estimating the posterior probabilities using the k-nearest neighbor rule, Neural Computation 17(3) (2005), 731-740.
-
(2005)
Neural Computation
, vol.17
, Issue.3
, pp. 731-740
-
-
Atiya, A.1
-
46
-
-
31844433358
-
Predicting good probabilities with supervised learning
-
Bonn, Germany, ACM Press
-
A. Niculescu-Mizil and R. Caruana, Predicting good probabilities with supervised learning. In: Proceedings of the 22nd International Conference on Machine Learning (ICML 2005), Bonn, Germany, ACM Press, 2005, 625-632.
-
(2005)
Proceedings of the 22nd International Conference on Machine Learning (ICML 2005)
, pp. 625-632
-
-
Niculescu-Mizil, A.1
Caruana, R.2
|