메뉴 건너뛰기




Volumn 67, Issue 3, 2008, Pages 504-516

Comparison of approaches for estimating reliability of individual regression predictions

Author keywords

Prediction accuracy; Prediction error; Regression; Reliability estimate; Sensitivity analysis

Indexed keywords

FORECASTING; LEARNING SYSTEMS; NETWORK PROTOCOLS; NEURAL NETWORKS; REGRESSION ANALYSIS; RELIABILITY; RELIABILITY ANALYSIS; SENSOR NETWORKS; SUPPORT VECTOR MACHINES; TREES (MATHEMATICS);

EID: 54349094489     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2008.08.001     Document Type: Article
Times cited : (63)

References (61)
  • 3
    • 54349099755 scopus 로고    scopus 로고
    • A. Gammerman, V. Vovk, V. Vapnik, Learning by transduction, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin, 1998, pp. 148-155.
    • A. Gammerman, V. Vovk, V. Vapnik, Learning by transduction, in: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Wisconsin, 1998, pp. 148-155.
  • 4
    • 84880657197 scopus 로고    scopus 로고
    • C. Saunders, A. Gammerman, V. Vovk, Transduction with confidence and credibility, in: Proceedings of IJCAI'99, vol. 2, 1999, pp. 722-726.
    • C. Saunders, A. Gammerman, V. Vovk, Transduction with confidence and credibility, in: Proceedings of IJCAI'99, vol. 2, 1999, pp. 722-726.
  • 6
    • 54349122057 scopus 로고    scopus 로고
    • A. Weigend, D. Nix, Predictions with confidence intervals (local error bars), in: Proceedings of the International Conference on Neural Information Processing (ICONIP'94), Seoul, Korea, 1994, pp. 847-852.
    • A. Weigend, D. Nix, Predictions with confidence intervals (local error bars), in: Proceedings of the International Conference on Neural Information Processing (ICONIP'94), Seoul, Korea, 1994, pp. 847-852.
  • 7
    • 84898947879 scopus 로고    scopus 로고
    • Practical confidence and prediction intervals
    • Mozer M.C., Jordan M.I., and Petsche T. (Eds), The MIT Press
    • Heskes T. Practical confidence and prediction intervals. In: Mozer M.C., Jordan M.I., and Petsche T. (Eds). Advances in Neural Information Processing Systems vol. 9 (1997), The MIT Press 176-182
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 176-182
    • Heskes, T.1
  • 8
    • 85131711461 scopus 로고    scopus 로고
    • J. Carney, P. Cunningham, Confidence and prediction intervals for neural network ensembles, in: Proceedings of IJCNN'99, The International Joint Conference on Neural Networks, Washington, USA, 1999, pp. 1215-1218.
    • J. Carney, P. Cunningham, Confidence and prediction intervals for neural network ensembles, in: Proceedings of IJCNN'99, The International Joint Conference on Neural Networks, Washington, USA, 1999, pp. 1215-1218.
  • 9
    • 54349088045 scopus 로고    scopus 로고
    • M. Birattari, H. Bontempi, H. Bersini, Local learning for data analysis, in: Proceedings of the Eighth Belgian-Dutch Conference on Machine Learning, 1998, pp. 55-61.
    • M. Birattari, H. Bontempi, H. Bersini, Local learning for data analysis, in: Proceedings of the Eighth Belgian-Dutch Conference on Machine Learning, 1998, pp. 55-61.
  • 10
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behaviour
    • Giacinto G., and Roli F. Dynamic classifier selection based on multiple classifier behaviour. Pattern Recognition 34 9 (2001) 1879-1881
    • (2001) Pattern Recognition , vol.34 , Issue.9 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 13
    • 84945287811 scopus 로고    scopus 로고
    • Reliable classifications with machine learning
    • Elomaa T., Manilla H., and Toivonen H. (Eds), Springer-Verlag, Helsinki Finland
    • Kukar M., and Kononenko I. Reliable classifications with machine learning. In: Elomaa T., Manilla H., and Toivonen H. (Eds). Proc. Machine Learning: ECML-2002 (2002), Springer-Verlag, Helsinki Finland 219-231
    • (2002) Proc. Machine Learning: ECML-2002 , pp. 219-231
    • Kukar, M.1    Kononenko, I.2
  • 14
    • 62249148128 scopus 로고    scopus 로고
    • Z. Bosnić, I. Kononenko, M. Robnik-Šikonja, M. Kukar, Evaluation of prediction reliability in regression using the transduction principle, in: B. Zajc, M. Tkalčič (Eds.), Proceedings of Eurocon 2003, Ljubljana, 2003, pp. 99-103.
    • Z. Bosnić, I. Kononenko, M. Robnik-Šikonja, M. Kukar, Evaluation of prediction reliability in regression using the transduction principle, in: B. Zajc, M. Tkalčič (Eds.), Proceedings of Eurocon 2003, Ljubljana, 2003, pp. 99-103.
  • 16
    • 54349124130 scopus 로고    scopus 로고
    • Z. Bosnić, I. Kononenko, Estimation of individual prediction reliability using the local sensitivity analysis, Applied Intelligence, in press [Online edition] http://www.springerlink.com/content/e27p2584387532g8/.
    • Z. Bosnić, I. Kononenko, Estimation of individual prediction reliability using the local sensitivity analysis, Applied Intelligence, in press [Online edition] http://www.springerlink.com/content/e27p2584387532g8/.
  • 18
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 19
    • 0026692226 scopus 로고
    • Stacked generalization
    • Pergamon Press
    • Wolpert D. Stacked generalization. Neural Networks vol. 5 (1992), Pergamon Press 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1
  • 21
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Freund Y., and Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55 1 (1997) 119-139
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 22
    • 54349099502 scopus 로고    scopus 로고
    • G. Elidan M. Ninio N. Friedman D. Schuurmans, Data perturbation for escaping local maxima in learning, 2002.
    • G. Elidan M. Ninio N. Friedman D. Schuurmans, Data perturbation for escaping local maxima in learning, 2002.
  • 23
    • 85153947869 scopus 로고
    • Active learning with statistical models
    • Tesauro G., Touretzky D., and Leen T. (Eds), The MIT Press
    • Cohn D.A., Ghahramani Z., and Jordan M.I. Active learning with statistical models. In: Tesauro G., Touretzky D., and Leen T. (Eds). Advances in Neural Information Processing Systems vol. 7 (1995), The MIT Press 705-712. citeseer.ist.psu.edu/cohn95active.html
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 705-712
    • Cohn, D.A.1    Ghahramani, Z.2    Jordan, M.I.3
  • 24
    • 54349106716 scopus 로고    scopus 로고
    • L.A.D.A. Cohn and, R. Ladner, Training connectionist networks with queries and selective sampling, in: M.K.D. Touretzky, (Ed.), Advances in Neural Information Processing Systems, vol. 2, 1990, pp. 566-573.
    • L.A.D.A. Cohn and, R. Ladner, Training connectionist networks with queries and selective sampling, in: M.K.D. Touretzky, (Ed.), Advances in Neural Information Processing Systems, vol. 2, 1990, pp. 566-573.
  • 25
    • 54349119827 scopus 로고    scopus 로고
    • A. Linden, F. Weber, Implementing inner drive by competence reflection, in: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Hawaii, 1992, pp. 321-326.
    • A. Linden, F. Weber, Implementing inner drive by competence reflection, in: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Hawaii, 1992, pp. 321-326.
  • 26
    • 54349119348 scopus 로고    scopus 로고
    • J. Schmidhuber, J. Storck, Reinforcement driven information acquisition in nondeterministic environments, Fakultat fur Informatik, Technische Universit at Munchen, Technical Report, 1993.
    • J. Schmidhuber, J. Storck, Reinforcement driven information acquisition in nondeterministic environments, Fakultat fur Informatik, Technische Universit at Munchen, Technical Report, 1993.
  • 27
    • 54349099020 scopus 로고    scopus 로고
    • S.D. Whitehead, A complexity analysis of cooperative mechanisms in reinforcement learning, in: AAAI, 1991, pp. 607-613.
    • S.D. Whitehead, A complexity analysis of cooperative mechanisms in reinforcement learning, in: AAAI, 1991, pp. 607-613.
  • 28
    • 54349095664 scopus 로고    scopus 로고
    • M. Seeger, Learning with labeled and unlabeled data, Technical Report, http://www.dai.ed.ac.uk/seeger/papers.html, 2000.
    • M. Seeger, Learning with labeled and unlabeled data, Technical Report, http://www.dai.ed.ac.uk/seeger/papers.html, 2000.
  • 29
    • 0031620208 scopus 로고    scopus 로고
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Annual Conference on Computational Learning Theory, 1998, pp. 92-100.
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the 11th Annual Conference on Computational Learning Theory, 1998, pp. 92-100.
  • 30
    • 54349114726 scopus 로고    scopus 로고
    • T. Mitchell, The role of unlabelled data in supervised learning, in: Proceedings of the Sixth International Colloquium of Cognitive Science, San Sebastian, Spain, 1999.
    • T. Mitchell, The role of unlabelled data in supervised learning, in: Proceedings of the Sixth International Colloquium of Cognitive Science, San Sebastian, Spain, 1999.
  • 31
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • Cowan J.D., Tesauro G., and Alspector J. (Eds), Morgan Kaufmann Publishers, San Francisco, CA
    • de Sa V. Learning classification with unlabeled data. In: Cowan J.D., Tesauro G., and Alspector J. (Eds). Proc. NIPS'93, Neural Information Processing Systems (1993), Morgan Kaufmann Publishers, San Francisco, CA 112-119
    • (1993) Proc. NIPS'93, Neural Information Processing Systems , pp. 112-119
    • de Sa, V.1
  • 32
    • 0007950880 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • Morgan Kaufman, San Francisco, CA
    • Goldman S., and Zhou Y. Enhancing supervised learning with unlabeled data. Proc. 17th International Conf. on Machine Learning (2000), Morgan Kaufman, San Francisco, CA 327-334
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 327-334
    • Goldman, S.1    Zhou, Y.2
  • 33
    • 54349095663 scopus 로고    scopus 로고
    • L. Breierova, M. Choudhari, An introduction to sensitivity analysis, MIT System Dynamics in Education Project, September 1996.
    • L. Breierova, M. Choudhari, An introduction to sensitivity analysis, MIT System Dynamics in Education Project, September 1996.
  • 34
    • 54349125616 scopus 로고    scopus 로고
    • J. Kleijnen, Experimental designs for sensitivity analysis of simulation models, in: Tutorial at the Eurosim 2001 Conference.
    • J. Kleijnen, Experimental designs for sensitivity analysis of simulation models, in: Tutorial at the Eurosim 2001 Conference.
  • 36
    • 0030654389 scopus 로고    scopus 로고
    • Algorithmic stability and sanity-check bounds for leave-one-out cross-validation
    • Kearns M.J., and Ron D. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation. Computational Learning Theory (1997) 152-162
    • (1997) Computational Learning Theory , pp. 152-162
    • Kearns, M.J.1    Ron, D.2
  • 37
    • 54349084094 scopus 로고    scopus 로고
    • O. Bousquet, A. Elisseeff, Algorithmic stability and generalization performance, in: NIPS, 2000, pp. 196-202.
    • O. Bousquet, A. Elisseeff, Algorithmic stability and generalization performance, in: NIPS, 2000, pp. 196-202.
  • 38
    • 54349123122 scopus 로고    scopus 로고
    • Leave-one-out error and stability of learning algorithms with applications
    • Suykens J.A.K., et al. (Ed), IOS Press
    • Bousquet O., and Pontil M. Leave-one-out error and stability of learning algorithms with applications. In: Suykens J.A.K., et al. (Ed). Advances in Learning Theory: Methods, Models and Applications (2003), IOS Press
    • (2003) Advances in Learning Theory: Methods, Models and Applications
    • Bousquet, O.1    Pontil, M.2
  • 40
    • 0001108227 scopus 로고    scopus 로고
    • Constructive incremental learning from only local information
    • Schaal S., and Atkeson C.G. Constructive incremental learning from only local information. Neural Computation 10 8 (1998) 2047-2084
    • (1998) Neural Computation , vol.10 , Issue.8 , pp. 2047-2084
    • Schaal, S.1    Atkeson, C.G.2
  • 41
    • 0031121318 scopus 로고    scopus 로고
    • Combination of multiple classifiers using local accuracy estimates
    • Woods K., Kegelmeyer W.P., and Bowyer K. Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on PAMI 19 4 (1997) 405-410
    • (1997) IEEE Transactions on PAMI , vol.19 , Issue.4 , pp. 405-410
    • Woods, K.1    Kegelmeyer, W.P.2    Bowyer, K.3
  • 42
    • 0343486227 scopus 로고
    • Assessing the quality of learned local models
    • Cowan J.D., Tesauro G., and Alspector J. (Eds), Morgan Kaufman Publishers, Inc.
    • Schaal S., and Atkeson C.G. Assessing the quality of learned local models. In: Cowan J.D., Tesauro G., and Alspector J. (Eds). Advances in Neural Information Processing Systems vol. 6 (1994), Morgan Kaufman Publishers, Inc. 160-167
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 160-167
    • Schaal, S.1    Atkeson, C.G.2
  • 46
    • 54349084843 scopus 로고    scopus 로고
    • R Development Core Team, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing,Vienna, Austria, 2006.
    • R Development Core Team, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing,Vienna, Austria, 2006.
  • 48
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch W.S., and Pitts W. A logical calculus of the ideas imminent in nervous activity. Bulletin of Mathematical Biophysics 5 (1943) 115-133
    • (1943) Bulletin of Mathematical Biophysics , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 49
    • 54349121348 scopus 로고    scopus 로고
    • A.J. Smola, B. Schölkopf, A tutorial on support vector regression, NeuroCOLT2 Technical Report NC2-TR-1998-030, 1998.
    • A.J. Smola, B. Schölkopf, A tutorial on support vector regression, NeuroCOLT2 Technical Report NC2-TR-1998-030, 1998.
  • 51
    • 54349112140 scopus 로고    scopus 로고
    • C. Chang, C. Lin, LIBSVM: a library for support vector machines, software available at http://www.csie.ntu.edu.tw/cjlin/libsvm, 2001.
    • C. Chang, C. Lin, LIBSVM: a library for support vector machines, software available at http://www.csie.ntu.edu.tw/cjlin/libsvm, 2001.
  • 52
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning 45 1 (2001) 5-32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 55
    • 54349117750 scopus 로고    scopus 로고
    • A. Asuncion D.J. Newman, UCI machine learning repository, 2007.
    • A. Asuncion D.J. Newman, UCI machine learning repository, 2007.
  • 56
    • 54349110925 scopus 로고    scopus 로고
    • Department of Statistics at Carnegie Mellon University, Statlib - data, software and news from the statistics community, http://lib.stat.cmu.edu/, 2005.
    • Department of Statistics at Carnegie Mellon University, Statlib - data, software and news from the statistics community, http://lib.stat.cmu.edu/, 2005.
  • 58
    • 34548697522 scopus 로고    scopus 로고
    • Tests and variables selection on regression analysis for massive datasets
    • Fan T.H., and Cheng K.F. Tests and variables selection on regression analysis for massive datasets. Data and Knowledge Engineering 63 4 (2007) 811-819
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.4 , pp. 811-819
    • Fan, T.H.1    Cheng, K.F.2
  • 59
    • 34147132802 scopus 로고    scopus 로고
    • Utilizing hierarchical feature domain values for prediction
    • Han Y., and Lam W. Utilizing hierarchical feature domain values for prediction. Data and Knowledge Engineering 61 3 (2007) 540-553
    • (2007) Data and Knowledge Engineering , vol.61 , Issue.3 , pp. 540-553
    • Han, Y.1    Lam, W.2
  • 61
    • 35348881683 scopus 로고    scopus 로고
    • Semi-supervised regression with co-training style algorithms
    • Zhou Z.H., and Li M. Semi-supervised regression with co-training style algorithms. IEEE Transactions of Knowledge and Data Engineering 19 11 (2007) 1479-1493
    • (2007) IEEE Transactions of Knowledge and Data Engineering , vol.19 , Issue.11 , pp. 1479-1493
    • Zhou, Z.H.1    Li, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.