-
1
-
-
0037428183
-
Learning and understanding dynamic scene activity: A review
-
H. Buxton, "Learning and understanding dynamic scene activity: A review," Image Vis. Comput., vol. 21, pp. 125-136, 2003.
-
(2003)
Image Vis. Comput
, vol.21
, pp. 125-136
-
-
Buxton, H.1
-
2
-
-
3543105519
-
A survey on visual surveillance of object motion and behaviors
-
Aug
-
W. Hu, T. Tan, L. Wang, and S. Maybank, "A survey on visual surveillance of object motion and behaviors," IEEE Trans. Syst. Man Cybern. C, Appl. Rev., vol. 34, no. 3, pp. 334-352, Aug. 2004.
-
(2004)
IEEE Trans. Syst. Man Cybern. C, Appl. Rev
, vol.34
, Issue.3
, pp. 334-352
-
-
Hu, W.1
Tan, T.2
Wang, L.3
Maybank, S.4
-
3
-
-
0034245366
-
Recognition of visual activities and interactions by stochastic parsing
-
Aug
-
Y. Ivanov and A. Bobick, "Recognition of visual activities and interactions by stochastic parsing," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 852-872, Aug. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.22
, Issue.8
, pp. 852-872
-
-
Ivanov, Y.1
Bobick, A.2
-
4
-
-
0041940054
-
-
D. Minnen, I. Essa, and T. Starner, Expectation grammars: Leveraging high-level expectations for activity recognition, in Comput. Vis. Pattern Recognit., 2003, pp. II-626-II-632.
-
D. Minnen, I. Essa, and T. Starner, "Expectation grammars: Leveraging high-level expectations for activity recognition," in Comput. Vis. Pattern Recognit., 2003, pp. II-626-II-632.
-
-
-
-
5
-
-
0036932166
-
Recognizing multitasked activities from video using stochastic context-free grammar
-
D. Moore and I. Essa, "Recognizing multitasked activities from video using stochastic context-free grammar," in Proc. 18th Nat. Conf. Artif. Intell., 2002, pp. 770-776.
-
(2002)
Proc. 18th Nat. Conf. Artif. Intell
, pp. 770-776
-
-
Moore, D.1
Essa, I.2
-
6
-
-
84880838819
-
Automatic video interpretation: A novel algorithm for temporal scenario recognition
-
Acapulco, Mexico
-
V. Vu, F. Brémond, and M. Thonnat, "Automatic video interpretation: A novel algorithm for temporal scenario recognition," in Proc. 8th Int. Joint Conf. Artif. Intell., Acapulco, Mexico, 2003, pp. 9-15.
-
(2003)
Proc. 8th Int. Joint Conf. Artif. Intell
, pp. 9-15
-
-
Vu, V.1
Brémond, F.2
Thonnat, M.3
-
7
-
-
0011187970
-
Monitoring human behavior from video taken in an office environment
-
D. Ayers and M. Shah, "Monitoring human behavior from video taken in an office environment," Image Vis. Comput., vol. 19, no. 2, pp. 833-846, 2001.
-
(2001)
Image Vis. Comput
, vol.19
, Issue.2
, pp. 833-846
-
-
Ayers, D.1
Shah, M.2
-
8
-
-
0035421941
-
Event detection and analysis from video streams
-
Aug
-
G. Medioni, T. Cohen, F. Brémond, S. Hongeng, and R. Nevatia, "Event detection and analysis from video streams," IEEE Trans. Pattern Anal. Mach. Intell., vol. 23, no. 8, pp. 873-889, Aug. 2001.
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.23
, Issue.8
, pp. 873-889
-
-
Medioni, G.1
Cohen, T.2
Brémond, F.3
Hongeng, S.4
Nevatia, R.5
-
9
-
-
0034245337
-
Multiobject behavior recognition by event driven selective attention method
-
Aug
-
T. Wada and T. Matsuyama, "Multiobject behavior recognition by event driven selective attention method," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 873-887, Aug. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.22
, Issue.8
, pp. 873-887
-
-
Wada, T.1
Matsuyama, T.2
-
10
-
-
0034245149
-
A bayesian computer vision system for modeling human interactions
-
Aug
-
N. Oliver, B. Rosario, and A. Pentland, "A bayesian computer vision system for modeling human interactions," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 831-843, Aug. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.22
, Issue.8
, pp. 831-843
-
-
Oliver, N.1
Rosario, B.2
Pentland, A.3
-
11
-
-
0035270032
-
Learning variable length Markov models of behavior
-
A. Galata, N. Johnson, and D. Hogg, "Learning variable length Markov models of behavior," Comput. Vis. Image Understand., vol. 81, no. 3, pp. 398-413, 2001.
-
(2001)
Comput. Vis. Image Understand
, vol.81
, Issue.3
, pp. 398-413
-
-
Galata, A.1
Johnson, N.2
Hogg, D.3
-
12
-
-
0034245056
-
Discovery and segmentation of activities in video
-
Aug
-
M. Brand and V. Kettnaker, "Discovery and segmentation of activities in video," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 844-851, Aug. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.22
, Issue.8
, pp. 844-851
-
-
Brand, M.1
Kettnaker, V.2
-
13
-
-
34347372619
-
Object trajectory-based activity classification and recognition using hidden Markov models
-
Jul
-
F. Bashir, A. Khokhar, and D. Schonfeld, "Object trajectory-based activity classification and recognition using hidden Markov models," IEEE Trans. Image Process., vol. 16, no. 7, pp. 1912-1919, Jul. 2007.
-
(2007)
IEEE Trans. Image Process
, vol.16
, Issue.7
, pp. 1912-1919
-
-
Bashir, F.1
Khokhar, A.2
Schonfeld, D.3
-
14
-
-
4944221737
-
Video based event recognition: Activity representation and probabilistic methods
-
S. Hongeng, R. Nevatia, and F. Brémond, "Video based event recognition: Activity representation and probabilistic methods," Comput. Vis. Image Understand., vol. 96, pp. 129-162, 2004.
-
(2004)
Comput. Vis. Image Understand
, vol.96
, pp. 129-162
-
-
Hongeng, S.1
Nevatia, R.2
Brémond, F.3
-
15
-
-
21144437690
-
Recurrent Bayesian network for the recognition of human behaviors from video
-
Graz, Austria
-
N. Moenne-Loccoz, F. Brémond, and M. Thonnat, "Recurrent Bayesian network for the recognition of human behaviors from video," in Proc. Int. Conf. O Comput. Vis. Syst., Graz, Austria, 2003, pp. 68-78.
-
(2003)
Proc. Int. Conf. O Comput. Vis. Syst
, pp. 68-78
-
-
Moenne-Loccoz, N.1
Brémond, F.2
Thonnat, M.3
-
16
-
-
24044470614
-
Clustering of time series data - A survey
-
T. W. Liao, "Clustering of time series data - A survey," Pattern Recognit., vol. 38, no. 11, pp. 1857-1874, 2005.
-
(2005)
Pattern Recognit
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Liao, T.W.1
-
17
-
-
0030216085
-
Learning the distribution of object trajectories for event recognition
-
N. Johnson and D. Hogg, "Learning the distribution of object trajectories for event recognition," Image Vis. Comput., vol. 14, no. 8, pp. 609-615, 1996.
-
(1996)
Image Vis. Comput
, vol.14
, Issue.8
, pp. 609-615
-
-
Johnson, N.1
Hogg, D.2
-
18
-
-
0036783471
-
Representation and synthesis of behavior using Gaussian mixtures
-
N. Johnson and D. Hogg, "Representation and synthesis of behavior using Gaussian mixtures," Image Vis. Comput., vol. 20, pp. 889-894, 2002.
-
(2002)
Image Vis. Comput
, vol.20
, pp. 889-894
-
-
Johnson, N.1
Hogg, D.2
-
19
-
-
0034244889
-
Learning patterns of activity using real-time tracking
-
Aug
-
C. Stauffer and W. Grimson, "Learning patterns of activity using real-time tracking," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 852-872, Aug. 2000.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.22
, Issue.8
, pp. 852-872
-
-
Stauffer, C.1
Grimson, W.2
-
20
-
-
0036783840
-
Path detection in video surveillance
-
D. Makris and T. Ellis, "Path detection in video surveillance," Image Vis. Comput., vol. 20, no. 12, pp. 895-903, 2002.
-
(2002)
Image Vis. Comput
, vol.20
, Issue.12
, pp. 895-903
-
-
Makris, D.1
Ellis, T.2
-
21
-
-
20444410793
-
Learning semantic scene models from observing activity in visual surveillance
-
Jun
-
D. Makris and T. Ellis, "Learning semantic scene models from observing activity in visual surveillance," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 35, no. 3, pp. 397-408, Jun. 2005.
-
(2005)
IEEE Trans. Syst. Man Cybern. B, Cybern
, vol.35
, Issue.3
, pp. 397-408
-
-
Makris, D.1
Ellis, T.2
-
22
-
-
33748453850
-
On-line trajectory clustering for anomalous events detection
-
C. Piciarelli and G. Foresti, "On-line trajectory clustering for anomalous events detection," Pattern Recognit. Lett., vol. 27, pp. 1835-1842, 2006.
-
(2006)
Pattern Recognit. Lett
, vol.27
, pp. 1835-1842
-
-
Piciarelli, C.1
Foresti, G.2
-
23
-
-
49049113739
-
Trajectory distance metric using hidden Markov model based representation
-
Prague, Czech Republic
-
F. Porikli, "Trajectory distance metric using hidden Markov model based representation," in Proc. 8th Eur. Conf. Comput. Vis., PETS Workshop, Prague, Czech Republic, 2004, pp. 9-16.
-
(2004)
Proc. 8th Eur. Conf. Comput. Vis., PETS Workshop
, pp. 9-16
-
-
Porikli, F.1
-
24
-
-
33746576905
-
A system for learning statistical motion patterns
-
Sep
-
W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, "A system for learning statistical motion patterns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 9, pp. 1450-1464, Sep. 2006.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.28
, Issue.9
, pp. 1450-1464
-
-
Hu, W.1
Xiao, X.2
Fu, Z.3
Xie, D.4
Tan, T.5
Maybank, S.6
-
25
-
-
3543133192
-
-
J. Lou, Q. Liu, T. Tan, and W. Hu, Semantic interpretation of object activities in a surveillance system, in Proc. Int. Conf. Pattern Recognit., Quebec City, QC, Canada, 2002, pp. 111:777-780.
-
J. Lou, Q. Liu, T. Tan, and W. Hu, "Semantic interpretation of object activities in a surveillance system," in Proc. Int. Conf. Pattern Recognit., Quebec City, QC, Canada, 2002, pp. 111:777-780.
-
-
-
-
26
-
-
0034205098
-
Statistical models of object interaction
-
R. Morris and D. Hogg, "Statistical models of object interaction," Int. J. Comput. Vis., vol. 37, no. 2, pp. 209-215, 2000.
-
(2000)
Int. J. Comput. Vis
, vol.37
, Issue.2
, pp. 209-215
-
-
Morris, R.1
Hogg, D.2
-
27
-
-
33745844069
-
Learning semantic scene models by trajectory analysis
-
Graz, Austria
-
X. Wang, K. Tieu, and E. Grimson, "Learning semantic scene models by trajectory analysis," in Proc. Eur. Conf. Comput. Vis., Graz, Austria, 2006, pp. 110-123.
-
(2006)
Proc. Eur. Conf. Comput. Vis
, pp. 110-123
-
-
Wang, X.1
Tieu, K.2
Grimson, E.3
-
28
-
-
33846997170
-
On the feasibility of using a cognitive model to filter surveillance data
-
Como, Italy
-
H. M. Dee and D. C. Hogg, "On the feasibility of using a cognitive model to filter surveillance data," in Proc. IEEE Int. Conf. Adv. Video Signal Based Surveillance Syst., Como, Italy, 2005, pp. 34-39.
-
(2005)
Proc. IEEE Int. Conf. Adv. Video Signal Based Surveillance Syst
, pp. 34-39
-
-
Dee, H.M.1
Hogg, D.C.2
-
29
-
-
0038091288
-
-
Microsoft Research, Redmon, WA, Tech. Rep. TR 87
-
B. Schölkopf, J. Platt, J. Shave-Taylor, A. Smola, and R. Williamson, "Estimating the support of a high-dimensional distribution," Microsoft Research, Redmon, WA, Tech. Rep. TR 87, 1999.
-
(1999)
Estimating the support of a high-dimensional distribution
-
-
Schölkopf, B.1
Platt, J.2
Shave-Taylor, J.3
Smola, A.4
Williamson, R.5
-
30
-
-
24944439550
-
-
D. Lee and J. Lee, Trajectory-based support vector multicategory classifier, in Proc. Int. Symp. Neural Netw., Chongquing, China, 2005, pp. 857-862.
-
D. Lee and J. Lee, "Trajectory-based support vector multicategory classifier," in Proc. Int. Symp. Neural Netw., Chongquing, China, 2005, pp. 857-862.
-
-
-
-
31
-
-
44849087099
-
Anomalous trajectory detection using support vector machines
-
London, U.K
-
C. Piciarelli and G. Foresti, "Anomalous trajectory detection using support vector machines," in Proc. IEEE Int. Conf. Adv. Video Signal-Based Surveillance, London, U.K., 2007, pp. 153-158.
-
(2007)
Proc. IEEE Int. Conf. Adv. Video Signal-Based Surveillance
, pp. 153-158
-
-
Piciarelli, C.1
Foresti, G.2
-
32
-
-
0010864753
-
Pattern recognition using generalized portrait method
-
V. Vapnik and A. Lerner, "Pattern recognition using generalized portrait method," Autom. Remote Control, vol. 24, pp. 774-780, 1963.
-
(1963)
Autom. Remote Control
, vol.24
, pp. 774-780
-
-
Vapnik, V.1
Lerner, A.2
-
33
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
B. Boser, I. Guyon, and V. Vapnik, "A training algorithm for optimal margin classifiers," in Proc. 5th Annu. ACM Workshop Comput. Learn. Theory, 1992, pp. 144-152.
-
(1992)
Proc. 5th Annu. ACM Workshop Comput. Learn. Theory
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
34
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
B. Schölkopf and A. Smola, Learning With Kernels - Support Vector Machines, Regularization, Optimization, and Beyond, Cambridge, MA: MIT Press, 2002.
-
(2002)
Learning With Kernels - Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.2
-
35
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Mar
-
K. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, "An introduction to kernel-based learning algorithms," IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 181-201, Mar. 2001.
-
(2001)
IEEE Trans. Neural Netw
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
37
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. B. O. Chapelle, V. Vapnik, and S. Maukherjee, "Choosing multiple parameters for support vector machines," Mach. Learn., vol. 46, no. 1-3, pp. 131-159, 2002.
-
(2002)
Mach. Learn
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.B.O.1
Vapnik, V.2
Maukherjee, S.3
-
38
-
-
21844440579
-
Core vector machines: Fast SVM training on very large data sets
-
I. Tsang, J. Kwok, and P. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol. 6, pp. 363-392, 2005.
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 363-392
-
-
Tsang, I.1
Kwok, J.2
Cheung, P.3
-
39
-
-
49749105200
-
Disk aware discord discovery: Finding unusual time series in terabyte sized datasets
-
Omaha, NE
-
D. Yankov, E. Keogh, and U. Rebbapragada, "Disk aware discord discovery: Finding unusual time series in terabyte sized datasets," in Proc. IEEE Int. Conf. Data Mining, Omaha, NE, 2007, pp. 381-390.
-
(2007)
Proc. IEEE Int. Conf. Data Mining
, pp. 381-390
-
-
Yankov, D.1
Keogh, E.2
Rebbapragada, U.3
-
40
-
-
34548547034
-
Hot SAX: Efficiently finding the most unusual time series subsequence
-
Houston, TX
-
E. Keogh, J. Lin, and A. Fu, "Hot SAX: Efficiently finding the most unusual time series subsequence," in Proc. IEEE Int. Conf. Data Mining, Houston, TX, 2005, pp. 226-233.
-
(2005)
Proc. IEEE Int. Conf. Data Mining
, pp. 226-233
-
-
Keogh, E.1
Lin, J.2
Fu, A.3
-
41
-
-
33845335507
-
Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space
-
A. Naftel and S. Khalid, "Classifying spatiotemporal object trajectories using unsupervised learning in the coefficient feature space," Multimedia Syst., vol. 12, no. 3, pp. 227-238, 2006.
-
(2006)
Multimedia Syst
, vol.12
, Issue.3
, pp. 227-238
-
-
Naftel, A.1
Khalid, S.2
-
42
-
-
34548752457
-
Incremental local outlier detection for data streams
-
Honolulu, HI
-
D. Pokrajac, A. Lazarevic, and L. Latecki, "Incremental local outlier detection for data streams," in Proc. IEEE Symp. Comput. Intell. Data Mining, Honolulu, HI, 2007, pp. 504-515.
-
(2007)
Proc. IEEE Symp. Comput. Intell. Data Mining
, pp. 504-515
-
-
Pokrajac, D.1
Lazarevic, A.2
Latecki, L.3
|