메뉴 건너뛰기




Volumn 29, Issue 1, 2005, Pages 13-32

Transductive machine learning for reliable medical diagnostics

Author keywords

Coronary artery disease; Machine learning; Medical diagnosis; Reliability; Transduction

Indexed keywords

ARTICLE; CORONARY ARTERY DISEASE; DECISION MAKING; DIAGNOSTIC ACCURACY; DIAGNOSTIC TEST; DISEASE CLASSIFICATION; EVALUATION; HUMAN; MEDICAL PRACTICE; PHYSICIAN;

EID: 15244340871     PISSN: 01485598     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10916-005-1101-3     Document Type: Article
Times cited : (7)

References (29)
  • 1
    • 0018750969 scopus 로고
    • Analysis of probability as an aid in the clinical diagnosis of coronary artery disease
    • Diamond, G. A., and Forester, J. S., Analysis of probability as an aid in the clinical diagnosis of coronary artery disease. N. Engl. J. Med. 300:1350, 1979.
    • (1979) N. Engl. J. Med. , vol.300 , pp. 1350
    • Diamond, G.A.1    Forester, J.S.2
  • 2
    • 0005662389 scopus 로고
    • The probability of a correct diagnosis
    • Candell-Riera, J., and Ortega-Alcalde, D. (eds.), Kluwer, New York
    • Olona-Cabases, M., The probability of a correct diagnosis. In Candell-Riera, J., and Ortega-Alcalde, D. (eds.), Nuclear Cardiology in Everyday Practice, Kluwer, New York, pp. 348-357, 1994.
    • (1994) Nuclear Cardiology in Everyday Practice , pp. 348-357
    • Olona-Cabases, M.1
  • 3
    • 0032590279 scopus 로고    scopus 로고
    • Analysing and improving the diagnosis of ischaemic heart disease with machine learning
    • Kukar, M., Kononenko, I., Grošelj, C., Kralj, K., and Fettich, J., Analysing and improving the diagnosis of ischaemic heart disease with machine learning. Artif. Intell. Med. 16 (1):25-50, 1999.
    • (1999) Artif. Intell. Med. , vol.16 , Issue.1 , pp. 25-50
    • Kukar, M.1    Kononenko, I.2    Grošelj, C.3    Kralj, K.4    Fettich, J.5
  • 4
    • 0003408496 scopus 로고    scopus 로고
    • Department of Computer Science, University of California, Irvine, CA
    • Merz, C. J., and Murphy, P. M., UCI Repository of Machine Learning Databases, Department of Computer Science, University of California, Irvine, CA. Available from http://www.ics.uci.edu/~mlearn/MLRepository.html, 1997.
    • (1997) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 5
    • 0031363185 scopus 로고    scopus 로고
    • Machine learning improves the accuracy of coronary artery disease diagnostic methods
    • Lund, Sweden
    • Grošelj, C., Kukar, M., Fettich, J., and Kononenko, I., Machine learning improves the accuracy of coronary artery disease diagnostic methods. In Proceedings on Computers in Cardiology, vol. 24, Lund, Sweden, pp. 57-60, 1997.
    • (1997) Proceedings on Computers in Cardiology , vol.24 , pp. 57-60
    • Grošelj, C.1    Kukar, M.2    Fettich, J.3    Kononenko, I.4
  • 7
    • 0027682531 scopus 로고
    • Inductive and Bayesian learning in medical diagnosis
    • Kluwer, New York
    • Kononenko, I., Inductive and Bayesian learning in medical diagnosis, Kluwer, New York. Appl. Intell. 7:317-337, 1993.
    • (1993) Appl. Intell. , vol.7 , pp. 317-337
    • Kononenko, I.1
  • 8
    • 0002024359 scopus 로고
    • Test accuracy, test selection, and test result interpretation in chronic coronary artery disease
    • Gerson, C. M. (ed.), McGraw-Hill, New York
    • Gerson, C. M., Test accuracy, test selection, and test result interpretation in chronic coronary artery disease. In Gerson, C. M. (ed.), Cardiac Nuclear Medicine, McGraw-Hill, New York, pp. 309-347, 1987.
    • (1987) Cardiac Nuclear Medicine , pp. 309-347
    • Gerson, C.M.1
  • 11
    • 0043201796 scopus 로고    scopus 로고
    • Decision combination based on the characterisation of predictive accuracy
    • Ting, K. M., Decision combination based on the characterisation of predictive accuracy. Intell. Data Anal. 1:181-206, 1997.
    • (1997) Intell. Data Anal. , vol.1 , pp. 181-206
    • Ting, K.M.1
  • 13
    • 0012476755 scopus 로고    scopus 로고
    • Arbitrating among competing classifiers using learned referees
    • Ortega, J., Koppel, M., and Argamon, S., Arbitrating among competing classifiers using learned referees. Knowledge Inform. Syst. J. 3:470-490, 2001.
    • (2001) Knowledge Inform. Syst. J. , vol.3 , pp. 470-490
    • Ortega, J.1    Koppel, M.2    Argamon, S.3
  • 16
    • 0028742240 scopus 로고
    • Experience with adaptive pobabilistic neural networks and adaptive general regression neural networks
    • Orlando, FL
    • Specht, D. F., and Romsdahl, H., Experience with adaptive pobabilistic neural networks and adaptive general regression neural networks. In Proceedings of IEEE International Conference on Neural Networks, Orlando, FL, 1994.
    • (1994) Proceedings of IEEE International Conference on Neural Networks
    • Specht, D.F.1    Romsdahl, H.2
  • 24
    • 85139983802 scopus 로고
    • Supervised and unsupervised discretization of continuous features
    • Morgan Kaufmann, San Francisco
    • Dougherty, J., Kohavi, R., and Sahami, M., Supervised and unsupervised discretization of continuous features. In Proceeding of ICML'95, Morgan Kaufmann, San Francisco, pp.194-2002, 1995.
    • (1995) Proceeding of ICML'95 , pp. 194-2002
    • Dougherty, J.1    Kohavi, R.2    Sahami, M.3
  • 25
    • 0043201816 scopus 로고
    • Chi-square test of independence
    • Ott, R. L., and Longnecker, M. T. (eds.), Duxbury Press, Pacific Grove, CA
    • Ott, R. L., Chi-square test of independence. In Ott, R. L., and Longnecker, M. T. (eds.), An Introduction to Statistical Methods and Data Analysis, Duxbury Press, Pacific Grove, CA, pp. 392-401, 1993.
    • (1993) An Introduction to Statistical Methods and Data Analysis , pp. 392-401
    • Ott, R.L.1
  • 27
    • 0000489573 scopus 로고
    • Computer-assisted interpretation of noninvasive tests for diagnosis of coronary artery disease
    • Pollock, B. H., Computer-assisted interpretation of noninvasive tests for diagnosis of coronary artery disease. Cardiovasc. Rev. Rep. 4, 367-375, 1983.
    • (1983) Cardiovasc. Rev. Rep. , vol.4 , pp. 367-375
    • Pollock, B.H.1
  • 28
    • 85031799549 scopus 로고
    • Semi-naive Bayesian classifier
    • Kodratoff, Y. (ed.), Porto, Potrugal, Springer-Verlag, New York
    • Kononenko, I., Semi-naive Bayesian classifier. In Kodratoff, Y. (ed.), Proceedings of European Working Session on Learning-91, Porto, Potrugal, Springer-Verlag, New York, pp. 206-219, 1991.
    • (1991) Proceedings of European Working Session on Learning-91 , pp. 206-219
    • Kononenko, I.1
  • 29
    • 15244360907 scopus 로고
    • Statistical concepts in reliability
    • Crowder, M. J., Kimber, A. C., Smith, R. L., and Sweeting, T. J., (eds.), Chapman and Hall, London
    • Crowder, M. J., Kimber, A. C., Smith, R. L., and Sweeting, T. J., Statistical concepts in reliability. In Crowder, M. J., Kimber, A. C., Smith, R. L., and Sweeting, T. J., (eds.), Statistical Analysis of Reliability Data, Chapman and Hall, London, pp. 1-11, 1991.
    • (1991) Statistical Analysis of Reliability Data , pp. 1-11
    • Crowder, M.J.1    Kimber, A.C.2    Smith, R.L.3    Sweeting, T.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.