메뉴 건너뛰기




Volumn 8, Issue 5, 2013, Pages 523-533

Protein design in systems metabolic engineering for industrial strain development

Author keywords

Dynamic flux control; Protein design; Scaffold protein; Synthetic pathway; Systems metabolic engineering

Indexed keywords

FLUX CONTROL; PROTEIN DESIGN; SCAFFOLD PROTEIN; SYNTHETIC PATHWAYS; SYSTEMS METABOLIC ENGINEERINGS;

EID: 84877127500     PISSN: 18606768     EISSN: 18607314     Source Type: Journal    
DOI: 10.1002/biot.201200238     Document Type: Review
Times cited : (23)

References (79)
  • 1
    • 84874278667 scopus 로고    scopus 로고
    • Systems metabolic engineering of microorganisms for natural and non-natural chemicals.
    • Lee, J. W., Na, D., Park, J. M., Lee, J. et al., Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 2012, 17, 8536-8546.
    • (2012) Nat. Chem. Biol. , vol.17 , pp. 8536-8546
    • Lee, J.W.1    Na, D.2    Park, J.M.3    Lee, J.4
  • 2
    • 67649771821 scopus 로고    scopus 로고
    • Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals.
    • Picataggio, S., Potential impact of synthetic biology on the development of microbial systems for the production of renewable fuels and chemicals. Curr. Opin. Biotechnol. 2009, 20, 325-329.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 325-329
    • Picataggio, S.1
  • 3
    • 77956870811 scopus 로고    scopus 로고
    • Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development.
    • Chen, Z., Wilmanns, M., Zeng, A. P., Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotechnol. 2010, 11, 534-542.
    • (2010) Trends Biotechnol. , vol.11 , pp. 534-542
    • Chen, Z.1    Wilmanns, M.2    Zeng, A.P.3
  • 4
    • 68049111471 scopus 로고    scopus 로고
    • Finding better protein engineering strategies.
    • Kazlauskas, R. J., Bornscheuer, U. T., Finding better protein engineering strategies. Nat. Chem. Biol. 2009, 5, 526-529.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 526-529
    • Kazlauskas, R.J.1    Bornscheuer, U.T.2
  • 5
    • 71849104042 scopus 로고    scopus 로고
    • Enzyme engineering for enantioselectivity: from trial-and-error to rational design?
    • Otten, L. G., Hollmann, F., Arends, I. W., Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Trends Biotechnol. 2010, 28, 46-54.
    • (2010) Trends Biotechnol. , vol.28 , pp. 46-54
    • Otten, L.G.1    Hollmann, F.2    Arends, I.W.3
  • 6
    • 79953318587 scopus 로고    scopus 로고
    • Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst.
    • Bommarius, A. S., Blum, J. K., Abrahamson, M. J., Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr. Opin. Chem. Biol. 2011, 15, 194-200.
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 194-200
    • Bommarius, A.S.1    Blum, J.K.2    Abrahamson, M.J.3
  • 9
    • 17444382016 scopus 로고    scopus 로고
    • Exploring the diversity of complex metabolic networks.
    • Hatzimanikatis, V., Li, C., Ionita, J. A., Henry, C. S. et al., Exploring the diversity of complex metabolic networks. Bioinformatics, 2005, 21, 1603-1609.
    • (2005) Bioinformatics , vol.21 , pp. 1603-1609
    • Hatzimanikatis, V.1    Li, C.2    Ionita, J.A.3    Henry, C.S.4
  • 10
    • 77953578214 scopus 로고    scopus 로고
    • Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate.
    • Henry, C. S., Broadbelt, L. J., Hatzimanikatis, V., Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol. Bioeng. 2010, 106, 462-473.
    • (2010) Biotechnol. Bioeng. , vol.106 , pp. 462-473
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 11
    • 77952517931 scopus 로고    scopus 로고
    • Biosynthesis: is it time to go retro?
    • Bachmann, B. O., Biosynthesis: is it time to go retro? Nat. Chem. Biol. 2010, 6, 390-393.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 390-393
    • Bachmann, B.O.1
  • 12
    • 79961116083 scopus 로고    scopus 로고
    • A retrosynthetic biology approach to metabolic pathway design for therapeutic production.
    • Carbonell, P., Planson, A. G., Fichera, D., Faulon, J. L., A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst. Biol. 2011, 5, 122-139.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 122-139
    • Carbonell, P.1    Planson, A.G.2    Fichera, D.3    Faulon, J.L.4
  • 13
    • 65249143885 scopus 로고    scopus 로고
    • Enzyme (re)design: lessons from natural evolution and computation.
    • Gerlt, J. A., Babbitt, P. C., Enzyme (re)design: lessons from natural evolution and computation. Curr. Opin. Chem. Biol. 2009, 13, 10-18.
    • (2009) Curr. Opin. Chem. Biol. , vol.13 , pp. 10-18
    • Gerlt, J.A.1    Babbitt, P.C.2
  • 15
    • 78650471329 scopus 로고    scopus 로고
    • Engineering enzyme specificity using computational design of a defined-sequence library.
    • Lippow, S. M., Moon, T. S., Basu, S., Yoon, S. H., Li, X. et al., Engineering enzyme specificity using computational design of a defined-sequence library. Chem. Biol. 2010, 17, 1306-1315.
    • (2010) Chem. Biol. , vol.17 , pp. 1306-1315
    • Lippow, S.M.1    Moon, T.S.2    Basu, S.3    Yoon, S.H.4    Li, X.5
  • 16
    • 79953318587 scopus 로고    scopus 로고
    • Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst.
    • Bommarius, A. S., Blum, J. K., Abrahamson, M. J., Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst. Curr. Opin. Chem. Biol. 2011, 15, 194-200.
    • (2011) Curr. Opin. Chem. Biol. , vol.15 , pp. 194-200
    • Bommarius, A.S.1    Blum, J.K.2    Abrahamson, M.J.3
  • 17
    • 0030729481 scopus 로고    scopus 로고
    • Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold.
    • Perona, J. J., Craik, C. S., Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J. Biol. Chem. 1997, 272, 29987-29990.
    • (1997) J. Biol. Chem. , vol.272 , pp. 29987-29990
    • Perona, J.J.1    Craik, C.S.2
  • 18
    • 34250872269 scopus 로고    scopus 로고
    • Minimalist active-site redesign: teaching old enzymes new tricks.
    • Toscano, M. D., Woycechowsky, K. J., Hilvert, D., Minimalist active-site redesign: teaching old enzymes new tricks. Angew Chem. Int. Ed. Engl. 2007, 46, 3212-3236.
    • (2007) Angew Chem. Int. Ed. Engl. , vol.46 , pp. 3212-3236
    • Toscano, M.D.1    Woycechowsky, K.J.2    Hilvert, D.3
  • 19
    • 1642452921 scopus 로고    scopus 로고
    • Automated selection of positions determining functional specificity of proteins by comparative analysis of orthologous groups in protein families.
    • Kalinina, O. V., Mironov, A. A., Gelfand, M. S., Rakhmaninova, A. B., Automated selection of positions determining functional specificity of proteins by comparative analysis of orthologous groups in protein families. Protein Sci. 2004, 13, 443-456.
    • (2004) Protein Sci. , vol.13 , pp. 443-456
    • Kalinina, O.V.1    Mironov, A.A.2    Gelfand, M.S.3    Rakhmaninova, A.B.4
  • 20
    • 0037447059 scopus 로고    scopus 로고
    • Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases.
    • Li, L., Shakhnovich, E. I., Mirny, L. A., Amino acids determining enzyme-substrate specificity in prokaryotic and eukaryotic protein kinases. Proc. Natl. Acad. Sci. USA. 2003, 100, 4463-4468.
    • (2003) Proc. Natl. Acad. Sci. USA. , vol.100 , pp. 4463-4468
    • Li, L.1    Shakhnovich, E.I.2    Mirny, L.A.3
  • 21
    • 67650653475 scopus 로고    scopus 로고
    • Combining specificity determining and conserved residues improves functional site prediction.
    • Kalinina, O. V., Gelfand, M. S., Russell, R. B., Combining specificity determining and conserved residues improves functional site prediction. BMC Bioinformatics 2009, 10, 174.
    • (2009) BMC Bioinformatics , vol.10 , pp. 174
    • Kalinina, O.V.1    Gelfand, M.S.2    Russell, R.B.3
  • 22
    • 77954554764 scopus 로고    scopus 로고
    • An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies.
    • Mazin, P. V., Gelfand, M. S., Mironov, A. A., Rakhmaninova, A. B. et al., An automated stochastic approach to the identification of the protein specificity determinants and functional subfamilies. Algorithms Mol. Biol. 2010, 5, 29.
    • (2010) Algorithms Mol. Biol. , vol.5 , pp. 29
    • Mazin, P.V.1    Gelfand, M.S.2    Mironov, A.A.3    Rakhmaninova, A.B.4
  • 23
    • 80053447612 scopus 로고    scopus 로고
    • A phylogenetic mixture model for the identification of functionally divergent protein residues.
    • Gaston, D., Susko, E., Roger, A. J., A phylogenetic mixture model for the identification of functionally divergent protein residues. Bioinformatics 2011, 27, 2655-2663.
    • (2011) Bioinformatics , vol.27 , pp. 2655-2663
    • Gaston, D.1    Susko, E.2    Roger, A.J.3
  • 24
    • 79951767292 scopus 로고    scopus 로고
    • Identification of subfamily-specific sites based on active sites modeling and clustering.
    • de Melo-Minardi, R. C., Bastard, K., Artiguenave, F., Identification of subfamily-specific sites based on active sites modeling and clustering. Bioinformatics 2010, 26, 3075-3082.
    • (2010) Bioinformatics , vol.26 , pp. 3075-3082
    • de Melo-Minardi, R.C.1    Bastard, K.2    Artiguenave, F.3
  • 25
    • 78650471329 scopus 로고    scopus 로고
    • Engineering enzyme specificity using computational design of a defined-sequence library.
    • Lippow, S. M., Moon, T. S., Basu, S., Yoon, S. H. et al., Engineering enzyme specificity using computational design of a defined-sequence library. Chem. Biol. 2010, 17, 1306-1315.
    • (2010) Chem. Biol. , vol.17 , pp. 1306-1315
    • Lippow, S.M.1    Moon, T.S.2    Basu, S.3    Yoon, S.H.4
  • 26
    • 77958167211 scopus 로고    scopus 로고
    • Rational assignment of key motifs for function guides in silico enzyme identification.
    • Höhne, M., Schätzle, S., Jochens, H., Robins, K. et al., Rational assignment of key motifs for function guides in silico enzyme identification. Nat. Chem. Biol. 2010, 6, 807-813.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 807-813
    • Höhne, M.1    Schätzle, S.2    Jochens, H.3    Robins, K.4
  • 27
    • 73949105231 scopus 로고    scopus 로고
    • Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase.
    • Yang, T. H., Kim, T. W., Kang, H. O., Lee, S. H. et al., Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol. Bioeng. 2010, 105, 150-160.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 150-160
    • Yang, T.H.1    Kim, T.W.2    Kang, H.O.3    Lee, S.H.4
  • 28
    • 58149187903 scopus 로고    scopus 로고
    • SDR: a database of predicted specificity-determining residues in proteins.
    • Donald, J. E., Shakhnovich, E. I., SDR: a database of predicted specificity-determining residues in proteins. Nucleic Acids Res. 2009, 37, 191-194.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 191-194
    • Donald, J.E.1    Shakhnovich, E.I.2
  • 29
    • 37549049756 scopus 로고    scopus 로고
    • Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting.
    • Ye, K., Feenstra, K. A., Heringa, J., Ijzerman, A. P. et al., Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting. Bioinformatics 2008, 24, 18-25.
    • (2008) Bioinformatics , vol.24 , pp. 18-25
    • Ye, K.1    Feenstra, K.A.2    Heringa, J.3    Ijzerman, A.P.4
  • 30
    • 76749111595 scopus 로고    scopus 로고
    • Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families.
    • Röttig, M., Rausch, C., Kohlbacher, O., Combining structure and sequence information allows automated prediction of substrate specificities within enzyme families. PLoS Comput. Biol. 2010, 6, e1000636.
    • (2010) PLoS Comput. Biol. , vol.6
    • Röttig, M.1    Rausch, C.2    Kohlbacher, O.3
  • 32
    • 84860211608 scopus 로고    scopus 로고
    • A synthetic recursive "+1" pathway for carbon chain elongation.
    • Marcheschi, R. J., Li, H., Zhang, K., Noey, E. L. et al., A synthetic recursive "+1" pathway for carbon chain elongation. ACS Chem. Biol. 2012, 7, 689-697.
    • (2012) ACS Chem. Biol. , vol.7 , pp. 689-697
    • Marcheschi, R.J.1    Li, H.2    Zhang, K.3    Noey, E.L.4
  • 33
    • 30744448213 scopus 로고    scopus 로고
    • Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains.
    • Krömer, J. O., Heinzle, E., Schröder, H., Wittmann, C., Accumulation of homolanthionine and activation of a novel pathway for isoleucine biosynthesis in Corynebacterium glutamicum McbR deletion strains. J. Bacteriol. 2006, 188, 609-618.
    • (2006) J. Bacteriol. , vol.188 , pp. 609-618
    • Krömer, J.O.1    Heinzle, E.2    Schröder, H.3    Wittmann, C.4
  • 34
    • 38049001166 scopus 로고    scopus 로고
    • Non-fermentative pathways for synthesis of branched chain higher alcohols as biofuels.
    • Atsumi, S., Hanai, T., Liao, J. C., Non-fermentative pathways for synthesis of branched chain higher alcohols as biofuels. Nature 2008, 451, 86-89.
    • (2008) Nature , vol.451 , pp. 86-89
    • Atsumi, S.1    Hanai, T.2    Liao, J.C.3
  • 35
    • 59849106371 scopus 로고    scopus 로고
    • Protein promiscuity and its implications for biotechnology.
    • Nobeli, I., Favia, A. D., Thornton, J. M., Protein promiscuity and its implications for biotechnology. Nat. Biotechnol. 2009, 27, 157-167.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 157-167
    • Nobeli, I.1    Favia, A.D.2    Thornton, J.M.3
  • 36
    • 0037780207 scopus 로고    scopus 로고
    • Evolutionary potential of (beta/alpha)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily.
    • Schmidt, D. M., Mundorff, E. C., Dojka, M., Bermudez, E. et al., Evolutionary potential of (beta/alpha)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily. Biochemistry 2003, 42, 8387-8393.
    • (2003) Biochemistry , vol.42 , pp. 8387-8393
    • Schmidt, D.M.1    Mundorff, E.C.2    Dojka, M.3    Bermudez, E.4
  • 37
    • 33646178621 scopus 로고    scopus 로고
    • Designed divergent evolution of enzyme function.
    • Yoshikuni, Y., Ferrin, T.E., Keasling, J. D., Designed divergent evolution of enzyme function. Nature 2006, 440, 1078-1082.
    • (2006) Nature , vol.440 , pp. 1078-1082
    • Yoshikuni, Y.1    Ferrin, T.E.2    Keasling, J.D.3
  • 38
    • 40449116114 scopus 로고    scopus 로고
    • De novo computational design of retro-aldol enzymes.
    • Jiang, L., Althoff, E. A., Clemente, F. R., Doyle, L. et al., De novo computational design of retro-aldol enzymes. Science 2008, 319, 1387-1391.
    • (2008) Science , vol.319 , pp. 1387-1391
    • Jiang, L.1    Althoff, E.A.2    Clemente, F.R.3    Doyle, L.4
  • 39
    • 43449098518 scopus 로고    scopus 로고
    • Kemp elimination catalysts by computational enzyme design.
    • Röthlisberger, D., Khersonsky, O., Wollacott, A. M., Jiang, L. et al., Kemp elimination catalysts by computational enzyme design. Nature 2008, 453, 190-195.
    • (2008) Nature , vol.453 , pp. 190-195
    • Röthlisberger, D.1    Khersonsky, O.2    Wollacott, A.M.3    Jiang, L.4
  • 40
    • 77954811495 scopus 로고    scopus 로고
    • Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction.
    • Siegel, J. B., Zanghellini, A., Lovick, H. M., Kiss, G. et al., Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 2010, 329, 309-313.
    • (2010) Science , vol.329 , pp. 309-313
    • Siegel, J.B.1    Zanghellini, A.2    Lovick, H.M.3    Kiss, G.4
  • 42
    • 79960094055 scopus 로고    scopus 로고
    • Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production.
    • Chen, Z., Meyer, W. Q., Rappert, S., Sun, J. B. et al., Coevolutionary analysis enabled rational deregulation of allosteric enzyme inhibition in Corynebacterium glutamicum for lysine production. Appl. Environ. Microbiol. 2011, 77, 4352-4360.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 4352-4360
    • Chen, Z.1    Meyer, W.Q.2    Rappert, S.3    Sun, J.B.4
  • 43
    • 79960434236 scopus 로고    scopus 로고
    • Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production.
    • Chen, Z., Rappert, S., Sun, J. B., Zeng, A. P., Integrating molecular dynamics and co-evolutionary analysis for reliable target prediction and deregulation of the allosteric inhibition of aspartokinase for amino acid production. J. Biotechnol. 2011, 154, 248-254.
    • (2011) J. Biotechnol. , vol.154 , pp. 248-254
    • Chen, Z.1    Rappert, S.2    Sun, J.B.3    Zeng, A.P.4
  • 44
    • 84876686644 scopus 로고    scopus 로고
    • Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli.
    • Chen, Z., Chen, S., Zheng, P., Sun, J. B., Zeng, A. P., Study and reengineering of the binding sites and allosteric regulation of biosynthetic threonine deaminase by isoleucine and valine in Escherichia coli. App. Microbiol. Biotechnol. 2013, 97, 2939-2949.
    • (2013) App. Microbiol. Biotechnol. , vol.97 , pp. 2939-2949
    • Chen, Z.1    Chen, S.2    Zheng, P.3    Sun, J.B.4    Zeng, A.P.5
  • 45
    • 84874118500 scopus 로고    scopus 로고
    • Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production.
    • Geng, F., Chen, Z., Zheng, P., Sun, J. B., Zeng, A. P., Exploring the allosteric mechanism of dihydrodipicolinate synthase by reverse engineering of the allosteric inhibitor binding sites and its application for lysine production. App. Microbiol. Biotechnol. 2013, 97, 1963-1971.
    • (2013) App. Microbiol. Biotechnol. , vol.97 , pp. 1963-1971
    • Geng, F.1    Chen, Z.2    Zheng, P.3    Sun, J.B.4    Zeng, A.P.5
  • 46
    • 0030893657 scopus 로고    scopus 로고
    • Argos, P. NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding.
    • Carugo, O., Argos, P. NADP-dependent enzymes. I: conserved stereochemistry of cofactor binding. Proteins 1997, 28, 10-28.
    • (1997) Proteins , vol.28 , pp. 10-28
    • Carugo, O.1
  • 47
    • 0029845902 scopus 로고    scopus 로고
    • The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins.
    • Bellamacina, C. R., The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J. 1996, 10, 1257-1269.
    • (1996) FASEB J. , vol.10 , pp. 1257-1269
    • Bellamacina, C.R.1
  • 48
    • 84887263122 scopus 로고    scopus 로고
    • Protein design for industrial strain development: the case of amino acids production. PhD thesis
    • Chen, Z., Protein design for industrial strain development: the case of amino acids production. PhD thesis, Hamburg University of Technology, 2012.
    • (2012) Hamburg University of Technology
    • Chen, Z.1
  • 49
    • 1242264261 scopus 로고    scopus 로고
    • Metabolic engineering for improved fermentation of pentoses by yeasts
    • Jeffries, T. W., Jin, Y. S., Metabolic engineering for improved fermentation of pentoses by yeasts. App. Microbiol. Biotechnol. 2004, 63, 495-509.
    • (2004) App. Microbiol. Biotechnol. , vol.63 , pp. 495-509
    • Jeffries, T.W.1    Jin, Y.S.2
  • 50
    • 33644879465 scopus 로고    scopus 로고
    • The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    • Jeppsson, M., Bengtsson, O., Franke, K., Lee, H. et al., The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol. Bioeng. 2006, 93, 665-673.
    • (2006) Biotechnol. Bioeng. , vol.93 , pp. 665-673
    • Jeppsson, M.1    Bengtsson, O.2    Franke, K.3    Lee, H.4
  • 51
    • 34948882785 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis.
    • Watanabe, S., Abu aleh, A., Pack, S. P., Annaluru, N. et al., Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology 2007, 153, 3044-3054.
    • (2007) Microbiology , vol.153 , pp. 3044-3054
    • Watanabe, S.1    Abu aleh, A.2    Pack, S.P.3    Annaluru, N.4
  • 52
    • 34347390887 scopus 로고    scopus 로고
    • The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae.
    • Watanabe, S., Pack, S.P., Saleh, A. A., Annaluru, N. et al., The positive effect of the decreased NADPH-preferring activity of xylose reductase from Pichia stipitis on ethanol production using xylose-fermenting recombinant Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 2007, 71, 1365-1369.
    • (2007) Biosci. Biotechnol. Biochem. , vol.71 , pp. 1365-1369
    • Watanabe, S.1    Pack, S.P.2    Saleh, A.A.3    Annaluru, N.4
  • 53
    • 42449145157 scopus 로고    scopus 로고
    • Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae.
    • Petschacher, B., Nidetzky, B., Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb. Cell Fact. 2008, 7, 9.
    • (2008) Microb. Cell Fact. , vol.7 , pp. 9
    • Petschacher, B.1    Nidetzky, B.2
  • 54
    • 34250361036 scopus 로고    scopus 로고
    • Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase.
    • Watanabe, S., Saleh, A. A., Pack, S. P., Annaluru, N. et al., Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J. Biotechnol. 2007, 130, 316-319.
    • (2007) J. Biotechnol. , vol.130 , pp. 316-319
    • Watanabe, S.1    Saleh, A.A.2    Pack, S.P.3    Annaluru, N.4
  • 55
    • 77956371200 scopus 로고    scopus 로고
    • Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control.
    • Leonard, E., Ajikumar, P. K., Thayer, K., Xiao, W. H. et al., Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc. Natl. Acad. Sci. USA 2010, 107, 13654-13659.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 13654-13659
    • Leonard, E.1    Ajikumar, P.K.2    Thayer, K.3    Xiao, W.H.4
  • 56
    • 77950155377 scopus 로고    scopus 로고
    • Adjustable mutations in lactate (LA)-polymerizing enzyme for the microbial production of LA-based polyesters with tailor-made monomer composition.
    • Yamada, M., Matsumoto, K., Shimizu, K., Uramoto, S. et al., Adjustable mutations in lactate (LA)-polymerizing enzyme for the microbial production of LA-based polyesters with tailor-made monomer composition. Biomacromolecules 2010, 11, 815-819.
    • (2010) Biomacromolecules , vol.11 , pp. 815-819
    • Yamada, M.1    Matsumoto, K.2    Shimizu, K.3    Uramoto, S.4
  • 57
    • 0034024497 scopus 로고    scopus 로고
    • Improving lycopene production in Escherichia coli by engineering metabolic control.
    • Farmer, W. R., Liao, J. C., Improving lycopene production in Escherichia coli by engineering metabolic control. Nat. Biotechnol. 2000, 18, 533-537.
    • (2000) Nat. Biotechnol. , vol.18 , pp. 533-537
    • Farmer, W.R.1    Liao, J.C.2
  • 58
    • 84859633048 scopus 로고    scopus 로고
    • Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids.
    • Zhang, F. Z., Carothers, J. M., Keasling, J. D., Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 2012, 30, 354-359.
    • (2012) Nat. Biotechnol. , vol.30 , pp. 354-359
    • Zhang, F.Z.1    Carothers, J.M.2    Keasling, J.D.3
  • 59
    • 42149120662 scopus 로고    scopus 로고
    • AraC regulatory protein mutants with altered effector specificity.
    • Tang, S. Y., Fazelinia, H., Cirino, P. C., AraC regulatory protein mutants with altered effector specificity. J. Am. Chem. Soc. 2008, 130, 5267-5271.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 5267-5271
    • Tang, S.Y.1    Fazelinia, H.2    Cirino, P.C.3
  • 60
    • 84856020198 scopus 로고    scopus 로고
    • Varga, E, Brzezinski, P. Directed evolution of the transcriptional regulator DntR: isolation of mutants with improved DNT-response.
    • Lönneborg, R., Varga, E, Brzezinski, P. Directed evolution of the transcriptional regulator DntR: isolation of mutants with improved DNT-response. PLoS One 2012, 7, e29994.
    • (2012) PLoS One , vol.7
    • Lönneborg, R.1
  • 61
    • 0038752617 scopus 로고    scopus 로고
    • Computational design of receptor and sensor proteins with novel functions.
    • Looger, L. L., Dwyer, M. A., Smith, J. J., Hellinga, H. W., Computational design of receptor and sensor proteins with novel functions. Nature 2003, 423, 185-190.
    • (2003) Nature , vol.423 , pp. 185-190
    • Looger, L.L.1    Dwyer, M.A.2    Smith, J.J.3    Hellinga, H.W.4
  • 62
    • 84862526773 scopus 로고    scopus 로고
    • Protein conformational switches: from nature to design.
    • Ha, J. H., Loh, S. N., Protein conformational switches: from nature to design. Chemistry 2012, 18, 7984-7999.
    • (2012) Chemistry , vol.18 , pp. 7984-7999
    • Ha, J.H.1    Loh, S.N.2
  • 63
    • 49449118042 scopus 로고    scopus 로고
    • Light-activated DNA binding in a designed allosteric protein.
    • Strickland, D., Moffat, K., Sosnick, T. R., Light-activated DNA binding in a designed allosteric protein. Proc. Natl. Acad. Sci. USA. 2008, 105, 10709-10714.
    • (2008) Proc. Natl. Acad. Sci. USA. , vol.105 , pp. 10709-10714
    • Strickland, D.1    Moffat, K.2    Sosnick, T.R.3
  • 64
    • 77955170460 scopus 로고    scopus 로고
    • Rationally improving LOV domain-based photoswitches.
    • Strickland, D., Yao, X., Gawlak, G., Rosen, M. K. et al., Rationally improving LOV domain-based photoswitches. Nat. Methods 2010, 7, 623-626.
    • (2010) Nat. Methods , vol.7 , pp. 623-626
    • Strickland, D.1    Yao, X.2    Gawlak, G.3    Rosen, M.K.4
  • 65
    • 54249105941 scopus 로고    scopus 로고
    • Surface sites for engineering allosteric control in proteins.
    • Lee, J., Natarajan, M., Nashine, V. C., Socolich, M. et al., Surface sites for engineering allosteric control in proteins. Science 2008, 322, 438-442.
    • (2008) Science , vol.322 , pp. 438-442
    • Lee, J.1    Natarajan, M.2    Nashine, V.C.3    Socolich, M.4
  • 66
    • 33644831449 scopus 로고    scopus 로고
    • Modular enzyme design: regulation by mutually exclusive protein folding.
    • Ha, J. H., Butler, J. S., Mitrea, D. M., Loh, S. N., Modular enzyme design: regulation by mutually exclusive protein folding. J. Mol. Biol. 2006, 357, 1058-1062.
    • (2006) J. Mol. Biol. , vol.357 , pp. 1058-1062
    • Ha, J.H.1    Butler, J.S.2    Mitrea, D.M.3    Loh, S.N.4
  • 67
    • 79959913313 scopus 로고    scopus 로고
    • Biosensors and their applications in microbial metabolic engineering.
    • Zhang, F., Keasling, J., Biosensors and their applications in microbial metabolic engineering. Trends Microbiol. 2011, 19, 323-329.
    • (2011) Trends Microbiol. , vol.19 , pp. 323-329
    • Zhang, F.1    Keasling, J.2
  • 68
    • 84862193202 scopus 로고    scopus 로고
    • The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids.
    • Mustafi, N., Grünberger, A., Kohlheyer, D., Bott, M., The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab. Eng. 2012, 14, 449-457.
    • (2012) Metab. Eng. , vol.14 , pp. 449-457
    • Mustafi, N.1    Grünberger, A.2    Kohlheyer, D.3    Bott, M.4
  • 69
    • 84859245861 scopus 로고    scopus 로고
    • Protein and RNA engineering to customize microbial molecular reporting.
    • Gredell, J. A., Frei, C. S., Cirino, P. C., Protein and RNA engineering to customize microbial molecular reporting. Biotechnol J. 2012, 7, 477-499.
    • (2012) Biotechnol J. , vol.7 , pp. 477-499
    • Gredell, J.A.1    Frei, C.S.2    Cirino, P.C.3
  • 70
    • 40849100220 scopus 로고    scopus 로고
    • Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics.
    • Bashor, C. J., Helman, N. C., Yan, S., Lim, W. A., Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 2008, 319, 1539-1543.
    • (2008) Science , vol.319 , pp. 1539-1543
    • Bashor, C.J.1    Helman, N.C.2    Yan, S.3    Lim, W.A.4
  • 71
    • 34249885757 scopus 로고    scopus 로고
    • Engineering synthetic signaling proteins with ultrasensitive input/output control.
    • Dueber, J. E., Mirsky, E. A., Lim, W. A., Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 2007, 25, 660-662.
    • (2007) Nat. Biotechnol. , vol.25 , pp. 660-662
    • Dueber, J.E.1    Mirsky, E.A.2    Lim, W.A.3
  • 72
    • 77951159012 scopus 로고    scopus 로고
    • Rapid diversification of cell signaling phenotypes by modular domain recombination.
    • Peisajovich, S. G., Garbarino, J. E., Wie, P., Lim, W. A., Rapid diversification of cell signaling phenotypes by modular domain recombination. Science 2010, 328, 368-372.
    • (2010) Science , vol.328 , pp. 368-372
    • Peisajovich, S.G.1    Garbarino, J.E.2    Wie, P.3    Lim, W.A.4
  • 73
    • 77952944052 scopus 로고    scopus 로고
    • Designing customized cell signalling circuits.
    • Lim, W. A., Designing customized cell signalling circuits. Nat. Rev. Mol. Cell. Biol. 2010, 11, 393-403.
    • (2010) Nat. Rev. Mol. Cell. Biol. , vol.11 , pp. 393-403
    • Lim, W.A.1
  • 74
    • 68449088806 scopus 로고    scopus 로고
    • Synthetic protein scaffolds provide modular control over metabolic flux.
    • Dueber, J. E., Wu, G. C., Malmirchegini, G. R., Moon, T. S. et al., Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 2009, 27, 753-759.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 753-759
    • Dueber, J.E.1    Wu, G.C.2    Malmirchegini, G.R.3    Moon, T.S.4
  • 75
    • 77950863739 scopus 로고    scopus 로고
    • Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli.
    • Moon, T. S., Dueber, J. E., Shiue, E., Prather, K. L. J., Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 2010, 12, 298-305.
    • (2010) Metab. Eng. , vol.12 , pp. 298-305
    • Moon, T.S.1    Dueber, J.E.2    Shiue, E.3    Prather, K.L.J.4
  • 76
    • 84865404296 scopus 로고    scopus 로고
    • Facilitated substrate channeling in a self-assembled trifunctional enzyme complex.
    • You, C., Myung, S., Zhang, Y. H., Facilitated substrate channeling in a self-assembled trifunctional enzyme complex. Angew Chem. Int. Ed. Engl. 2012, 51, 8787-8790.
    • (2012) Angew Chem. Int. Ed. Engl. , vol.51 , pp. 8787-8790
    • You, C.1    Myung, S.2    Zhang, Y.H.3
  • 77
    • 79960216783 scopus 로고    scopus 로고
    • Substrate channeling and enzyme complexes for biotechnological applications.
    • Zhang, Y. H., Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 2011, 29, 715-725.
    • (2011) Biotechnol. Adv. , vol.29 , pp. 715-725
    • Zhang, Y.H.1
  • 78
    • 84859780045 scopus 로고    scopus 로고
    • Spatial organization of enzymes for metabolic engineering.
    • Lee, H., DeLoache, W. C., Dueber, J. E., Spatial organization of enzymes for metabolic engineering. Metab. Eng. 2012, 14, 242-251.
    • (2012) Metab. Eng. , vol.14 , pp. 242-251
    • Lee, H.1    DeLoache, W.C.2    Dueber, J.E.3
  • 79
    • 0034919604 scopus 로고    scopus 로고
    • Channeling of substrates and intermediates in enzyme-catalyzed reactions.
    • Huang, X., Holden, H. M., Raushel, F. M., Channeling of substrates and intermediates in enzyme-catalyzed reactions. Annu. Rev. Biochem. 2001, 70, 149-180.
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 149-180
    • Huang, X.1    Holden, H.M.2    Raushel, F.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.